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Abstract An orientably-regular map is a 2-cell embedding of a connected graph or
multigraph into an orientable surface, such that the group of all orientation-preserving
automorphisms of the embedding has a single orbit on the set of all arcs (incident
vertex-edge pairs). Such embeddings of the n-dimensional cubes Qn were classified
for all odd n by Du, Kwak and Nedela in 2005, and in 2007, Jing Xu proved that for
n = 2m where m is odd, they are precisely the embeddings constructed by Kwon in
2004. Here, we give a classification of orientably-regular embeddings of Qn for all n.
In particular, we show that for all even n (= 2m), these embeddings are in one-to-one
correspondence with elements σ of order 1 or 2 in the symmetric group Sn such that
σ fixes n, preserves the set of all pairs Bi = {i, i + m} for 1 ≤ i ≤ m, and induces
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the same permutation on this set as the permutation Bi �→ Bf (i) for some additive
bijection f : Zm → Zm. We also give formulae for the numbers of embeddings that
are reflexible and chiral, respectively, showing that the ratio of reflexible to chiral
embeddings tends to zero for large even n.

Keywords Hypercubes · Cubes · Regular maps · Regular embeddings · Chiral

1 Introduction

A (topological) map is a cellular decomposition of a closed surface. A common way
to describe such a map is to view it as a 2-cell embedding of a connected graph
or multigraph X into the surface S. The components of the complement S \ X are
simply-connected regions called the faces of the map (or the embedding).

An automorphism of a map M = (X,S) is an automorphism of the underlying
(multi)graph X which extends to a self-homeomorphism of the supporting surface S.
It is well known that the automorphism group of a map acts semi-regularly on the
set of all incident vertex-edge-face triples (sometimes called the flags of M); in other
words, every automorphism is uniquely determined by its effect on a given flag.

If for any given flag (v, e, f ) the automorphism group contains two automor-
phisms that induce (respectively) a single cycle on the edges incident with v and
a single cycle on the edges incident with f , then the map M is called rotary. In the
orientable case, this condition implies that the group of all orientation-preserving au-
tomorphisms of M acts regularly on the set of all incident vertex-edge pairs (or arcs)
of M , and we call M an orientably-regular map. Such maps fall into two classes:
those that admit also orientation-reversing automorphisms, which are called reflex-
ible, and those that do not, which are chiral. In the non-orientable case (and in the
reflexible case), the automorphism group acts regularly on flags, while in the chiral
case, there are two orbits on flags, such that the two flags associated with each arc lie
in different orbits.

A regular embedding (or more technically, a rotary embedding) of a graph X is
then a 2-cell embedding of X as a rotary map on some closed surface.

Classification of rotary maps by their underlying graphs is one of the central
problems in topological graph theory. An abstract characterization of graphs hav-
ing regular embeddings was given by Gardiner et al. in [12]. The classification
problem has been solved only for few families of graphs, including the complete
graphs [1, 13, 14], their canonical double covers [23], and complete multipartite
graphs Kp,p,...,p for prime p [8, 10]. Particular contributions towards the classifica-
tion of regular embeddings of complete bipartite graphs Kn,n can be found in papers
[6, 7, 16, 17, 19, 20, 26], and this classification was recently completed by Gareth
Jones [15]. In this paper we focus on the classification of regular embeddings of
n-dimensional cubes Qn.

The existence of at least two different regular embeddings of Qn for each n > 2
has been known for some time: in [24], Nedela and Škoviera constructed a regular
embedding of Qn for every solution e of the congruence e2 ≡ 1 mod n, with differ-
ent solutions giving rise to non-isomorphic maps. Later, Du, Kwak and Nedela [9]
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proved that there are no other regular embeddings of Qn into orientable surfaces
when n is odd. In contrast, Kwon [21] constructed new regular embeddings for all
even n � 6, by applying a ‘switch’ operator (as defined in [25]); he thereby also de-
rived an exponential lower bound in terms of n for the number of non-isomorphic
regular embeddings of Qn.

Recently, Jing Xu [28] proved that the embeddings constructed by Kwon cover
all regular embeddings of Qn into orientable surfaces, when n = 2m for odd m. In
[22], Kwon and Nedela proved that there are no regular embeddings of Qn into non-
orientable surfaces, for all n > 2. Also recently, the first and fifth authors of this
paper gave a characterization of all orientably-regular embeddings of Qn (in terms
of certain ‘quadrilateral identities’), and a construction for new regular embeddings
of Qn for all n divisible by 16, not covered by the family of embeddings found by
Kwon; see [3].

The aim of the present paper is to classify the regular embeddings of Qn for all n.
By [22], these are orientable for n > 2, and by [9] they are known for all odd n, so
we concentrate on the case where n is even, say n = 2m.

In our main theorem (Theorem 5.1), we will show that when n = 2m the
orientably-regular embeddings are in one-to-one correspondence with elements σ

of order 1 or 2 in the symmetric group Sn such that σ fixes n, preserves the set of
all pairs Bi = {i, i + m} for 1 ≤ i ≤ m, and induces the same permutation on this set
as the permutation Bi �→ Bf (i) for some additive bijection f : Zm → Zm. (Note: by
additive, we mean that f (i + j) ≡ f (i)+f (j) mod m for all i, j ∈ Zm; and since σ 2

is trivial, this is equivalent to f being given by f : i �→ ei for some square root e of 1
in Zm (namely e = f (1)).) In particular, it follows that every regular embedding of
Qn belongs to one of the families constructed by Kwon [21] and Catalano and Nedela
[3]. This also gives rise to formulae for the numbers of embeddings that are reflexible
and chiral, respectively, which show that the ratio of reflexible to chiral embeddings
tends to zero for large even n.

Before proving our main theorem in Sect. 5, we give some further background
in Sects. 2 and 3, and introduce a reduction process in Sect. 4. Reflexibility and
the enumeration formulae are then considered in Sect. 6, and the genera and other
properties of the resulting maps are dealt with in Sect. 7.

2 Further background

Let M be an orientably-regular map, and let G = Auto(M) be the group of all
orientation-preserving automorphisms of M . Then G acts transitively on vertices,
on edges, and on faces of M ; in particular, every face has the same size k, say, and
every vertex has the same degree (valency) m, say. The pair {k,m} is then called the
type of the map M .

Moreover, for any given flag (v, e, f ) of M , there exists an automorphism R in
G inducing a single-step rotation of the edges incident with f , and an automorphism
S in G inducing a single-step rotation of the edges incident with v, with product
RS an involutory automorphism that reverses the edge e. By connectedness, R and
S generate G, which is therefore a quotient of the ordinary (k,m,2) triangle group
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�o(k,m,2) = 〈x, y | xk = ym = (xy)2 = 1〉 (under an epimorphism taking x to R

and y to S). The map M is reflexible if and only if the group G admits an automor-
phism of order 2 taking R to R−1 and S to S−1, or equivalently (by conjugation), an
automorphism of order 2 taking S to S−1 and RS to S−1R−1 = (RS)−1 = RS.

Conversely, given any epimorphism θ from �o(k,m,2) to a finite group G with
torsion-free kernel, a map M can be constructed using (right) cosets of the images
of 〈x〉, 〈y〉 and 〈xy〉 as vertices, faces and edges, with incidence given by non-empty
intersection, and then G acts regularly on the arcs of M by (right) multiplication.
From this point of view the study of regular maps is simply the study of smooth
finite quotients of triangle groups, with ‘smooth’ here meaning that the orders of the
elements x, y and xy are preserved.

An isomorphism between maps is an isomorphism between their underlying
graphs that preserves oriented faces. Isomorphic regular maps have the same type,
and therefore come from the same triangle group; in fact, two orientably-regular
maps of the same type {k,m} are isomorphic if and only if they are obtainable from
the same torsion-free normal subgroup of �o(k,m,2).

Rotary maps can be classified according to the genus or the Euler characteristic of
the supporting surface, or by the underlying graph, or by the automorphism group of
the map. Deep connections exist between maps and other branches of mathematics,
which go far beyond group theory, and include hyperbolic geometry, Riemann sur-
faces and, rather surprisingly, number fields and Galois theory, based on observations
made by Belyı̆ and Grothendieck; see [18] for example.

The correspondence between rotary maps and normal subgroups of finite index in
triangle groups has been exploited to develop the theory of such maps and produce or
classify many families of examples. In particular, it was used by Conder and Dobc-
sányi in [5] to determine all rotary maps of Euler characteristic −1 to −28 inclusive,
and subsequently extended by Conder in [4] for characteristic −1 to −200.

Now we turn to the cube graphs Qn. For each integer n > 1, the n-dimensional
cube graph Qn is the graph on vertex-set V = Z2

n, with two vertices u,v ∈ V adja-
cent if and only if the Hamming distance d(u, v) between them is 1 (that is, if and
only if u and v differ in exactly one coordinate position).

The automorphism group of Qn is well known to be the wreath product Z2 	 Sn,
which is a semi-direct product Z2

n
� Sn of V = Z2

n by the symmetric group Sn. In
particular, we may view any element of Aut(Qn) as a product of some v ∈ V with
a permutation π ∈ Sn, and multiplication follows from the rule vπ = πvπ where
vπ denotes the vector in V obtained from v by applying the permutation π to the
coordinates of v.

In any orientably-regular embedding of Qn, we may choose the rotation S about
the vertex v = 0 to be the n-cycle ρ = (1,2,3, . . . , n) in Sn, and then choose the
rotation R about a face f incident with v so that RS is the involution enσ , where
en = (0,0, . . . ,0,1) is the nth standard basis vector for V , and σ is a permutation of
order 1 or 2 in Sn fixing n. This is explained further in [21], where e0 is used in place
of en for the purposes of consistency with taking residues modulo n.

For any such permutation σ (of order 1 or 2 and fixing n) in Sn, let G(σ) =
〈ρ, enσ 〉. By [21, Lemma 3.1], this subgroup of Aut(Qn) acts transitively on the
arcs of Qn. Next, if G(σ) acts regularly on the arcs of Qn, so that |G(σ)| = n2n,
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then we call the permutation σ an admissible involution (allowing an ‘involution’
to have order 1), and we denote the corresponding regular embedding by M(σ ). In
particular, the identity permutation ι is an admissible involution in Sn, giving the
standard embedding M(ι).

We can now state the following theorem.

Theorem 2.1 (Kwon [21, Theorem 3.1]) Every regular embedding of Qn is isomor-
phic to M(σ ) for some admissible involution σ ∈ Sn. Moreover, for any admissible
involutions σ1, σ2 ∈ Sn, the maps M(σ1) and M(σ2) are isomorphic if and only if
σ1 = σ2.

Hence the classification of regular embeddings of Qn is equivalent to the clas-
sification of admissible involutions σ in Sn. We remark that for n = 2 the standard
embedding is the only regular orientable embedding of Q2, and so from now on, we
suppose n > 2.

For some time it has been known (see [24], for example) that for every square root
e of 1 in Zn, the mapping τe : Zn → Zn given by τe : i �→ ei (multiplication by e)
gives rise to an admissible involution in Sn (when we think of 0 as n).

The classification of regular embeddings of Qn for n odd was achieved by proving
the following:

Theorem 2.2 (Du, Kwak & Nedela [9]) If n is odd and σ ∈ Sn is an admissible
involution, then σ = τe for some e satisfying e2 ≡ 1 mod n.

In this paper we focus attention on the even-dimensional case. In this case, the
following partial results are known:

Theorem 2.3 (Kwon [21, Theorems 4.1 & 5.2)] For n = 2m (even), let e be a square
root of 1 in Zn, and let χA be the characteristic function of a subset A ⊆ Zn \ {0}
preserved by 〈τe, ρ

m〉, where ρ = (1,2, . . . , n). Then the mapping σ : Zn → Zn given
by

σ : i �→ ei + mχA(i) (K)

gives an admissible involution in Sn.

Theorem 2.4 (Catalano & Nedela [3, Theorem 5.3]) For n = 2m where m is divisible
by 8, let e be a square root of m + 1 in Zn, and let χA be the characteristic function
of a subset A ⊆ Zn \ {0} such that χA(i +m) = χA(i) and χA(ei) ≡ χA(i)+ i mod 2
for all i ∈ Zn. Then the mapping σ : Zn → Zn given by

σ : i �→ ei + mχA(i) (CN)

is an admissible involution.

Admissible involutions defined by (K) and (CN) may be called K-involutions and
CN-involutions, respectively. Jing Xu extended the classification for n odd to the case
n = 2m where m is odd, by proving the following:
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Theorem 2.5 (Xu [28]) Let n = 2m where m is odd. Then an involution σ in Sn

fixing n is admissible if and only if it is a K-involution.

One may observe that any K- or CN-involution commutes with ρm, when n = 2m.
In fact, this holds for any admissible involution:

Proposition 2.6 Let H be a permutation group of even degree 2m containing a reg-
ular element y (acting as a 2m-cycle), such that the stabilizer of each point is a
2-group. Then ym is central in H , so the m orbits of 〈ym〉 form a system of imprimi-
tivity for H .

Proof We prove this by induction on m. If m = 1 then the result is trivial. Now
suppose m > 1. The lengths of orbits of a point-stabilizer Hα are powers of 2, so the
fixed point set P of Hα must have even size. If |P | = 2m, then H = 〈y〉 and the result
is immediate. If not, then P is a block of imprimitivity for H , and the action of the
setwise stabilizer H{P } on P satisfies the hypotheses, with y2m/|P | acting regularly,
so that by induction, we may assume that ym is central in H{P } and that the orbits of
〈ym〉 on P form a system of imprimitivity for H{P }. It then follows that the translates
of those orbits form a system of imprimitivity for H . As ym induces a 2-cycle on
each such block, ym is central in H . �

Corollary 2.7 If σ is any admissible involution in S2m, then σ commutes with ρm,
and the orbits {i, i + m} of 〈ρm〉 form a system of imprimitivity for 〈ρ,σ 〉.

3 Some technical observations

Let {e1, e2, . . . , en} be the standard orthonormal basis for V = Z2
n, and for any subset

J of {1,2, . . . , n}, let eJ be the characteristic vector of J (so that e{i} = ei for all i).
Then multiplication in Z2 	 Sn

∼= V � Sn is given by

(eJ π)(eKμ) = eLπμ for J,K ⊆ {1,2, . . . , n} and π,μ ∈ Sn,

where L is the symmetric difference of J and Kπ−1
.

Now suppose σ is an admissible involution in Sn, so G(σ) = 〈ρ, enσ 〉 has order
n2n. For 1 ≤ i ≤ n, conjugating enσ by powers of ρ gives ρ−i (enσ )ρi = ei(ρ

−iσρi)

as an element of G(σ), and the above multiplication then gives elements in G(σ) of
the form eLθ for every subset L of {1,2, . . . , n}. Furthermore, post-multiplication by
powers of ρ gives at least n possibilities for the element θ in Sn, for each subset L.
In fact since |G(σ)| = n2n, we have the following:

Lemma 3.1 If σ is an admissible involution in Sn, then for each L ⊆ {1,2, . . . , n},
the set of all elements of G(σ) of the form eLπ for π ∈ Sn is a left coset of 〈ρ〉, of
size n.

In particular, for each i ∈ {1,2, . . . , n} there is a unique permutation γi ∈ Sn fixing
n such that eiγi ∈ G(σ). Clearly γn = σ , and more generally, since G(σ) contains
ρ−i (enσ )ρi = ei(ρ

−iσρi), we find that γi = ρ−iσρ−(−i)σ for 1 ≤ i ≤ n.
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This leads to an alternative proof of the quadrilateral identities given in [3], in-
volving the permutation τ in Sn induced by multiplication by −1 in Zn:

Proposition 3.2 If σ is an admissible involution in Sn, then

σρjσρjστ

σρj(στ)2

σρj(στ)3 = 1 for all j ∈ Zn. (∗)

Proof First note that if i ∈ {1,2, . . . , n} and iγn = iσ = � then

(eiγi)(enγn) = eienγiγn while (enγn)(e�γ�) = eneiγnγ�.

But eien = enei since V is Abelian, and γiγn and γnγ� both fix n, so we deduce that

γiγn = γnγ� whenever � = iσ .

Now γiγn = ρ−iσρ−(−i)σ σ while γnγ� = σρ−�σρ−(−�)σ = σρ−iσ σρ−(−iσ )σ , and
hence

1 = (γiγn)
−1γnγ� = (

σρ(−i)σ σρi
)(

σρ−iσ σρ−(−iσ )σ
) = σρiτσ

σρiσρiστ

σρi(στ)2

.

Taking i = jστ (or, equivalently, j = iτσ ) gives the required identity. �

Corollary 3.3 If σ is an admissible involution in Sn, then (στ)4 = 1.

Proof Take j = kστ in the above identity, to obtain σρkστ
σρk(στ)2

σρk(στ)3

σρk(στ)4 = 1,

and put this together with σρkσρkστ
σρk(στ)2

σρk(στ)3 = 1, to give ρk(στ)4 = ρk for
all k. �

The converse of Proposition 3.2 holds as well. This was shown in [3], but again
we give an alternative proof (below).

Proposition 3.4 If σ is an involution in Sn that fixes n and satisfies the quadrilateral
identities (∗), then σ is admissible.

Proof We prove that G(σ) = 〈ρ, enσ 〉 has order n2n, by showing it contains a unique
left coset of the form eLγL〈ρ〉 with γL ∈ Sn fixing n, for every L ⊆ {1,2, . . . , n}.

Define γi = ρ−iσρ−(−i)σ for 1 ≤ i ≤ n, as previously. Then each γi is an element
of Sn fixing n such that eiγi = ρ−i (enσ )ρiρ−(−i)σ −i lies in G(σ). Moreover, since
G(σ) = 〈ρ, enσ 〉, every element w of G(σ) can be expressed as a product of conju-
gates of enσ by powers of ρ, followed by some power of ρ, and hence has the form
w = ei1γi1ei2γi2 · · · eir γir ρ

s for some i1, i2, . . . , ir and s. The multiplication rule

(eaγa)(ebγb) = (eaec)γaγb whenever b = cγa

can then be used to rewrite w in the form w = eLγi1γi2 · · ·γir ρ
s for some L ⊆

{1,2, . . . , n}.
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The quadrilateral identities (∗) imply that for given L, the element γi1γi2 · · ·γir is
uniquely determined.

To see this, note that if b = cγa and d = aγc , then the above multiplica-
tion rule gives (eaγa)(ebγb) = (eaec)γaγb while (ecγc)(edγd) = (ecea)γcγd . Since
eaec = ecea , all we have to do is to prove that γaγb = γcγd whenever b = cγa =
cρ−aσρ−(−a)σ = (c − a)σ − (−a)σ and d = aγc = aρ−cσρ−(−c)σ = (a − c)σ − (−c)σ .
The quadrilateral identity for j = (a − c)σ is

1 = σρ(a−c)σ σρc−aσρ(c−a)στ

σρ(c−a)(στ)2

,

which can be rewritten as 1 = σρd+(−c)σ σρc−aσρ−(−a)σ −bσρ(c−a)(στ)2

. Upon con-
jugation this becomes

1 = ρ−aσρ−(−a)σ −bσρ(c−a)(στ)2

σρd+(−c)σ σρc,

which can be rewritten as 1 = γaγbρ
uγ −1

d γ −1
c where u = (−b)σ + (c − a)(στ)2 −

(−d)σ . Thus (γaγb)
−1γcγd = ρu, and as the left-hand side of this identity fixes n,

we find ρu = 1, so (γaγb)
−1γcγd = 1 and therefore γaγb = γcγd , as required. �

Corollary 3.5 Let σ be any involution in S2m such that σ fixes n = 2m, preserves
the set of all pairs Bi = {i, i + m} for 1 ≤ i ≤ m, and induces the same permutation
on this set as the permutation Bi �→ Bf (i) for some additive bijection f : Zm → Zm.
Then σ is admissible.

Proof It is an easy exercise to verify that σ satisfies the quadrilateral identities (∗). �

Note that the condition that σ preserves the set {Bi : 1 ≤ i ≤ m} is equivalent to σ

commuting with ρm = (1,m + 1)(2,m + 2) · · · (m,2m).

4 Reduction

In this section we describe a reduction from the case of Qn to the case of Qm when
n = 2m (even). This can be used to provide an alternative proof of Theorem 2.5, as
well as assist with the proof of our main theorem in the next section. To do this, we
consider the natural action of the wreath product Z2 	 Sn on the set {1,2, . . . ,2n},
with block-set {{i, i + n} : 1 ≤ i ≤ n} preserved by V = Z2

n and permuted by Sn.
Indeed let ei induce the transposition (i, i + n) for 1 ≤ i ≤ n, and let ρ induce the
permutation (1,2, . . . , n)(n + 1, n + 2, . . . ,2n).

Lemma 4.1 Suppose n = 2m, and σ is an admissible involution in Sn. Let K be the
subgroup of Z2 	Sn generated by ρm and eiei+m for 1 ≤ i ≤ m. Then K is an Abelian
subgroup of G(σ), of order 2m+1. Moreover, K is a normal subgroup of G(σ), and
consists of all elements that preserve each of the sets Pi = {{i, i + m}, {i + 2m,

i + 3m}} (and each of the sets Qi = {{i, i + 3m}, {i + 2m, i + m}}), for 1 ≤ i ≤ m.
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Proof First, let G = G(σ), and let γj = ρ−j σρ−(−j)σ be the elements defined in
Sect. 3. By Corollary 2.7, we know that σ permutes the sets Bi = {i, i + m} among
themselves, and hence that (i + m)σ = iσ + m (mod n) for all i. Then since ρm

commutes with σ , we find that

γi+m = ρ−(i+m)σρ−(−(i+m))σ = ρ−iρ−mσρmρ−(−i)σ

= ρ−iσρ−(−i)σ = γi for 1 ≤ i ≤ m.

In particular, as G contains eiγi and ei+mγi+m = ei+mγi , it follows that G contains
(eiγi)(ei+mγi)

−1 = eiei+m for all i, so K is a subgroup of G. Also the generators of
K are commuting involutions, so K is Abelian, of order 2m+1.

Observe that both ρ and σ centralize ρm and conjugate the eiei+m among them-
selves, while en centralizes all the eiei+m and conjugates ρm to eme2mρm. It fol-
lows that K is normalized by each of ρ,σ and en, and in particular, K is normal in
〈ρ, enσ 〉 = G.

Next, let H be the stabilizer in G of the two points m and 2m (or equivalently, of
the four points m,2m,3m and 4m). Since the stabilizer in G of m fixes 3m and has
{2m,4m} as one of its orbits, and has index 2n = 4m in G, this subgroup H has index
4n in G, so has order 2n−2. Now consider the subgroup HK . The intersection H ∩K

contains all the eiei+m for i �= m,2m, but does not contain eme2m, ρm or eme2mρm

(which take m to 3m,2m and 4m respectively), so H ∩ K has index 4 in K and
therefore has order 2m−1. Thus |HK| = |H ||K|/|H ∩ K| = 2n−2+m+1/2m−1 = 2n,
so the index of HK in G is n = 2m. It follows that HK is the stabilizer in G of the
set Pm = {{m,2m}, {3m,4m}}, the images of which under other elements of G are
the sets Pi and Qi given in the statement of this Lemma. Moreover, the core of H

in G is trivial (being the stabilizer of all points), so the core of HK in G is K . This
completes the proof. �

The above lemma gives a quotient G(σ)/K that acts transitively on a set of size
2m, namely the set of all Pi and Qi . The permutation induced by ρ is a pair of
m-cycles, namely (P1,P2, . . . ,Pm) and (Q1,Q2, . . . ,Qm). But also the generators
ei of V = Z2

n and the involution σ induce permutations of this set, with each ei

interchanging the points Pi and Qi while fixing all others, and σ inducing effec-
tively the same permutation on the Qi as it does on the Pi . In particular, since σ

commutes with ρm, the orbits {Pi,Pi+m} and {Qi,Qi+m} of 〈ρm〉 form a system of
imprimitivity for G(σ)/K , which accordingly can be viewed as a subgroup of the
wreath product Z2 	 Sm. Furthermore, we may note that σ fixes Qm (and Pm), and
hence that enσ interchanges Pm and Qm while otherwise acting to preserve the sets
{P1,P2, . . . ,Pm−1} and {Q1,Q2, . . . ,Qm−1}.

In other words, K is the kernel of a reduction, from G(σ) as a subgroup of Z2 	Sn,
to G(σ)/K which is a subgroup of Z2 	Sm in its natural action on the Pi and Qi (with
{Pi,Qi} as the ‘base pairs’). In particular, G/K has order 2mm, and is the group of
orientation-preserving automorphisms of a regular embedding of Qm.

In fact this permutation induced by σ is effectively the same as the one induced
by σ on the blocks Bi = {i, i + m} of the natural action of 〈ρ,σ 〉 on {1,2, . . . , n}.
This gives another way of defining the reduction. As explained in [3], we may di-
rectly define the projections ρ and σ of ρ and σ in Sm by letting iρ and iσ be the



224 J Algebr Comb (2011) 33: 215–238

residues mod m of iρ and iσ respectively, for 1 ≤ i ≤ m. Then σ obviously satisfies
the quadrilateral identities, and is therefore an admissible involution in Sm. Recipro-
cally, we may call σ an admissible lift of σ . By the above remarks, we now have the
following:

Proposition 4.2 Every admissible involution σ ∈ S2m is an admissible lift of some
admissible involution in Sm.

Note that every K-involution and every CN-involution in S2m is an admissible lift
of the involution τe : Zm → Zm given by multiplication by some square root e of 1
in Zm. This was observed in [3], where it was also proved that every admissible lift
of such an involution τe in Sm is a K-involution or CN-involution in S2m; see [3,
Theorem 5.3].

We also now have the following:

Alternative proof of Theorem 2.5 For n = 2m where m is odd, let σ be an admissible
involution in Sn. By the above reduction, σ is an admissible involution in Sm, so
by Theorem 2.2, we know that σ = τe for some square root e of 1 in Zm. Now
replace e by e + m if e is even. Then e2 ≡ 1 mod 2 and mod m, so e2 ≡ 1 mod n.
Taking A = {i ∈ Zn : iσ �= ei (mod n)} = {i ∈ Zn : iσ = ei +m (mod n)}, we see that
0 �∈ A and that A is preserved by both ρm and multiplication by e mod n, so σ is a
K-involution. �

5 Classification theorem

In this section, we give a characterization of all admissible involutions in S2m, for
every positive integer m. When taken together with Theorem 2.2, this gives a com-
plete classification of all regular embeddings of hypercubes Qn.

Theorem 5.1 Let n = 2m be an even positive integer, and let ρ = (1,2,3, . . . , n)

in Sn. Then every regular embedding of Qn is isomorphic to the embedding M(σ )

for some permutation σ of order 1 or 2 in Sn and fixing n, such that:

(1) σ commutes with ρm, so that the sets Bi = {i, i + m} (for 1 ≤ i ≤ m) form a
system of imprimitivity for 〈ρ,σ 〉 on {1,2, . . . , n}, and

(2) σ permutes the blocks Bi in the same way as the permutation Bi �→ Bf (i) for
some additive bijection f : Zm → Zm.

Moreover, every such σ gives a regular embedding of Qn, and distinct σ give non-
isomorphic embeddings.

Part (1) follows from Corollary 2.7, and we will prove part (2) by induction on m.
We have already seen that when m is odd, this follows from Theorem 2.5, so we
suppose that m is even, say m = 2k, and let σ be any admissible involution in S2m.
By the reduction described in Sect. 4, we know that the action of σ on the blocks Bi

is the same as that of an admissible involution σ in Sm, and now by induction, we
may assume that the projection of σ in Sk is an additive bijection from Zk to Zk .
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Let e = 1σ if this is odd, or otherwise let e = 1σ + k (which will be odd, since
k is odd when 1σ is even). Then by additivity of the projection of σ in Sk , we can
prove by induction that iσ ≡ ei mod k for all i ∈ Zn. Hence we may define a function
ψ : Zn → Z4 satisfying

iσ = ei + kψ(i) for all i ∈ Zn.

The remainder of our proof will depend heavily on properties of this function ψ and
related objects.

Lemma 5.2 If e ∈ Zn and ψ : Zn → Z4 are defined as above, then:

(a) ψ(0) = ψ(m) = 0, and ψ(k) and ψ(3k) are both even;
(b) e2 ≡ δk + 1 mod n for some δ ∈ Z4;
(c) δi + eψ(i) + ψ(iσ ) ≡ 0 mod 4, for all i ∈ Zn;
(d) ψ(i + m) = ψ(i) for all i ∈ Zn;
(e) ψ(i + k) ≡ ψ(i) mod 2 for all i ∈ Zn.

Proof Parts (a) and (b) are obvious from the definitions. For part (c), observe that

i = (
iσ

)σ = eiσ + kψ
(
iσ

) = e
(
ei + kψ(i)

) + kψ
(
iσ

) = i + k
(
δi + eψ(i) + ψ

(
iσ

))

in Zn, since e2 = 1 + kδ by part (b). Part (d) is a consequence of the fact that σ

commutes with ρm:

0 = (i + m)σ − (
iσ + m

) = em + k
(
ψ(i + m) − ψ(i)

) − m

= k
(
ψ(i + m) − ψ(i)

)
.

Similarly, (i + k)σ − iσ = ek + k(ψ(i + k) − ψ(i)) = k(e + ψ(i + k) − ψ(i)), and
since the left-hand side is either k or 3k(mod n), and e is odd, we obtain part (e). �

We wish to prove that σ is additive when reduced modulo m. Now since

(i + j)σ − iσ − jσ = e(i + j) + kψ(i + j) − ei − kψ(i) − ej − kψ(j)

= k
(
ψ(i + j) − ψ(i) − ψ(j)

)

we can define

ψ(i, j) = ψ(i + j) − ψ(i) − ψ(j) in Z4,

and then it suffices to prove that ψ(i, j) is even for all i, j ∈ Zn.
We will call a pair (i, j) good if ψ(i, j) is even, and bad otherwise. In a sequence

of further observations (Lemma 5.3 to Proposition 5.18) we will prove that there are
no bad pairs, and hence σ is an admissible lift of its additive projection σ . Note here
that −iσ stands for −(iσ ), rather than (−i)σ (which can differ from −(iσ )).

Lemma 5.3 ψ(iσ ,−iσ ) ≡ ψ(ei,−ei) ≡ ψ(i,−i) mod 2 for all i ∈ Zn.
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Proof Since iσ = ei + kψ(i), we have ψ(iσ ) ≡ ψ(ei) mod 2 by Lemma 5.2(e), and
similarly, ψ(−iσ ) ≡ ψ(−ei) mod 2. Then by Lemma 5.2(c) and since e is odd we
find that ψ(ei) ≡ ψ(iσ ) ≡ −δi − eψ(i) ≡ −δi − ψ(i) mod 2, and replacing i by −i

gives also ψ(−ei) ≡ δi − ψ(−i). Adding these last two congruences gives

ψ
(
iσ

) + ψ
(−iσ

) ≡ ψ(ei) + ψ(−ei) ≡ −ψ(i) − ψ(−i) ≡ ψ(i) + ψ(−i) mod 2,

and the rest follows since ψ(t,−t) = ψ(0) − ψ(t) − ψ(−t) = −(ψ(t) + ψ(−t)) for
all t . �

Corollary 5.4 i(στ)2 ≡ i + kψ(i,−i) mod m for all i ∈ Zn.

Proof

i(στ)2 = −(−iσ
)σ = eiσ − kψ

(−iσ
) = e

(
ei + kψ(i)

) − kψ
(−iσ

)

= i + k
(
δi + eψ(i) − ψ

(−iσ
))

by Lemma 5.2(b)

= i + k
(−ψ

(
iσ

) − ψ
(−iσ

))
by Lemma 5.2(c)

= i + kψ
(
iσ ,−iσ

)
,

and thus i(στ)2 ≡ i + kψ(i,−i) mod m, by Lemma 5.3. �

Lemma 5.5 ψ(i, j)+ψ(i + kψ(i,−i), j + kψ(i, j)) ≡ 0 mod 4 for all i, j ∈ Zn.

Proof First we observe that for every t, i ∈ Zn, Lemma 5.2 gives

tσρiσρiστ = (
i + tσ

)σ − iσ

= etσ + k
(
ψ

(
i + tσ

) − ψ(i)
)

= e
(
et + kψ(t)

) + k
(
ψ

(
i + tσ

) − ψ(i)
)

= t + k
(
δt + eψ(t) + ψ

(
i + tσ

) − ψ(i)
)

by Lemma 5.2(b)

= t + k
(−ψ

(
tσ

) + ψ
(
i + tσ

) − ψ(i)
)

by Lemma 5.2(c)

= t + kψ
(
i, tσ

)
.

Replacing t by tσρiσρiστ

and i by i(στ)2
here, and applying the quadrilateral identity

(∗) for t then gives

t = tσρiσρiστ + kψ
(
i(στ)2

, tσρiσρiστ
σ
)

= t + k
(
ψ

(
i, tσ

) + ψ
(
i(στ)2

, tσρiσρiστ
σ
))

= t + k
(
ψ

(
i, tσ

) + ψ
(
i(στ)2

,
(
t + kψ

(
i, tσ

))σ ))
by the above.

Letting t = jσ (so that also j = tσ ), we find that

ψ(i, j) + ψ
(
i(στ)2

,
(
jσ + kψ(i, j)

)σ ) ≡ 0 mod 4.
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Further application of Lemma 5.2 gives
(
jσ + kψ(i, j)

)σ

= e
(
jσ + kψ(i, j)

) + kψ
(
jσ + kψ(i, j)

)

= e
(
ej + kψ(j) + kψ(i, j)

) + kψ
(
jσ + kψ(i, j)

)

= j + k
(
δj + eψ(j) + eψ(i, j) + ψ

(
jσ + kψ(i, j)

))
by Lemma 5.2(b)

= j + k
(−ψ

(
jσ

) + ψ
(
jσ + kψ(i, j)

) + eψ(i, j)
)

by Lemma 5.2(c)

≡ j + keψ(i, j) mod m by Lemma 5.2(e)

≡ j + kψ(i, j) mod m since e is odd,

and inserting this into the previous equation (and using Lemma 5.2(d)) we obtain

ψ(i, j) + ψ
(
i(στ)2

, j + kψ(i, j)
) ≡ 0 mod 4.

On the other hand, by Lemma 5.4 we have i(στ)2 ≡ i + kψ(i,−i) mod m, and so the
required congruence follows from Lemma 5.2(d). �

Next, by Lemma 5.2(e), we may define another function c : Zn → Z2

ψ(t + k) = ψ(t) + 2c(t) for all t ∈ Zn.

It is easy to see that c(0) = c(m) = 0, and that ψ(t + kd) = ψ(t) + 2dc(t) for all d,

again by parts (d) and (e) of Lemma 5.2. We use this function and the previous lemma
to prove the following:

Lemma 5.6 ψ(i,−i) is even, for all i ∈ Zn.

Proof Assume the contrary, so that ψ(i,−i) is odd for some i. By Lemma 5.5 and
the definition of c, for all i, j ∈ Zn we have

0 ≡ ψ(i, j) + ψ
(
i + kψ(i,−i), j + kψ(i, j)

)

≡ ψ(i, j) + ψ
(
i + j + k

(
ψ(i,−i) + ψ(i, j)

))

− ψ
(
i + kψ(i,−i)

) − ψ
(
j + kψ(i, j)

)

≡ 2ψ(i, j) + 2
(
ψ(i,−i) + ψ(i, j)

)
c(i + j)

− 2ψ(i,−i)c(i) − 2ψ(i, j)c(j) mod 4,

and hence (from the assumption that ψ(i,−i) is odd), we have

ψ(i, j) + (
1 + ψ(i, j)

)
c(i + j) − c(i) − ψ(i, j)c(j) ≡ 0 mod 2,

or equivalently,
(
1 + ψ(i, j)

)
c(i + j) ≡ c(i) + ψ(i, j)

(
c(j) − 1

)
mod 2.
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This can be used to prove by induction that c(t) = c(i) whenever t is a multiple
of i in Zn. For if that is true for t = j , then ψ(i, j) must be even (or otherwise
(1 + ψ(i, j))c(i + j) would be even while c(i) + ψ(i, j)(c(j) − 1) ≡ 2c(i) − 1 ≡
1 mod 2); and it then follows easily that c(i+j) ≡ (1+ψ(i, j))c(i+j) ≡ c(i) mod 2,

so it is true also for t = i + j .
But on the other hand, since c(0) = 0 and ψ(i,−i) is odd, taking j = −i in the

last displayed congruence above gives

0 ≡ c(i) + c(−i) − 1 mod 2,

so c(−i) �= c(i), a contradiction. This completes the proof. �

Corollary 5.7 (στ)2 acts trivially modulo m; that is, i(στ)2 ≡ i mod m for all i ∈ Zn.

Proof We know i(στ)2 ≡ i + kψ(i,−i) mod m, by Corollary 5.4, and the rest follows
from Lemma 5.6. �

Also Lemma 5.6 can be used to provide a simpler version of Lemma 5.5:

Corollary 5.8 ψ(i, j)((1 + c(i + j) − c(j)) ≡ 0 mod 2 for all i, j ∈ Zn.

Proof First Lemma 5.5 gives this congruence mod 4:

0 ≡ ψ(i, j) + ψ
(
i + kψ(i,−i), j + kψ(i, j)

)

≡ ψ(i, j) + ψ
(
i + j + k

(
ψ(i,−i) + ψ(i, j)

))

− ψ
(
i + kψ(i,−i)

) − ψ
(
j + kψ(i, j)

)
.

Since ψ(i,−i) is even, it follows that

0 ≡ ψ(i, j) + ψ
(
i + j + kψ(i, j)

)

− ψ(i) − ψ
(
j + kψ(i, j)

)
by Lemma 5.2(d)

≡ 2ψ(i, j) + 2ψ(i, j)c(i + j) − 2ψ(i, j)c(j) by the definition of c

≡ 2ψ(i, j)
(
1 + c(i + j) − c(j)

)
mod 4,

and the result follows. �

Lemma 5.9 c(i + k) = c(i) and c(ei) = c(i) for all i ∈ Zn.

Proof The first of these is an easy consequence of the following:

ψ(i) = ψ(i + m) = ψ(i + k + k) = ψ(i + k) + 2c(i + k)

= ψ(i) + 2c(i) + 2c(i + k).

For the second, note that by Lemma 5.2(c) and the definitions of ψ and c, we have

0 ≡ iδ + eψ(i) + ψ(ei) + 2c(ei)ψ(i) mod 4.
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Replacing i by i + k, we have also

0 ≡ (i + k)δ + eψ(i + k) + ψ(ei + ek) + 2c(ei + ek)ψ(i + k) mod 4.

But now ψ(ei + ek) = ψ(ei) + 2ec(ei), and by what we proved above, c(ei + ek) =
c(ei), so the latter congruence can be rewritten as

0 ≡ (i + k)δ + eψ(i + k) + ψ(ei) + 2ec(ei) + 2c(ei)ψ(i + k) mod 4.

Subtracting the earlier congruence (namely the one for i) from this one (for i + k),
and again using ψ(i + k) = ψ(i) + 2c(i), we find that

0 ≡ kδ + 2ec(i) + 2ec(ei) + 4c(ei)c(i) ≡ kδ + 2e
(
c(i) + c(ei)

)
mod 4.

Finally, since e is odd and n is divisible by 4, we know that kδ + 1 ≡ e2 ≡ 1 mod 4,
and so c(i) + c(ei) must be even. �

Corollary 5.10 iδ + (e + 2c(i))ψ(i) + ψ(ei) ≡ 0 mod 4 for all i ∈ Zn.

Proof We observed that 0 ≡ iδ + eψ(i) + ψ(ei) + 2c(ei)ψ(i) mod 4 in the proof of
Lemma 5.9. Since c(ei) = c(i), the result follows. �

Next, recall that a pair (i, j) is good if ψ(i, j) = ψ(i + j) − ψ(i) − ψ(j) is even,
or equivalently, if (i + j)σ ≡ iσ + jσ mod m, and bad otherwise. Clearly (i,0) and
(0, j) are good for all i and j . Moreover, since (i + m)σ = iσ + m = iσ + mσ , we
know that (i,m) is good, for all i ∈ Zn, and it follows that (i,mj) is good for all j .
We also have the following:

Lemma 5.11 If (i, j) is a bad pair, then the pairs (j, i), (iσ , jσ ), (jσ , iσ ), (−i,−j),
(−j,−i) and (−i, i + j) are all bad.

Proof The first of these six follows from the definition, the second one from
σ 2 = 1, and the third is a combination of the first two. The fourth and fifth fol-
low from Corollary 5.7. For the last one, note that jσ �≡ (−i)σ + (i + j)σ ≡
−(iσ ) + (i + j)σ mod m. �

Lemma 5.12 If (i, j) is a bad pair, then

c(i) = c(j) = c
(−(i + j)

) �= c(−i) = c(−j) = c(i + j).

Equivalently, if c(u) and c(v) have opposite parities, then the pair (u, v) must be
good.

Proof By Lemma 5.8, we know that ψ(i, j)((1 + c(i + j) − c(j)) ≡ 0 mod 2 for
every pair (i, j), whether good or bad. Now if (i, j) is bad, then ψ(i, j) is odd, and
therefore 1 + c(i + j)− c(j) is even, so c(j) and c(i + j) have opposite parities. The
rest follows from Lemma 5.11. �
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Lemma 5.13 If (i, j) is a bad pair and (u, v) a good pair, with i + j ≡ u+v mod m,
then exactly one of (i,−u) and (v,−j) is bad, and exactly one of (i,−v) and (u,−j)

is bad.

Proof First iσ + jσ �≡ (i + j)σ ≡ (u + v)σ ≡ uσ + vσ mod m, so by Corollary 5.7,
we find iσ + (−u)σ ≡ iσ − uσ �≡ vσ − jσ ≡ vσ + (−j)σ mod m. On the other hand,
i + (−u) = v + (−j) mod m (since i + j = u + v mod m), so (i + (−u))σ ≡ (v +
(−j))σ mod m. It follows that (i + (−u))σ �≡ iσ + (−u)σ or (v + (−j))σ �≡ vσ +
(−j)σ mod m. Just one of these holds, since iσ + (−u)σ ≡ (i − u)σ ≡ (v − j)σ ≡
vσ + (−j)σ mod k, by our assumption that σ is additive modulo k. Hence exactly
one of (i,−u) and (v,−j) is bad. Similarly, exactly one of (i,−v) and (u,−j) is
bad. �

Lemma 5.14 If (i, j) is bad, then for every positive integer a, there exists some
v ∈ Zn such that the pair (2ai, v) is bad.

Proof By Lemma 5.12, we know c(i) �= c(i + j) and hence the pair (i, i + j) is
good. Also (−i,2i + j) must be good, for otherwise (i, i + j) would be bad, by
Lemma 5.11. Now since (i, j ) is bad and (−i,2i + j) is good, Lemma 5.13 shows
that exactly one of (i, i) and (2i + j,−j) is bad. In the former case, both (−i,2i) and
(2i,−i) are bad (by Lemma 5.11), while in the latter case, both (−(2i + j),2i) and
(2i,−(2i + j)) are bad. In each case, we find that (2i, t) is bad for some t (namely
−i or −(2i + j), respectively). But now the same argument applied to (2i, t) shows
that (4i, u) is bad for some u, and so on, and hence by induction, we get the result
claimed. �

Now let q be the largest odd divisor of k, so that n = 2m = 4k = 2sq for some
s ≥ 2, and let d = gcd(e − 1, q).

Lemma 5.15 With d = gcd(e − 1, q) defined as above:

(a) the pair (aq, b) is good for all a, b ∈ Zn;
(b) if (i, j) is a bad pair, then so is (i + aq, j + bq) for all a, b ∈ Zn;
(c) the pair (a(e − 1), b) is good for all a, b ∈ Z2m;
(d) if (i, j) is a bad pair, then so is (i + a(e − 1), j + b(e − 1)) for all a, b ∈ Zn;
(e) if (i, j) is a bad pair, then so is (i + ad, j + bd) for all a, b ∈ Zn;
(f) for all a, b ∈ Z2m, the pair (ad, b) is good.

Proof For part (a), note that if (aq, b) is bad, then by Lemma 5.14, the pair (2saq, v)

is bad for some v. But 2saq = an = 0 in Zn, so this says (0, v) is bad, contradiction.
Next, if (i, j) is bad, then by Lemma 5.11 the pair (i + j,−j) is bad, and by (a), we
know that (−aq, i + aq) is good. Hence by Lemma 5.13, we find that exactly one of
(i + j, aq) and (i + aq, j) is bad. But (i + j, aq) is good, so (i + aq, j) must be bad.
A similar argument then shows that (i + aq, j + bq) is bad, which proves (b).

For part (c), let v = a(e − 1). Then

ve = a(e − 1)e = a
(
e2 − e

) ≡ a(1 + kδ − e) ≡ a(1 − e) = −v mod k,
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so c(v) = c(ev) = c(−v) by Lemma 5.9, and it follows from Lemma 5.12 that no
pair (v, b) is bad. Hence (a(e − 1), b) is good for all b, proving part (c).

By Lemma 5.11, also (−a(e − 1), u) is good for all u. In particular, if (i, j) is
bad, then we can take u = i + j + a(e − 1), which gives a pair with the same sum
as (i, j), and by Lemma 5.13, we find that exactly one of (i, a(e − 1)) and (u,−j)

is bad. But (i, a(e − 1)) is good by part (c), so (u,−j) must be bad, and there-
fore (i + a(e − 1), j) = (u − j, j) is bad. A similar argument then shows that (i +
a(e − 1), j + b(e − 1)) is bad, which proves (d).

By Bézout’s identity, d = gcd(e−1, q) = u(e−1)+vq for some integers u and v,
and thus ad = au(e − 1) + avq ≡ au(e − 1) mod q and similarly bd ≡ bu(e −
1) mod q, for given a, b ∈ Zn. Hence if (i, j) is bad, then (i + ad, j + bd) ≡ (i +
au(e − 1), j + bu(e − 1)) mod q , so (i + ad, j + bd) is bad by parts (b) and (d). This
proves (e).

Finally, for part (f), if (ad, b) is bad, then by part (e), so is (ad − ad, b) = (0, b),
a contradiction. �

Lemma 5.16 For every integer i, there exists an integer a such that (e − 1)(i + ad)

is divisible by m.

Proof First, write q = du and e − 1 = d2rv, where u and v are odd integers (and
r is a non-negative integer), and gcd(u,2rv) = gcd(q/d, (e − 1)/d) = 1. Then
since (e − 1)(e + 1) = e2 − 1 ≡ 0 mod k(= 2s−2q), we know that du = q divides
(e − 1)(e + 1), and as d divides e − 1 but u is coprime to 2rv = (e − 1)/d , we deduce
that u divides e + 1. It follows that gcd(d,u) divides gcd(e − 1, e + 1) = 2, and since
both d and u are odd, we must have gcd(d,u) = 1. But also u and v are coprime
(since gcd(u,2rv) = 1), therefore also gcd(dv,u) = 1. Thus gcd(e − 1,m/d) =
gcd(d2rv,2s−1q/d) = gcd(d2rv,2s−1u) is a power of 2, say gcd(e − 1,m/d) = 2w .

Now e − 1 is divisible by both 2w(= gcd(e − 1,m/d)) and d(= gcd(q, e − 1)),
which is odd, so e − 1 = 2wdt for some t . Also, by Bézout’s identity, there exist
integers A and B such that 2w = (e − 1)A + (m/d)B, and therefore e − 1 = 2wdt =
(e − 1)Adt + mBt .

For any given i, it follows that (e−1)i = (e−1)Adti +mBti, and hence that (e−
1)(i − (Ati)d) = mBti. Taking a = −(Ati), we have (e − 1)(i + ad) ≡ 0 mod m. �

Corollary 5.17 For every integer i, there exists an integer t such that t ≡ i mod d

and et ≡ t mod m.

Proof By Lemma 5.16, there exists some a for which (e − 1)(i + ad) is divisible by
m. Let t = i + ad . Then t ≡ i mod d, and et − t = (e − 1)t = 0 mod m. �

Proposition 5.18 There are no bad pairs.

Proof Suppose there exists a bad pair (i, j). By Lemma 5.15(e), we can replace i by
any integer t congruent to i mod d, and so by Corollary 5.17, we may assume that
ei ≡ i mod m. Similarly, we may assume that ej ≡ j mod m. Then by Lemma 5.2(d),
we find that ψ(ei) = ψ(i) and ψ(ej) = ψ(j).
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Next, since ψ(i, j) = ψ(i + j) − ψ(i) − ψ(j) is odd, we know that at least one
of ψ(i),ψ(j) and ψ(i + j) is odd, and without loss of generality (replacing (i, j)

by (j, i) or (i + j,−i) if necessary), we may assume that ψ(i) is odd. We also know
that c(i) �= c(−i), by Lemma 5.12, so that c(−i) ≡ c(i) + 1 mod 2.

Now by Corollary 5.10 and the fact that ψ(ei) = ψ(i), we find that

0 ≡ iδ + (
e + 2c(i)

)
ψ(i) + ψ(ei) ≡ iδ + (

e + 2c(i) + 1
)
ψ(i) mod 4.

Similarly, replacing i by −i (and using c(−i) ≡ c(i) + 1 mod 2), we have

0 ≡ −iδ + (
e + 2c(−i)

)
ψ(−i) + ψ(−ei) ≡ −iδ + (

e + 2c(i) + 3
)
ψ(−i) mod 4.

Adding these two congruences gives

0 = (
e + 2c(i) + 3

)(
ψ(i) + ψ(−i)

) − 2ψ(i) mod 4.

Since both e + 3 + 2c(i) and ψ(i) + ψ(−i) = ψ(i,−i) are even, their product is
divisible by 4. Thus 2ψ(i) is divisible by 4, which is a contradiction. �

This completes the proof of Theorem 5.1.

6 Reflexibility and enumeration

In this section, we consider reflexibility of the orientably-regular embeddings M(σ )

of Qn, and then derive formulae for the total number of non-isomorphic embeddings
as well as for those that are reflexible and chiral, respectively.

We begin with the following:

Proposition 6.1 Let σ be an admissible involution in Sn. Then the embedding M(σ )

is reflexible if and only if (στ)2 = 1, where τ is the permutation Sn induced by mul-
tiplication by −1 in Zn.

Proof By the background theory of regular maps given in Sect. 2, we know M(σ )

is reflexible if and only if there exists an involutory automorphism θ of G(σ) =
〈ρ, enσ 〉 that inverts ρ and fixes enσ . This reflecting automorphism must induce an
automorphism of the underlying graph Qn, and hence can be assumed to be an ele-
ment of Z2 	 Sn, say θ = vπ for some v ∈ V = Z2

n and π ∈ Sn. Now

ρ−1 = ρθ = ρvπ = (vρv)π = (
v
(
ρvρ−1))π

ρπ ,

which implies that ρvρ−1 = v and ρπ = ρ−1. The latter implies π = τρi for some i,
and the former implies that v is either trivial (zero) or the product e1e2 · · · en. Since
e1e2 · · · en is central in Z2 	Sn, we may assume without loss of generality that v is triv-
ial, so θ = τρi for some i. If i �= 0 (mod n), however, then en

θ = en
τρi = en

ρi = ei,

so (enσ )θ = eiσ
θ , so θ does not centralize enσ . Thus θ = τ , which centralizes en,

and then since enσ = (enσ )τ = enσ
τ , the reflexibility condition reduces to requiring

σ τ = σ , or equivalently, (στ)2 = 1. �
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Next, we consider the total number of non-isomorphic regular embeddings of Qn,
or equivalently, the number of admissible involutions in Sn. We also determine how
many of these embeddings are reflexible.

To do this, it helps to define Inv(n) = {e ∈ Zn | e2 = 1 mod n} (the set of all square
roots of 1 in Zn) for each positive integer n. Note also that when n is an odd prime-
power, there are just two such roots, viz. 1 and n − 1, since the group of units in Zn

is cyclic in that case.
Now for odd n, by Theorem 2.2 (taken from [9]) the total number of embeddings

is simply the number of square roots of 1 in Zn. If n = p
a1
1 p

a2
2 · · ·pat

t is the prime-
power decomposition of n (with p1,p2, . . . , pt distinct odd primes and a1, a2, . . . , at

positive integers), this number is 2t (by the Chinese Remainder Theorem). Moreover,
every admissible involution τe commutes with τ , so every regular embedding is re-
flexible in this case. In other words, none of the regular embeddings of Qn is chiral
when n is odd.

For even n, by Theorem 5.1 the total number of regular embeddings is equal to the
number of permutations σ of order 1 or 2 in Sn that fix n and reduce modulo m to
multiplication by some square root e of 1 in Zm. In this case, we have the following
counting theorem.

Theorem 6.2 For n = 2m (even), the total number of regular embeddings of Qn is

∑

e∈Inv(m)

2
1
2 (m+gcd(e−1,m)−2).

Proof Let σ ∈ Sn be an admissible involution that reduces to τe modulo m.
If τe fixes i ∈ Zm \ {0}, then σ either fixes or interchanges the two points i and

i + m. Similarly, if τe moves i ∈ Zm, then σ induces either (i, ei)(i + m,ei + m) or
(i, ei + m)(i + m,ei) on the 4-point set {i, ei, i + m,ei + m} (considered mod n).

Hence the number of admissible σ ∈ Sn that reduce to τe modulo m is 2d , where
d is the number of cycles of the permutation τe on Zm \ {0}.

Now i ∈ Zm is fixed by τe if and only if (e−1)i = ei − i ≡ 0 mod m, which occurs
if and only if i is divisible by m/gcd(e − 1,m), so the number of i ∈ Zm fixed by τe

is exactly gcd(e − 1,m). Hence the number of cycles of τe on Zm is

d + 1 = gcd(e − 1,m) + 1

2

(
m − gcd(e − 1,m)

) = 1

2

(
m + gcd(e − 1,m)

)
,

and the result follows. �

By Lemma 6.1, the reflexible embeddings come from the admissible involutions
that commute with τ , and for these we have the following:

Theorem 6.3 For n = 2m (even), the number of reflexible regular embeddings of Qn

is
{∑

e∈Inv(m) 2
1
4 (m+gcd(e−1,m)+gcd(e+1,m)−3) if m is odd

∑
e∈Inv(m) 2

1
4 (m+gcd(e−1,m)+gcd(e+1,m)−2) if m is even.
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Proof Let σ ∈ Sn be an admissible involution that reduces to τe modulo m, and com-
mutes with τ (so that (−i)σ = −(iσ ) for every i ∈ Zn). Note that σ fixes m and n.

If m is even, then τe fixes m
2 , and σ either fixes or interchanges the points m

2
and 3m

2 .
If τe fixes i ∈ Zm \ {0, m

2 ,m, 3m
2 }, then σ induces either the identity permutation

or (i, i + m)(m − i, n − i) on the 4-point set {i, i + m,m − i, n − i} (considered
mod n). Similarly, if τe takes i ∈ Zm \{0, m

2 ,m, 3m
2 } to m− i (mod m), then σ induces

either (i,m − i)(i + m,n − i) or (i, n − i)(i + m,m − i) on the 4-point set {i,m − i,

i + m,n − i} (considered mod n).
For any other i ∈ Zn (neither fixed by τe nor taken to m − i by τe), it is easy

to see that σ induces either (i, ei)(i + m,ei + m)(m − i,m − ei)(n − i, n − ei) or
(i, ei + m)(i + m,ei)(m − i, n − ei)(n − i,m − ei) on the set {i, ei, i + m,ei + m,

m − i,m − ei, n − i, n − ei} (considered mod n).
Since the number of fixed points of τe on Zm is gcd(e−1,m) while (similarly) the

number of i ∈ Zm satisfying ei = m− i mod gcd(e + 1,m), we find the total number
of possibilities for σ is 2d , where

d = 1

2

(
gcd(e − 1,m) + gcd(e + 1,m) − 2

)

+ 1

4

(
m − gcd(e − 1,m) − gcd(e + 1,m) + 1

)

= 1

4

(
m + gcd(e − 1,m) + gcd(e + 1,m) − 3

)
if m is odd, while

d = 1

2

(
gcd(e − 1,m) + gcd(e + 1,m) − 4

)

+ 1

4

(
m − gcd(e − 1,m) − gcd(e + 1,m) + 2

) + 1

= 1

4

(
m + gcd(e − 1,m) + gcd(e + 1,m) − 2

)
if m is even,

and the result follows. �

Corollary 6.4 For n = 2m (even), the number of (orientably) regular embeddings of
Qn that are chiral is
{∑

e∈Inv(m)(2
1
2 (m+gcd(e−1,m)−2) − 2

1
4 (m+gcd(e−1,m)+gcd(e+1,m)−3)) if m is odd

∑
e∈Inv(m)(2

1
2 (m+gcd(e−1,m)−2) − 2

1
4 (m+gcd(e−1,m)−2−gcd(e+1,m)−2)) if m is even.

Since the term 2
1
2 (m+gcd(e−1,m)−2) − 2

1
4 (m+gcd(e−1,m)+gcd(e+1,m)−c) in the formula

for chiral embeddings clearly outweighs the corresponding term

2
1
4 (m+gcd(e−1,m)+gcd(e+1,m)−c) in the formula for reflexible embeddings (with c = 3

or 2), this shows that the ratio of reflexible to chiral embeddings tends to zero for
large even n.

The numbers of regular embeddings of Qn for small values of n (from 3 to 36)
are given in Table 1.
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Table 1 Table of numbers of
regular embeddings of Qn for
small n

n Reflexible Chiral Total

3 2 0 2

4 2 0 2

5 2 0 2

6 4 2 6

7 2 0 2

8 8 4 12

9 2 0 2

10 8 12 20

11 2 0 2

12 16 24 40

13 2 0 2

14 16 56 72

15 4 0 4

16 48 144 192

17 2 0 2

18 32 240 272

19 2 0 2

20 64 480 544

21 4 0 4

22 64 992 1056

23 2 0 2

24 192 2304 2496

25 2 0 2

26 128 4032 4160

27 2 0 2

28 256 8064 8320

29 2 0 2

30 320 16960 17280

31 2 0 2

32 640 34688 35328

33 4 0 4

34 512 65280 65792

35 4 0 4

36 1024 130560 131584

7 Genera and other properties

To determine the genus of any regular embedding of Qn, all we need to calculate
is the face-size, which is the order of the product enσρ of the two generators of
G(σ) = 〈ρ, enσ 〉. If this face-size is s, say, then the genus g and Euler characteristic
χ of the map M(σ ) are given by the Euler–Poincaré formula

2 − 2g = χ = |V | − |E| + |F | = 2n − n2n−1 + n2n/s.
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Now let t be the order of σρ in Sn, and let O be the orbit of the point n under the
subgroup of Sn generated by σρ. Then an easy calculation gives

(enσρ)t = t

|O|
∑

i∈O

ei,

and so the order s of enσρ is given by s = t if t
|O| is even, or s = 2t if t

|O| is odd.
When n is odd, we know that σ = τe (multiplication by e mod n) for some square

root e of 1 in Zn, and since ρ is addition by 1 mod n, it is a straightforward exercise
to show that

s = 2t = 2|O| =

⎧
⎪⎨

⎪⎩

2n when e = 1,

4 when e = −1, and
4n

gcd(e+1,n)
when 1 < e < n − 1

so that the genus g = g(M(σ )) of the map M(σ ) is given by

g
(

M(σ )
) =

⎧
⎪⎨

⎪⎩

2n−2(n − 3) + 1 when e = 1,

2n−3(n − 4) + 1 when e = −1, and

2n−3(2n − 4 − gcd(e + 1, n)) + 1 when 1 < e < n − 1.

Note that this corrects an error in calculation of both the face-size and the genus in
the first concluding remark of [9, Sect. 4] for cases where 1 < e < n − 1.

When n is even, the situation is more complicated. Here we let e = 1σ if this is
odd, or e = 1σ + n/2 if 1σ is even (and n/2 is odd). Then letting f denote multipli-
cation by e mod m, we know that σ induces the permutation Bi �→ Bf (i) on the m

blocks Bi = {i, i + m}. It is now a straightforward (but longer) exercise to verify that

s = 2|O| =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2n when e ≡ 1 mod m and the permutation σ is even,

n when e ≡ 1 mod m and the permutation σ is odd,

8 when e ≡ −1 mod m and 1σ = m − 1,

4 when e ≡ −1 mod m and 1σ = n − 1,
4n

gcd(e+1,m)
when e �≡ ±1 mod m and m(σρ)i = n for some i, and

2n
gcd(e+1,m)

when e �≡ ±1 mod m and m(σρ)i �= n for any i.

Hence for n = 2m, the genus g = g(M(σ )) of the map M(σ ) is given by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2n−2(n − 3) + 1 when e ≡ 1 mod m and σ is even,

2n−2(n − 4) + 1 when e ≡ 1 mod m and σ is odd,

2n−4(3n − 8) + 1 when e ≡ −1 mod m and 1σ = m − 1,

2n−3(n − 4) + 1 when e ≡ −1 mod m and 1σ = n − 1,

2n−3(2n − 4 − gcd(e + 1,m)) + 1

when e �≡ ±1 mod m and m(σρ)i = n for some i,

2n−2(n − 2 − gcd(e + 1,m)) + 1

when e �≡ ±1 mod m and m(σρ)i �= n for all i.
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It follows that whether n is even or odd, the maximum genus of all orientably-
regular embeddings of Qn is 2n−2(n − 3) + 1 (attained in some cases when e = 1),
while the minimum genus is 2n−3(n − 4) + 1 (attained in some cases when e = −1).

Another observation we can make is that if the map M(σ ) is reflexible, then τσ

is not just an involution, but an admissible involution; indeed the map M(τσ ) is the
Petrie dual of M(σ ). On the other hand, if M(σ ) is chiral, then τστ is an admissi-
ble involution, and M(τστ) is the mirror image of M(σ ). Thus orientably-regular
embeddings of Qn always come in mated pairs, with each map being the Petrie dual
or mirror image of its mate. More generally, we may consider the effect of the ‘hole
operators’ considered in [27]. For each j coprime to n, applying the operator Hj to
an n-valent map M gives a map Hj(M) with the same underlying graph as M . Here
Hj(M(σ )) is M(τjστ−1

j ), given by the admissible involution τjστ−1
j (where τj is

multiplication by j mod n).
Finally, we add the following:

Theorem 7.1 All the maps obtained from orientably-regular embeddings of Qn are
regular Cayley maps, in the sense that the automorphism group of the map contains
a subgroup that acts regularly on vertices.

Proof The group of all orientation-preserving automorphisms of the map is the sub-
group G = 〈enσ,ρ〉 of the wreath product Z2 	 Sn, and so has a natural transitive but
imprimitive action on the set {1,2, . . . ,2n}, with n blocks Bi = {i, i + n} of size 2.
The cyclic subgroup Y generated by ρ, which permutes these n blocks in a cycle, is
the stabilizer in G of a vertex of the map M(σ ). Now if H is the stabilizer in G of
any block, say Bn = {n,2n}, then H is complementary to Y in G (that is, G = HY

with H ∩Y = 1), and so H acts regularly on the vertices of M(σ ), which is therefore
a regular Cayley map for H . �
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