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Abstract We consider the algebra En(u) introduced by Aicardi and Juyumaya as an
abstraction of the Yokonuma–Hecke algebra. We construct a tensor space represen-
tation for En(u) and show that this is faithful. We use it to give a basis of En(u) and
to classify its irreducible representations.
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1 Introduction

We initiate in this paper a systematic study of the representation theory of an algebra
En(u) defined by Aicardi and Juyumaya. Let G be a Chevalley group over Fq with
Borel group B and maximal unipotent subgroup U . The origin of En(u) is in the
Yokonuma–Hecke algebra Yn(u), which is defined similarly as the Iwahori–Hecke
algebra but with B replaced by U . That is, Yn(u) is the endomorphism algebra of
the induced G-module indG

U 1. It is a unipotent Hecke algebra in the sense of [20].
Yokonuma gave in [21] a presentation of Yn(u) along the lines of the standard Ti -
presentation of the Iwahori–Hecke algebra, but the introduction of En(u) is more
naturally motivated by the new presentation of Yn(u) found by Juyumaya in [15], see
also [14, 16]. For type An, this new presentation has generators Ti, i = 1, . . . , n − 1
and fi, i = 1, . . . , n where the fi generate a product of cyclic groups and the Ti

satisfy the usual braid relation of type A, but do not coincide with Yokonuma’s Ti -
generators. The quadratic relation takes the form

T 2
i = 1 + (u − 1)ei(1 + Ti),

for ei a complicated expression involving fi and fi+1.
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The algebra En(u) is obtained by leaving out the fi , but declaring the ei new
generators, denoted Ei . It was introduced by Aicardi and Juyumaya in [1]. They
showed that En(u) is finite dimensional and that it has connections to knot theory
via the Vasiliev algebra. They also constructed a diagram calculus for En(u) where
the Ti are represented by braids in the usual sense and the Ei by ties. Using results
from [3], they moreover showed that En(u) can be Yang–Baxterized in the sense of
Jones [11].

In this paper we initiate a systematic study of the representation theory of En(u),
obtaining a complete classification of its simple modules for generic choices of the
parameter u. In [1], this was achieved only for n = 2,3. An interesting feature of
this classification is the construction of a tensor space module V ⊗n for En(u). It
was in part inspired by the tensor module for the Ariki–Koike algebra in [2]—see
also [19]. A main property of V ⊗n is its faithfulness that we obtain as a corollary to
our Theorem 3 giving a basis G for En(u). The dimension of En(u) turns out to be
Bnn! where Bn is the Bell number, i.e. the number of set partitions of {1,2, . . . , n}.

The appearance of the Bell number is somewhat intriguing and may indicate a
connection to the partition algebra defined independently by P. Martin in [17] and
V. Jones in [12], but as we indicate in the remarks following Corollary 4, we do not
think at present that the connection can be very direct.

Given the tensor module, the classification of the irreducible modules follows the
principles laid out in James’s famous monograph on the representation theory of the
symmetric group [10].

Let us briefly explain the organization of the paper. Section 2 contains the defin-
ition of the algebra En(u). In Sect. 3 we start out by giving the construction of the
tensor space V ⊗n. We then construct the subset G ⊂ En(u) and show that it gener-
ates En(u). Finally we show that it maps to a linearly independent set in End(V ⊗n),
thereby obtaining the faithfulness of V ⊗n and the dimension of En(u).

In Sect. 4 we recall the basic representation theory of the symmetric group and
the Iwahori–Hecke algebra, and use the previous sections to construct certain simple
modules for En(u) as pullbacks of the simple modules of these. In Sect. 5 we show
that En(u) is selfdual by constructing a nondegenerate invariant form on it. This in-
volves the Moebius function for the usual partial order on set partitions. In Sect. 6 we
give the classification of the simple modules of En(u), to a large extent following the
approach of James’ book [10]. Thus, we especially introduce a parametrizing set Ln

for the irreducible modules, analogs of the permutations modules and prove James’
submodule theorem in the setup. The simple modules, the Specht modules, turn out to
be a combination of the Specht modules for the Hecke algebra and for the symmetric
group and hence En(u) can be seen as a combination of these two. Finally, in the last
section we raise some questions connected to the results of the paper.

It is a great pleasure to thank J. Juyumaya for telling me about En(u) and for many
useful conversations. Thanks are also due to C. Stroppel and A. Ram for useful dis-
cussions during the ALT-workshop at the Newton Institute for Mathematical Sciences
and to the referee for useful comments that helped improving the presentation of the
paper. Finally, it is a special pleasure to thank V. Jones for useful discussions in Talca
during his one month stay at the Universidad de Talca. During his visit the city of
Talca was badly affected by an earthquake of magnitude 8.8 on the Richter scale,
among the highest ever recorded.
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2 Definition of En(u)

In this section we introduce the algebra En(u), the main object of our work. Let
A be the principal ideal domain C[u,u−1] where u is an unspecified variable. We
first define the algebra E A

n (u) as the associative unital A-algebra on the generators
T1, . . . , Tn−1 and E1, . . . ,En−1 and relations

(E1) TiTj = TjTi if |i − j | > 1,

(E2) EiEj = EjEi ∀i, j,

(E3) EiTj = TjEi if |i − j | > 1,

(E4) E2
i = Ei,

(E5) EiTi = TiEi,

(E6) TiTjTi = TjTiTj if |i − j | = 1,

(E7) EjTiTj = TiTjEi if |i − j | = 1,

(E8) EiEjTj = EiTjEi = TjEiEj if |i − j | = 1,

(E9) T 2
i = 1 + (u − 1)Ei(1 + Ti).

It follows from (E9) that Ti is invertible with inverse

T −1
i = Ti + (

u−1 − 1
)
Ei(1 + Ti)

so the presentation of En(u) is not efficient, since the generators Ei for i ≥ 2 can be
expressed in terms of E1. However, for the sake of readability, we prefer the presen-
tation as it stands.

We then define En(u) as

En(u) := E A
n (u) ⊗A C(u),

where C(u) is considered as an A-module through inclusion.
This algebra is our main object of study. It was introduced by Aicardi and Juyu-

maya, in [1], although the relation (E9) varies slightly from theirs since we have
changed Ti to −Ti . They show, among other things, that it is finite dimensional.

From E A
n (u) we can consider the specialization to a fixed value u0 of u which

we denote En(u0). However, we shall in this paper only need the case u0 = 1, corre-
sponding to

En(1) = E A
n (u) ⊗A C,

where C is made into an A-module by taking u to 1. Letting Sn denote the symmetric
group on n letters, there is a natural algebra homomorphism ι : CSn → En(1), (i, i +
1) �→ Ti . It can be shown to be injective, using the results of the paper.

3 The tensor space

For the rest of the paper we shall write K = C(u). Let V be the K-vector space

V = spanK

{
v

j
i |i, j = 1,2, . . . , n

}
.
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We consider the tensor product V ⊗2 and define E ∈ EndK(V ⊗2) by the rules

E
(
v

j1
i1

⊗ v
j2
i2

) =
{

v
j1
i1

⊗ v
j2
i2

if j1 = j2,

0 otherwise.

Furthermore we define T ∈ EndK(V ⊗2) by the rules

T
(
v

j1
i1

⊗ v
j2
i2

) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

v
j2
i2

⊗ v
j1
i1

if j1 	= j2,

uv
j1
i2

⊗ v
j2
i1

if j1 = j2, i1 = i2,

v
j2
i2

⊗ v
j1
ii

if j1 = j2, i1 < i2,

uv
j2
i2

⊗ v
j1
i1

+ (u − 1)v
j1
i1

⊗ v
j2
i2

if j1 = j2, i1 > i2.

We extend these operators to operators Ei,Ti acting in the tensor space V ⊗n by
letting E,T act in the factors (i, i + 1). In other words, Ei acts as a projection in
the factors at the positions (i, i + 1) with equal upper index, whereas Ti acts as a
transposition if the upper indices are different and as a Jimbo matrix for the action of
the Iwahori–Hecke algebra in the usual tensor space if the upper indices are equal,
see [13].

Theorem 1 With the above definitions V ⊗n becomes a module for the algebra En(u).

Proof We must show that the operators satisfy the defining relations (E1), . . . , (E9).
Here the relations (E1), . . . , (E5) are almost trivially satisfied, since Ei acts as a
projection.

To prove the braid relation (E6) we may assume that n = 3 and must evaluate both
sides of (E6) on the basis vectors v

j1
i1

⊗v
j2
i2

⊗v
j3
i3

of V ⊗3. The case where j1, j2, j3 are
distinct corresponds to the symmetric group case and (E6) certainly holds. Another
easy case is j1 = j2 = j3, where (E6) holds by Jimbo’s classical result [13].

We are then left with the case j1 = j2 	= j3 and its permutations. In order to sim-
plify notation, we omit the upper indices of the factors of the equal j ’s and replace
the third j by a prime, e.g. v

j1
i1

⊗ v
j2
i2

⊗ v
j3
i3

is written vi1 ⊗ vi2 ⊗ v′
i3

and so on.
We may assume that the lower indices of the unprimed factors are 1 or 2 since the

action of T just depends on the order. Furthermore we may assume that the lower
index of the primed factor is always 1 since T always acts as a transposition between
a primed and an unprimed factor. This gives 12 cases. On the other hand, the cases
where the two unprimed factors have equal lower indices are easy, since both sides
of (E6) act through uσ13, where σ13 is the permutation of the first and third factor of
the tensor product. So we are left with the following 6 cases

v1 ⊗ v2 ⊗ v′
1, v1 ⊗ v′

1 ⊗ v2, v′
1 ⊗ v1 ⊗ v2,

v2 ⊗ v1 ⊗ v′
1, v2 ⊗ v′

1 ⊗ v1, v′
1 ⊗ v2 ⊗ v1.
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Both sides of (E6) act through σ13 on the first three of these subcases whereas the
last three subcases involve each one Hecke–Jimbo action. For instance

T1T2T1(v2 ⊗ v1 ⊗ v′
1) = uv′

1 ⊗ v1 ⊗ v2 + (u − 1)v′
1 ⊗ v2 ⊗ v1,

which is the same as acting with T2T1T2. The other subcases are similar.
Let us now verify that (E7) holds for our operators. We may once again assume

that n = 3 and must check (E7) on all basis elements v
j1
i1

⊗ v
j2
i2

⊗ v
j3
i3

. Once again,
the cases of j1, j2, j3 all distinct or all equal are easy. We then need only consider
j1 = j2 	= j3 and its permutations and can once again use the prime/unprime notation
as in the verification of (E6).

Let us first verify that E1T2T1 = T2T1E2. We first observe that E2 acts as the
identity on exactly those basis vectors that are of the form v′

i1
⊗ vi2 ⊗ vi3 . Hence

T2T1E2(v
′
i1

⊗ vi2 ⊗ vi3) = vi2 ⊗ vi3 ⊗ v′
i1

= E1T2T1(v
′
1 ⊗ vi2 ⊗ vi3).

The missing basis vectors are of the form vi1 ⊗ v′
i2

⊗ vi3 or vi1 ⊗ vi2 ⊗ v′
i3

and are
hence killed by E2 and therefore T2T1E2. But one easily checks that they are also
killed by E1T2T1.

The relation E2T1T2 = T1T2E1 is verified similarly.
Let us then check the relation (E8). Once again we take n = 3 and consider the

action of E1E2T2, E1T2E1 and T2E1E2 in the basis vector v
j1
i1

⊗ v
j2
i2

⊗ v
j3
i3

. If the
j1, j2, j3 are distinct, the action of the three operators is zero, and if j1 = j2 = j3
they all act as T2. Hence we may once again assume that exactly two of the j ’s are
equal.

But it is easy to check that each of the three operators acts as zero on all vectors
of the form v′

i1
⊗ vi2 ⊗ vi3 , vi1 ⊗ v′

i2
⊗ vi3 and vi1 ⊗ vi2 ⊗ v′

i3
. and so we have proved

that E1E2T2 = E1T2E1 = T2E1E2.
Similarly one proves that E2E1T1 = E2T1E2 = T1E2E1.
Finally we check the relation (E9), which by (E5) can be transferred into

T 2
i = 1 + (u − 1)(1 + Ti)Ei.

It can be checked taking n = 2. We consider vectors of the form v
j1
i1

⊗ v
j2
i2

. If j1 	= j2
then Ei acts as zero and we are done. And if j1 = j2, the relation reduces to the usual
Hecke algebra square. The theorem is proved. �

Since the above proof is only a matter of checking relations, it also works over
E A

n (u) and hence we get

Remark 1 There is a module structure of E A
n (u) on V ⊗n.

Our next goal is to prove that V ⊗n is a faithful representation of En(u). Our strat-
egy for this will be to construct a subset G of E A

n (u) that generates E A
n (u) as an

A-module and maps to a linearly independent subset of EndA(V ⊗n) under the rep-
resentation. We will then also have determined the dimension of En(u).

Let us start out by stating the following useful lemma.
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Lemma 1 The following formulas hold in En(u) and E A
n (u).

(a) TjEiT
−1
j = T −1

i EjTi if |i − j ] = 1,

(b) T −1
i TjEi = EjT

−1
i Tj if |i − j ] = 1,

(c) TjEiT
−1
j = TiEjT

−1
i if |i − j ] = 1.

Proof The formula (a) is just a reformulation of (E7) whereas the formula (b) follows
from

T −1
i = Ti + (

u−1 − 1
)
Ei(1 + Ti)

combined with (E7) and (E8). Formula (c) is a variation of (b). �

For 1 ≤ i < j ≤ n we define Eij by Ei if j = i + 1, and otherwise

Eij := TiTi+1 · · ·Tj−2Ej−1T
−1
j−2 · · ·T −1

i+1T
−1
i .

We shall from now on use the notation n := {1,2, . . . , n}. For any nonempty subset
I ⊂ n we extend the definition of Eij to

EI :=
∏

(i,j)∈I×I,i<j

Eij ,

where by convention EI := 1 if |I | = 1. We now aim at showing that this product is
independent of the order in which it is taken.

Let us denote by si the transposition (i, i + 1). Write E{j,k} for Emin{j,k},max{j,k}.
Then we have

Lemma 2 We have for all i, j, k that

(a) TiEjkT
−1
i = E{sij,sik},

(b) T −1
i EjkTi = E{sij,sik}.

Proof Let us prove (a). We first consider the case where i is not any of the numbers
j −1, j, k−1 or k. In that case we must show that Ti and Ej,k commute. For i < j −1
and i > k this is clear since Ti then commutes with all of the factors of Ej,k . And for
j < i < k − 1 one can commute Ti through Ej,k using (E6) and (E3).

For i = j −1 the formula follows directly from the definition of Ej,k . For i = k we
get that Ti commutes with all the Tl factors of Ej,k and hence it reduces to showing
that

TkEk−1T
−1
k = Tk−1EkT

−1
k−1,

which is true by formula (c) of Lemma 1. For i = k − 1 the formula follows from the
definitions and (E7).

Finally, we consider the case i = j . To deal with this case, we first rewrite Ejk ,
using (c) of Lemma 1 repeatedly starting with the innermost term, in the form
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Ejk = Tk−1Tk−2 · · ·Tj+1EjT
−1
j+1 · · ·T −1

k−2T
−1
k−1. (1)

The formula of the lemma now follows from relation (E7).
Formula (b) is proved the same way. �

With this preparation we obtain the commutativity of the factors involved in EI .
We have that

Lemma 3 The Eij are commuting idempotents of En(u) and E A
n (u).

Proof The Eij are obviously idempotents in En(u) and E A
n (u) so we just have to

prove that they commute.
Thus, given Eij and Ekl we show by induction on (j − i) + (l − k) that they

commute with each other. The induction starts for (j − i) + (l − k) = 2, in which
case Eij = Ei and Ekl = Ek , that commute by (E2).

Suppose now (j − i) + (l − k) > 2 and that Eij ,Ekl is not a pair of the form
Es−1,s+2,Es,s+1 for any s. One checks now there is an r such that Esr {i,j},Esr {k,l}
is covered by the induction hypothesis. But then, using (a) from the previous lemma
together with the induction hypothesis, we find that

EijEkl = T −1
r Esr {i,j}TrT

−1
r Esr {k,l}Tr = T −1

r Esr {i,j}Esr {k,l}Tr

= T −1
r Esr {k,l}Esr {i,j}Tr = T −1

r Esr {k,l}TrT
−1
r Esr {i,j}Tr = EklEij

as needed. Finally, if our pair is of the form Es−1,s+2,Es,s+1 we use (E8) to finish
the proof the lemma as follows

Es−1,s+2Es,s+1 = Ts−1TsEs+1T
−1
s T −1

s−1Es = EsTs−1TsEs+1T
−1
s T −1

s−1

= Es,s+1Es−1,s+2. �

We have now proved that the product involved in EI is independent of the order
taken. We then go on to show that many of the factors of this product can be left out.

Lemma 4 Let I ⊂ n with |I | ≥ 2 and set i0 := min I . Then

EI =
∏

i:i∈I\{i0}
Ei0i .

Proof It is enough to show the lemma for I of cardinality three. By a direct calcu-
lation using the definition of Ekl one sees that this case reduces to I = {1,2, i}. Set
now

E1 := E1T1T2 · · ·Ti−1EiT
−1
i−1 · · ·T −1

2 T −1
1 ,

E2 := T2T3 · · ·Ti−1EiT
−1
i−1 · · ·T −1

3 T −1
2 .

Then the left hand side of the lemma is E1E2 while the right hand side is E1, so
we must show that E1E2 = E1. But using formula (a) of Lemma 1 repeatedly this
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identity reduces to

E1T1E2T
−1
1 E2 = E1T1E2T

−1
1 ,

which is true by relations (E5) and (E8). �

In order to generalize the previous results appropriately we need to recall some
notation. A set partition A = {I1, I2, . . . , Ik} of n is by definition an equivalence
relation on n with classes Ij . This means that the Ij are disjoint, nonempty subsets of
n with union n. We also refer to the Ij as the blocks of A. The number of distinct set
partitions of n is called the nth Bell number and is written Bn. For example B1 = 1,
B2 = 2 and B3 = 5. The five set partitions of 3 = {1,2,3} are

{{1}, {2}, {3}}, {{1}, {2,3}}, {{2}, {1,3}},
{{3}, {1,2}}, {{1,2,3}}.

Let us denote by Pn the set of all set partitions of n. There is natural partial order
on Pn, denoted ⊂. It is defined by A = {I1, I2, . . . , Ik} ⊂ B = {J1, J2, . . . , Jl} if and
only if each Ji is a union of certain Ii .

Let R be a subset of n × n. Write i �R j if (i, j) ∈ R and write ∼R for the
equivalence relation induced by i �R j . Then i ∼R j iff i = j or there is a chain
i = i1, i2, . . . , ik = j such that is �R is+1 or is+1 �R is for all s. Let 〈R〉 denote the
set partition corresponding to ∼R . For example, if R = ∅ we get that 〈R〉 is the trivial
set partition whose blocks are all of cardinality one.

For A = {I1, . . . , Ik} ∈ Pn we define

EA :=
∏

i

EIi
.

It follows from Lemma 3 that the product is independent of the order in which it is
taken.

For w ∈ Sn we define wA := {wI1,wI2, . . . ,wIk} ∈ Pn. If w = si1si2 · · · sin is a
reduced form of w, we write as usual Tw = Ti1Ti2 · · ·Tin . Then we have

Corollary 1 With A ∈ Pn and w as above the following formula holds:

TwEAT −1
w = EwA.

Proof This is a consequence of Lemma 2(a) and the definitions. �

The next lemma is an important ingredient in the construction of the basis
for En(u).

Lemma 5 Suppose R ⊂ n × n. Then the following formula is valid:

∏

i,j :(i,j)∈R

E{i,j} = E〈R〉.
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Proof Writing ER := ∏
i,j :(i,j)∈R E{i,j} we must prove that ER := E〈R〉. Clearly, all

the factors of ER are also factors of E〈R〉. We show that the extra factors of E〈R〉
do not change the product of ER . For this, suppose first that the following equations
hold for i < j < k

EijEik = EijEjk = EikEjk = EijEjkEik. (2)

Assume now that i, j ∈ n satisfy i ∼R j . Then, by definition, there is a chain
i = i1, i2, . . . , ik = j with (is, is+1) ∈ R or (is+1, is) ∈ R for all s. Let 1 ≤ l < k

and assume recursively that we have ER = ERE{i,il}. Then using (2) we get that also
ER := ERE{i,il+1}. Continuing, we find that ER := ERE{ij}, and so indeed the extra
factors of E〈R〉 do not change the product ER . Thus we are reduced to proving (2).

The equation EijEik = EijEjkEik was shown in the previous lemma so we only
need show that EikEjk = EijEjkEik and EijEjk = EijEjkEik .

We consider the involution inv of E A
n (u) given by the formulas

inv(Ti) = Tn−i , inv(Ei) = En−i .

Using (1) we find that

inv(Eij ) = En−j,n−i .

But then EikEjk = EijEjkEik follows from EijEik = EijEjkEik .
We then show that EijEjk = EijEjkEik . By the above, it can be reduced to show-

ing the identity

EijEjk = EijEik.

Using the definition of the Eij it can be reduced to the case i = 1, j = 2, i.e.
E1E2k = E1E1k . Using formula (a) of Lemma 1 it becomes the valid identity
E1E2 = E1T1E2T

−1
1 . �

From the lemma we get the following compatibility between the partial order on
Pn and the EA.

Corollary 2 Assume A,B ∈ Pn and let C ∈ Pn be minimal with respect to A ⊆ C

and B ⊆ C. Then EAEB = EC .

We are now in position to construct the subset G of E A
n (u). We define

G := {EATw|A ∈ Pn,w ∈ Sn}. (3)

With the theory developed so far we can state the following theorem.

Theorem 2 The set G generates E A
n (u) over A.

Proof Consider a word w = Xi1Xi2 · · ·Xik in the generators Ti and Ei , i.e. Xij = Tij

or Xij = Eij for all j . Using Lemma 2 we can move all the Ei to the front position,
at each step changing the index set by its image under some reflection, and are finally
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left with a word in the Ti , which is possibly not reduced. If it is not so, it is equivalent
under the braid relations (E6) to a word with two consecutive Ti , see [7] Chap. 8.
Expanding the T 2

i gives rise to a linear combination of 1,Ei and TiEi , where the Ei

can be commuted to the front position the same way as before. Continuing this way
we eventually reach a word in reduced form, that is a linear combination of elements
of the form

∏
(i,j)∈R,w∈Sn

EijTw for some subset R of n × n, satisfying (i, j) ∈ R

only if i < j . Using Lemma 5 we may rewrite it as a linear combination of E〈R〉Tw

and the proof is finished. �

With these results at hand we can prove the following main theorem.

Theorem 3 The set G is a basis of E A
n (u) and induces bases of En(u) and En(1).

Proof By the previous theorem it is enough to show that G is an A-linearly inde-
pendent subset of E A

n (u) and induces K and C-linearly independent subsets of En(u)

and En(1).
Assume that there exists a nontrivial linear dependence

∑
g∈G λgg = 0 where λg ∈

A for all g. Let λ ∈ A be the greatest common divisor of the λg and write λ =
(v − 1)Mλ1 with λ1 ∈ A and λ1(1) 	= 0. Setting μg := λg/(v − 1)M ∈ A we obtain
an A-linear dependence

∑
g∈G μgg = 0 satisfying μg(1) 	= 0 for at least one g. By

specializing, we obtain from this a nontrivial C-linear dependence
∑

g∈G μg(1)g = 0
in En(1).

Denoting by ψ : E A
n (u) → EndA(V ⊗n) the representation homomorphism we get

by specializing a homomorphism ψ1 : En(1) → EndC(V ⊗n). We use it to obtain the
nontrivial linear dependence

∑
g∈G μg(1)ψ1(g) = 0 in EndC(V ⊗n). It is now enough

to show that {ψ1(g)|g ∈ G} is a C-linearly independent set of EndC(V ⊗n).
But for u = 1, the action of Ti in V ⊗n is just permutation of the factors (i, i + 1).

Hence, in this case, Ekl acts as a projection in the space of equal upper indices in the
kl’th factors of V ⊗n. In formulas

Ekl

(
v

j1
i1

⊗ · · · ⊗ v
jk

ik
⊗ · · · ⊗ v

jl

il
⊗ · · · ⊗ v

jn

in

)

=
{

v
j1
i1

⊗ · · · ⊗ v
jk

ik
⊗ · · · ⊗ v

jl

il
⊗ · · · ⊗ v

jn

in
if jk = jl,

0 otherwise.

Thus, for a set partition A = {I1, I2, . . . , Is} ∈ Pn we get that EA acts as the projection
πA on the space of equal upper indices in factors corresponding to each of the Ik . In
formulas

EA

(
v

j1
i1

⊗ · · · ⊗ v
jr

ir
⊗ · · · ⊗ v

js

is
⊗ · · · ⊗ v

jn

in

)

=
{

0 if there exist r, s, k such that r, s ∈ Ik and jr 	= js,

v
j1
i1

⊗ · · · ⊗ v
jr

ir
⊗ · · · ⊗ v

js

is
⊗ · · · ⊗ v

jn

in
otherwise.

Let us now consider a linear dependence:
∑

w∈Sn,A∈Pn

λw,ATwπA = 0, (4)
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with λw,A ∈ C. Take A0 ∈ Pn such that λw,A0 	= 0 for some w ∈ Sn and A0 is minimal
with respect to this condition, where minimality refers to the partial order on Pn

introduced above. Suppose that A0 = {I1, I2, . . . , Is}. If we take a basis vector of V ⊗n

vA0 = v
j1
i1

⊗ · · · ⊗ v
jk

ik
⊗ · · · ⊗ v

jl

il
⊗ · · · ⊗ v

jn

in

such that jk = jl if and only if k, l belong to the same Ii , then we get on evaluation
in (4), using the minimality of A0, that

∑

w∈Sn

λw,A0TwvA0 = 0.

We now furthermore take vA0 such that its lower i-indices are all distinct. But then
{TwvA0,w ∈ Sn} is a linearly independent set and we conclude that λw,A0 = 0 for
all w, which contradicts the choice of A0.

This shows that the set {TwπA|w ∈ Sn,A ∈ Pn} is linearly independent. To get the
linear independence of {πATw|w ∈ Sn,A ∈ Pn} we apply Corollary 1.

We have shown that G induces a C-independent subset of En(1) and we then
conclude, as described above, that it is an A-independent subset of E A

n (u). Since K

is the quotient field of A it also induces a K-independent subset of En(u) and the
theorem is proved. �

Corollary 3 We have dim En(u) = n!Bn, where Bn is the Bell number, i.e. the number
of set partitions of n. For example dim E2(u) = 4, dim E3(u) = 30, etc.

The appearance of set partitions in the above, notably Corollary 2, might indicate a
connection between En(u) and the partition algebra An(K) introduced independently
by P. Martin in [17] and V. Jones in [12], see also [6] for an account of the represen-
tation theory of An(K). On the other hand, the special relation (E9) of En(u) does
complicate the direct comparison En(u) with known variations of the partition alge-
bra and at present we do not believe that there can be any straightforward connection.
The relation (E9) reveals the origin of En(u) in the Yokonuma–Hecke algebra. Since
u 	= 1, it behaves like a kind of skein relation in the diagram calculus for En(u), which
seems awkward to interpret in a partition algebra context. Note that En(u) becomes
infinite dimensional if (E9) is left out.

Corollary 4 The tensor space V ⊗n is a faithful En(u)-module.

Proof We proved that G is a basis of En(u) that maps to a linearly independent set in
EndK(V ⊗n). �

4 Representation theory, first steps

We initiate in this section the representation theory of En(u). We construct two fami-
lies of irreducible representations of En(u) as pullbacks of irreducible representations
of the symmetric group and of the Hecke algebra.
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Let I ⊂ En(u) be the two-sided ideal generated by Ei for all i; actually E1 is
enough to generate I . Let furthermore J ⊂ En(u) be the two-sided ideal generated by
Ei −1 for all i; once again E1 −1 is enough to generate J . Recall that Sn denotes the
symmetric group on n letters. Let Hn(u) be the Hecke algebra over K of type An−1. It
is the K-algebra generated by T1, . . . , Tn−1 with relations TiTj = TjTi if |i − j | > 1
and

TiTi±1Ti = Ti±1TiTi±1 (Ti − u)(Ti + 1) = 0,

where i is any index such that the expressions make sense.

Lemma 6 (a) There is an isomorphism ϕ : KSn → En(u)/I, si �→ Ti .
(b) There is an isomorphism ψ : Hn(u) → En(u)/J,Ti �→ Ti .

Proof We first prove a). In En(u)/I we have T 2
i = 1 and hence we obtain a surjection

ϕ : KSn → En(u)/I by mapping si to Ti . Consider once again the vector space V =
spanK{vj

i |i, j = 1, . . . , n} and its tensor space V ⊗n as a representation of En(u). We
consider the following subspace M ⊂ V ⊗n.

M = spanK

{
v

j1
i1

⊗ · · · ⊗ v
jn

in
| the upper indices are all distinct

}
.

It is easy to check from the rules of the action of En(u) that M is a submodule of
V ⊗n. Since the Ei act as zero in M we get an induced homomorphism ρ : En(u)/I →
EndK(M), where ρ(Ti) is the switching of the i’th and i + 1’th factors of the tensor
product. But then the image of ρ ◦ϕ has dimension n! and we conclude that ϕ indeed
is an isomorphism.

In order to prove (b) we basically proceed in the same way. In the quotient En(u)/J

we have T 2
i = 1 + (u − 1)(1 + Ti) which implies the existence of a surjection

ψ : Hn(u) → En(u)/J mapping Ti to Ti . To show that ψ is injective we this time
consider the submodule

N = spanK

{
v

j1
i1

⊗ · · · ⊗ v
jn

in
| the upper indices are all equal to 1

}
.

All Ei act as 1 in N and so we get a induced map ρ′ : En(u)/J → EndK(N). The
composition ρ′ ◦ψ is the regular representation of Hn(u) and hence dim Im(ρ′ ◦ψ) =
n! which proves that also ψ is an isomorphism. �

We now recall the well known basic representation theory of KSn and of Hn(u).
Let λ = (λ1, λ2, . . . , λk) be an integer partition of |λ| := n and let Y(λ) be its Young
diagram. Let tλ (resp. tλ) be the λ-tableau in which the numbers {1,2, . . . , n} are
filled in by rows (resp. columns). Denote by R(λ) (resp. C(λ)) the row (resp. column)
stabilizer of tλ. Define now

rλ =
∑

w∈R(λ)

w, cλ =
∑

w∈C(λ)

(−1)l(w)w, sλ = cλrλ.

Then sλ is the Young symmetrizer and S(λ) = KSnsλ is the Specht module associated
with λ. Since CharK = 0, the Specht modules are simple and classify the simple
modules of KSn.
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To give the Specht modules for Hn(u), we use Gyoja’s Hecke algebra analog of
the Young symmetrizer [9, 18]. In our setup it looks as follows: For X ⊂ Sn, define

ι(X) =
∑

w∈X

Tw, ε(X) =
∑

w∈X

(−u)−l(w)Tw.

If for example X = Sn, we have

Twι(Sn) = ul(w)ι(Sn), Twε(Sn) = (−1)l(w)ε(Sn),

for all Tw . We now define

xλ = ι
(
R(λ)

)
, yλ = ε

(
R(λ)

)
.

Let wλ ∈ Sn be the element such that wλt
λ = tλ. Then the Hecke algebra analog of

the Young symmetrizer is

eλ = T
w−1

λ
yλ′Twλxλ = cλ(u)rλ(u),

where cλ(u) := T
w−1

λ
yλ′Twλ and rλ(u) := xλ(u). The permutation module and the

Specht module associated with λ are defined as Mu(λ) := Hn(u)xλ and Su(λ) =
Hn(u)eλ. Since u is generic, Su(λ) is irreducible.

For future reference, we recall the following result, see e.g. [4, 18].

Lemma 7 Suppose that cλ(u)Mu(μ) 	= 0. Then μ � λ.

Here � refers to the dominance order on partitions of n, defined by λ = (λ1, λ2, . . .) �
μ = (μ1,μ2, . . .) iff λ1 +λ2 +· · ·+λi ≤ μ1 +μ2 +· · ·+μi for all i. The dominance
order is only a partial order, but we shall embed it into the total order < on parti-
tions of n, defined by λ = (λ1, λ2, . . .) < μ = (μ1,μ2, . . .) iff λ1 + λ2 + · · · + λi ≤
μ1 + ν2 +· · ·+μi for some i and λ1 +λ2 +· · ·+λj = μ1 +μ2 +· · ·+μj for j < i.
We extend < to a total order on all partitions by declaring λ < μ if |λ| < |μ|.

It is known that yλ′Twxλ 	= 0 only if w = wλ see [4, 18]. Using it we find that

cλ(u)zrλ(u) = Czcλ(u)rλ(u) for all z ∈ Hn(u), (5)

for a constant Cz ∈ K . It follows that sλ(u) is a preidempotent, i.e. an idempotent up
to a nonzero scalar. There is a similar formula

cλzrλ = Czcλrλ for all z ∈ KSn (6)

in the symmetric group case.
Using the Specht module S(λ) for KSn or Su(λ) for Hn(u) we use ϕ or ψ to obtain

a simple module for En(u), by pulling back. On the other hand, these two series of
simple modules do not exhaust all the simple modules for En(u) as we shall see in
the next sections.
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5 En(u)′ as a En(u)-module

In this section we return to En(u). We show that it is selfdual as a left module over
En(u) itself. As a consequence of this we get that all simple modules occur as left
ideals in En(u).

Denote by ∗ : En(u) → En(u) the K-linear antiautomorphism given by T ∗
i = Ti

and E∗
i = Ei . To check that ∗ exists we must verify that ∗ leaves the defining relations

(E1), . . . , (E9) invariant. This is obvious for all of them, except possibly for (E7)

where it follows by interchanging i and j . There is a similar antiautomorphism for
En(1), also denoted ∗.

We now make the linear dual En(u)′ of En(u) into a left En(u)-module using ∗:

(xf )(y) := f (x∗y) for x, y ∈ En(u), f ∈ En(u)′.

We need to consider the linear map

ε : En(u) → K, x �→ coeffEn(x),

where coeffEn(x) is the coefficient of En when x ∈ En(u) is written in the basis el-
ements TwEA of G, see (3). Here by abuse of notation, we write n for the unique
maximal set partition in Pn. Its only block is n.
With this we may construct a bilinear form 〈·, ·〉 on En(u) by

〈x, y〉 = ε(x∗y) for x, y ∈ En(u).

And then we finally obtain a homomorphism ϕ by the rule

ϕ : En(u) → En(u)′ : x �→ (
y �→ 〈x, y〉).

Theorem 4 With the above definitions, we get that ϕ is an isomorphism of left En(u)-
modules.

Proof One first checks that the bilinear form satisfies

〈xy, z〉 = 〈y, x∗z〉 for all x, y, z ∈ En(u),

which amounts to saying that ϕ is En(u)-linear.
Since En(u) is finite dimensional, it is now enough to show that 〈·, ·〉 is nondegen-

erate. For this we first observe that our construction of 〈·, ·〉 is valid over A as well
and hence also defines a bilinear form 〈·, ·〉A on E A

n (u). It is enough to show that
〈·, ·〉A is nondegenerate. Suppose a ∈ E A

n (u). Then as in the proof of Theorem 3 we
can write it in the form a = (u − 1)Na′ where a′ = ∑

g∈G λgg and where λg(1) 	= 0

for at least one g. Letting π : E A
n (u) → En(1) be the specialization map we have

π(a′) 	= 0 since it was shown in the proof of that theorem that G is a basis of E A
n (1)

as well.
Let us denote by 〈·, ·〉1 the bilinear form on En(1) constructed similarly to 〈·, ·〉.

Then we have that
〈
π(a),π(b)

〉
1 = 〈a, b〉A ⊗A C for all a, b ∈ E A

n (u)
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since π is multiplicative and satisfies π(a∗) = π(a)∗. We are now reduced to
proving that 〈·, ·〉1 is nondegenerate. Let us therefore consider an arbitrary a =∑

w,A λw,AEATw ∈ En(1), where λw,A ∈ C. Let A0 ∈ Pn be minimal subject to the
condition that λw,A0 	= 0 for some w. Take z ∈ Sn with λz,A0 	= 0 and define

b = EA0

∏

A0�A

(1 − EA)Tz.

We claim that 〈b, a〉1 	= 0. Indeed, since u = 1 we have

b∗a = T −1
z

∏

A0�A

(1 − EA)EA0a.

Since A0 was chosen minimal, there can be no cancellation of the coefficient of
EA0Tz in EA0a which hence is λz,A0 . All EA appearing in the expansion of EA0a

with respect to the basis EATw satisfy A0 ⊆ A. Except for EA0 they are all killed by∏
A0�A(1 − EA). By this we get

T −1
z

∏

A0�A

(1 − EA)EA0a = λz,A0T
−1
z

∏

A0�A

(1 − EA)EA0Tz.

The coefficient of En in this expression is by Corollary 1 equal to the coefficient of
En in

λz,A0

∏

A0�A

(1 − EA)EA0 .

On the other hand, the coefficient of En in
∏

A0�A(1 − EA)EA0 is given by
the Moebius function associated with the partial order ⊂ on Pn. It is equal to
(−1)k−1k!, where k is the number of blocks of A0. Summing up we find that
〈b, a〉1 = (−1)k−1λz,A0k! 	= 0 which proves the theorem. �

6 Classification of the irreducible representations

In this section we give the classification of the irreducible representations of En(u).
For M a left En(u)-module we make its linear dual M ′ into a left En(u)-module

using the antiautomorphism ∗. If M is a simple En(u)-module then any m ∈ M \ {0}
defines a surjection

En(u) → M,x �→ xm for x ∈ En(u).

By duality and by the last section, we then get an injection of M ′ into En(u). On the
other hand, the canonical isomorphism M → M ′′ is En(u)-linear because ∗∗ = Id
and so we conclude that all simple En(u)-modules appear as left ideals in En(u).

Let now I be a simple left ideal of En(u) and let x0 ∈ I \ {0}. Since the tensor
space V ⊗n is a faithful En(u)-module, we find a v ∈ V ⊗n such that x0v 	= 0. But then
the En(u)-linear map

I → V ⊗n, x �→ xv for x ∈ I
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is nonzero, and therefore injective. We conclude that all simple En(u)-modules appear
as submodules of V ⊗n.

Consider a simple submodule M of V ⊗n. Take A0 ⊂ n maximal such that
EA0M 	= 0. By Sect. 3, in the two extreme situations A0 = ∅ or A0 = n we can give
a precise description of M , since in those cases M is a module for KSn or Hn(u). In
other words, M is the pullback of a Specht module S(λ) for KSn or a Specht module
Su(λ) for Hn(u) as described in Sect. 3. The general case is going to be a mixture of
these two cases as we shall explain in this section.

Let Ln be the set of tuples

Ln = {(
λs,ms,μ

s
)|s = 1, . . . , k

}
,

where λs is a partition, ms a positive integer and μs a partition of ms such that∑
s ms |λs | = n and such that λ1 < λ2 < · · · < λk where < is the total order on parti-

tions defined above.
Suppose Λ = (λs,ms,μ

s) ∈ Ln. We associate to it the vector vΛ ∈ V ⊗n defined
in the following way

vΛ := v1
λ1 ⊗ v2

λ1 ⊗ · · · ⊗ v
m1+1
λ2 ⊗ v

m1+2
λ2 ⊗ · · · ⊗ vl

λk ,

where l := ∑
s ms and where for any integer partition (even composition) μ =

(μ1,μ2, . . . ,μr) of m and any integer i we define vi
μ ∈ V ⊗m as follows

vi
μ := (

vi
1

)⊗μ1 ⊗ (
vi

2

)⊗μ2 ⊗ · · · ⊗ (
vi
r

)⊗μr .

We moreover associate to Λ = (λs,ms,μ
s) the set partition AΛ ∈ Pn, that has

blocks of consecutive numbers, the first m1 blocks being of size |λ1|, the next m2
blocks of size |λ2| and so on. The blocks correspond to the factors of vΛ that have
equal upper indices. Note that it is possible that |λ1| = |λ2| making the first m1 + m2
blocks of equal size and so on. Writing AΛ = (I1, I2, . . . , Il) we set

SΛ := Sm1 × Sm2 × · · · × Smk
,

HΛ(u) := HI1(u) ⊗ HI2(u) ⊗ · · · ⊗ HIl
(u).

Let ιj be the group isomorphism from Smj
to 1 × · · · × Smj

× · · · × 1 and also the
algebra isomorphism from HIj

(u) to 1 ⊗ · · · ⊗ HIj
(u) ⊗ · · · ⊗ 1.

Corresponding to AΛ there is an analogous block decomposition of the factors of
V ⊗n and SΛ acts on this by permutation of the blocks.

Let us illustrate this action on an example. Take n = 6, k = 1 and Λ = (λ,2,μ)

where λ = (2,1) and μ = (1,1). Then AΛ = {(1,2,3), (4,5,6)} and SΛ is the group
of order two that permutes the two blocks, thus generated by σ = (1,4)(2,5)(3,6).
In other words

vΛ = v1
1 ⊗ v1

1 ⊗ v1
2 ⊗ v2

1 ⊗ v2
1 ⊗ v2

2 and

σvΛ = v2
1 ⊗ v2

1 ⊗ v2
2 ⊗ v1

1 ⊗ v1
1 ⊗ v1

2 .

In general, we have that

Tσ vΛ = σvΛ for σ ∈ SΛ (7)
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since in a reduced expression σ = σi1σi2 · · ·σiN the action of each σij and Tij on vΛ

will only involve distinct upper indices.
In the above example, we have σ = σ3σ4σ5σ2σ3σ4σ1σ2σ3 ∈ SΛ and hence

Tσ = T3T4T5T2T3T4T1T2T3 ∈ En(u).

Both σ and Tσ will move the first v2
1 to the first position, then the second v2

1 to the
second position and finally v2

2 to the third position.
We consider the row and column (anti)symmetrizer rμi , cμi ∈ KS|μi | of the parti-

tions μi as elements of En(u) by mapping each occurring σ to Tιi (σ ). By Corollary 1,
we then get that rμi and cμi commute with EAΛ .

We define wΛ := (rμ1 ⊗rμ2 ⊗· · ·⊗rμk )vΛ. It has the form wΛ := w
μ1
λ1

⊗· · ·⊗w
μk

λk

where we for general λ,μ define

w
μ
λ :=

∑

σ∈rμ

v
σ(1)
λ ⊗ · · · ⊗ v

σ(m)
λ ,

where |μ| = m. We define the ’permutation module’ as

M(Λ) := En(u) = En(u)wΛ.

Define now

eΛ := (cμ1 ⊗ cμ2 ⊗ · · · ⊗ cμk )
(
cλ1(u)⊗m1 ⊗ · · · ⊗ cλk (u)⊗mk

)
EAΛ,

where cλi (u) is as in Sect. 4. Note that the three factors of eΛ commute by the defin-
itions and Corollary 1. We define the ‘Specht module’ as

S(Λ) := En(u)eΛwΛ ⊂ M(Λ).

Actually, the factor EAΛ could have been left out of eΛ in the definition of the Specht
module, since it commutes with rμ1 ⊗ rμ2 ⊗ · · ·⊗ rμk and EAΛwΛ = wΛ by the next
Lemma 8, but for later use we prefer to include it in eΛ.

Lemma 8 In the above setting we have that

EBwΛ =
{

wΛ if B ⊆ AΛ,

0 otherwise.
(8)

Proof If B ⊆ AΛ this is an immediate consequence of the definitions. If B 	⊆ AΛ

there are i, j ∈ n belonging to the same block of B and to different blocks of AΛ,
let these be Iα(i) and Iα(j). Since Eij is a factor of EB it is enough to show that
EijσvΛ = 0 for σ ∈ SΛ. But from formula (1) we have that

Eij = Tj−1Tj−2 · · ·Ti+1EiT
−1
i+1 · · ·T −1

j−2T
−1
j−1.

Using it we can decompose Eij from the right to the left in an element of ια(j)(HIα(j)
),

followed by the product of the remaining T −1
k , then Ei and finally the product of
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the Tk . The action of ιj (HIα(j)
) on σvΛ produces a linear combination of basis el-

ements v of V ⊗n where all appearing v are obtained from σvΛ by permuting the
factors corresponding to the block Iα(i). The upper indices of the factors of v are
exactly as those of σvΛ. The product of T −1

k acts on each v by permuting the first
factor of the Iα(j) block to the i + 1st position, that is inside the Iα(i) block. But Ei

acts as zero on this and the lemma follows. �

The main result of this section is the following theorem.

Theorem 5 S(Λ) is a simple module for En(u). The simple En(u)-modules are clas-
sified by S(Λ) for Λ ∈ Ln.

Proof Write for simplicity A := AΛ.
Our first step is to show that eΛM(Λ) = KeΛwΛ. For this we take x ∈ En(u) and

first consider the element EAxwΛ ∈ M(Λ).
We can write x as a linear combination of elements EBTw from our basis G. By

Corollary 2, EAEB is equal to a EC for C with A ⊆ C. By Lemma 8 and Corollary 1
we have that ECTwwΛ = TwEw−1CwΛ = 0 unless w−1C = A, since A ⊆ C. We may
therefore assume that B = A and A = wA such that EAx is a linear combination of
elements of the form EATw where Tw permutes the blocks of A of equal cardinality.

Thus, let SΛ ≤ Sn be the subgroup consisting of the permutations of the blocks of
A of equal cardinality. Note that SΛ ≤ SΛ, the inclusion being strict in general. As
in the case of SΛ, the elements of SΛ can be seen as elements of En(u), by the map
z �→ Tz.

In this notation, if EAxwΛ is nonzero it is a linear combination of elements of the
form

Tz(Tw1 ⊗ Tw2 ⊗ · · · ⊗ Twl
)wΛ, (9)

where z ∈ SΛ and Tw1 ⊗ Tw2 ⊗ · · · ⊗ Twl
∈ HΛ(u) and where we used that EA com-

mutes with the other factors and EAwΛ = wΛ. Since the upper indices of the w
j

λi are
distinct, Tz acts by permuting the Twi

-factors.
We need to show that z ∈ SΛ and therefore consider the action on cλ1(u)⊗m1 ⊗

· · · ⊗ cλk (u)⊗mk on (9). Let from this λ1, λ2, . . . , λt be the partitions with |λi | =
|λ1| = |I1|. Note that in general t ≥ m1. Since the λi are ordered increasingly, we get
by lemma 7 that the product is nonzero only if each factor cλk (u) of cλ1(u)⊗m1 ⊗· · ·⊗
cλt (u)⊗mt acts in a Twav

σ(a)

λk -factor of (9), i.e. a factor with the same λk appearing
as index. This argument extends to the other factors of cλ1(u)⊗m1 ⊗ · · · ⊗ cλk (u)⊗mk

and so we may assume that z ∈ SΛ as claimed.
After this preparation, we can show the claim about eΛM(Λ). We take x ∈ En(u)

and consider eΛxwΛ. By the above, it is a linear combination of elements of the form

(cμ1 ⊗ · · · ⊗ cμk )Tz

(
cλ1(u) ⊗ · · · ⊗ cλl (u)

)
(Tw1 ⊗ · · · ⊗ Twl

)wΛ,

where Tw1 ⊗Tw2 ⊗· · ·⊗Twl
∈ HΛ(u) and where z ∈ SΛ such that Tz commutes with

cλ1(u) ⊗ · · · ⊗ cλl (u). We now use the formulas (5), (6) and the definition of wΛ to
rewrite this as
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C1(cμ1 ⊗ · · · ⊗ cμk )Tz

(
sλ1(u) ⊗ · · · ⊗ sλl (u)

)
wΛ

= C2(cμ1 ⊗ · · · ⊗ cμk )Tz

(
sλ1(u) ⊗ · · · ⊗ sλl (u)

)
(rμ1 ⊗ · · · ⊗ rμk )wΛ

= C2(cμ1 ⊗ · · · ⊗ cμk )Tz(rμ1 ⊗ · · · ⊗ rμk )
(
sλ1(u) ⊗ · · · ⊗ sλl (u)

)
wΛ

= C3(sμ1 ⊗ · · · ⊗ sμk )
(
sλ1(u) ⊗ · · · ⊗ sλl (u)

)
wΛ

= C4(cμ1 ⊗ · · · ⊗ cμk )
(
cλ1(u) ⊗ · · · ⊗ cλl (u)

)
wΛ = C4eΛwΛ,

where the Ci ∈ K are constants and where we used that rμ1 ⊗ · · · ⊗ rμk commutes
with cλ1(u) ⊗ · · · ⊗ cλl (u) and rλ1(u) ⊗ · · · ⊗ rλl (u) since rμ1 permutes over equal
factors cλ1(u) etc. For z = 1 all the constants are nonzero since the Young sym-
metrizers sλ(u) and sμ are idempotents up to nonzero scalars and we have then fi-
nally proved that eΛM(Λ) = KeΛwΛ, as claimed. Since S(Λ) ⊆ M(Λ) we also have
eΛS(Λ) ⊆ KeΛwΛ.

We now proceed to prove that S(Λ) is a simple module for En(u). We do it by set-
ting up of version of James’s submodule theorem [10]. Assume therefore N ⊂ S(Λ)

is a submodule. If eΛN 	= 0, we have by the above that eΛN is a scalar multiple of
eΛwΛ and so N = S(Λ).

In order to treat the other case eΛN = 0, we define a bilinear form on V ⊗n by
setting

〈
v

j1
i1

⊗ · · · ⊗ v
jn

in
, v

j ′
1

i′1
⊗ · · · ⊗ v

j ′
n

i′n
〉 = viδ

i=i′,j=j ′

and extending linearly, where we write i = (i1, i2, . . . , in) and similarly for i′, j , j ′.
The power vi is defined as follows. Order v

j1
i1

⊗ · · · ⊗ v
jn

in
by first moving all fac-

tors v
jk

ik
with minimal upper indices to the left of v

j1
i1

⊗ · · · ⊗ v
jn

in
but maintain-

ing their relative position, then moving the factors v
jk

ik
with second smallest up-

per indices to the positions just to the right of the first ones and so on. This gives
a permutation σ ∈ Sn such that σ(v

j1
i1

⊗ · · · ⊗ v
jn

in
) has increasing upper indices,

let these be f (1), f (2), . . . , f (m) without repetitions. We then find compositions
τi, i = 1, . . . ,m and minimal coset representations wi ∈ S|Iτi

|/Sτi
such that

σ
(
v

j1
i1

⊗ · · · ⊗ v
jn

in

) = w1v
f (1)

τ 1 ⊗ w2v
f (2)

τ 2 ⊗ · · · ⊗ wmv
f (m)
τm

and define vi := v
∑

l(wi).
This bilinear form is modeled on the one for the tensor space module for Hecke

algebras [4], and inherits from it the following invariance property

〈xv,w〉 = 〈v, x∗w〉 for all x ∈ En(u), v,w ∈ V ⊗n,

where ∗ is as in Sect. 4. We have that

c∗
λ = cλ, r∗

λ = rλ, cλ(u)∗ = cλ(u), rλ(u)∗ = rλ(u),

where we used that ∗ is an antiautomorphism to show for instance that T
w−1

λ
yλ′T ∗

wλ
=

T
w−1

λ
yλ′Twλ . Since the factors of eΛ commute, we also have that

e∗
Λ = eΛ.
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We are now in position to finish the treatment of the case eΛN = 0. We have

0 = 〈
eΛN,M(Λ)

〉 = 〈
N,eΛM(Λ)

〉 = 〈N,eΛwΛ〉,

which implies that 〈N,S(Λ)〉 = 0 that is N ⊂ S(Λ)⊥. Since u is generic, we have
that 〈eΛwΛ, eΛwΛ〉 	= 0 and therefore S(Λ) ∩ S(Λ)⊥ = 0. This gives a contradiction
unless N = 0. We have therefore proved that S(Λ) is simple.

We next prove that different choices of parameters give different modules S(Λ).
Take Λ as before and suppose Υ = ((νt ), (nt ), (τ

t )) ∈ Ln such that S(Λ) ∼= S(Υ ).
The element A ∈ Pn associated with S(Λ) is maximal with respect to having blocks
of consecutive numbers such that EAS(Λ) 	= 0. Hence, if B ∈ Pn is the element
associated with S(Υ ), we have that A = B . But then (λs) and (νt ) must be partitions
of the same numbers, corresponding to the block sizes of A, or B . Both cλ1(u)⊗· · ·⊗
cλl (u) and cν1(u) ⊗ · · · ⊗ cνl (u) act nontrivially in EAS(Λ) and hence by Lemma 7
we have λi ≤ νi and λi ≥ νi that is λi = νi . Similarly, we get (μs) = (τ t ). This
proves the claim.

It remains to be shown that any simple module L is of the form S(Λ) for some
Λ ∈ Ln. We saw in the remarks preceding the theorem, that it can be assumed that
L ⊂ V ⊗n. Choose A = {I1, . . . , Il} ∈ Pn maximal with respect to having blocks of
consecutive numbers and EAL 	= 0. For σ ∈ Sn, the map ϕσ : V ⊗ → V ⊗ given by

ϕσ : vj1
i1

⊗ · · · ⊗ v
jn

in
→ v

σ(j1)
i1

⊗ · · · ⊗ v
σ(jn)
in

is an En(u)-linear isomorphism and replacing L by ϕσ L for an appropriately chosen
σ we may assume that |Ii | ≤ |Ii+1| for all i. We have now that EAL is a module for
the tensor product HI1(u) ⊗ · · · ⊗ HIl

(u). Choose for each Ii a partition λi of |Ii |
such that the product cλ1(u)⊗ cλ2(u)⊗· · ·⊗ cλl (u) acts nontrivially in EAL. Choose
next partitions μi such that sμ1 ⊗ sμ2 ⊗ · · · ⊗ sμk acts nontrivially in (cλ1(u) ⊗ · · · ⊗
cλl (u))EAL. The data so collected give rise to a Λ with S(Λ) = En(u)eΛwΛ ⊂ L.
But since L is simple, the inclusion must be an equality. With this we have finally
proved all statements of the theorem. �

Let us work out some low-dimensional cases. For n = 2 we have the following
possibilities for Λ:

(
λ1,m1,μ

1
) = (

,1,
)
,

(
λ1,m1,μ

1
) =

(
,1,

)
,

(
λ1,m1,μ

1
) = (

,2,
)
,

(
λ1,m1,μ

1
) =

(
,2,

)
.

They all give rise to irreducible representations of dimension one. The first two are
the one-dimensional representations of H2(u). By our construction the third is given
by v1

1 ⊗v2
1 +v2

1 ⊗v1
1 and the last by v1

1 ⊗v2
1 −v2

1 ⊗v1
1 . They correspond to the trivial

and the sign representation of KS2. The square sum of the dimensions is 4, which is
also the dimension of E2(u).
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For n = 3 we first write down the multiplicity free possibilities of Λ, i.e. those
having ms = 1 and so μs = for all s. They are

(
λ1

) = ( )
,

(
λ1

) =
( )

,
(
λ1

) =
( )

,

(
λ1, λ2

) = (
,

)
,

(
λ1, λ2

) =
(

,

)
.

The first three of these are the Specht modules for H3(u), their dimensions are re-
spectively 1, 2 and 1. The fourth is given by the vector v1

1 ⊗ v2
1 ⊗ v2

1 and the last by
the vector v1

1 ⊗ (v2
1 ⊗ v2

2 −u−1v2
2 ⊗ v2

1), according to our construction. In both cases,
one gets dimension three.

Allowing multiplicities, we have the following possibilities:

(
λ1,m1,μ

1) =
(

,3,

)

,
(
λ1,m1,μ

1) =
(

,3,

)
,

and

(
λ1,m1,μ

1) =
(

,3,

)

.

We get the Specht modules of KS3 of dimensions 1, 2 and 1.
The square sum of all the dimensions is 30, in accordance with the dimension

of E3(u). We have thus proved that En(u) is semisimple for n = 2 and n = 3.
The classification of the simple modules for n = 2 and n = 3 has also been done

in [1] with a different method.

7 Questions

The results of the paper raise a number of questions.
There is a canonical inclusion En(u) ⊂ En+1(u) which at diagram level is given by

adding a through line to the right of a diagram element from En(u). It gives rise to
restriction and induction functors res and ind, that should obey a branching rule for
the decomposition of resS(Λ). Our first question is to give a description of it. Apart
from the independent interest in such a branching rule, one possible application would
be to obtain a dimension formula for S(Λ).

We do not know what the general branching rule looks like, but using the above
calculations, we can at least explain the cases n = 2,3, corresponding to resS(Λ)

for Λ ∈ P2 and Λ ∈ P3, These cases are rather easy, since one only needs consider
n = 3, Λ = (λs,ms,μ

s), ms = 1 and μs trivial and

(
λ1, λ2) = (

,
)
,

(
λ1, λ2) =

(
,

)
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because, as we saw above, all other choices of Λ give Specht modules that are pull-
backs of Specht modules of the symmetric group or of the Hecke algebra and there-
fore obey the usual branching rule. For both of them, the restriction contains the trivial
and the sign module for KS2 corresponding to the third and fourth Specht modules
for E2(u) in the above description. But the first of them moreover contains the triv-
ial module for H2(u) corresponding to the first Specht module of the classification,
whereas the second contains the nontrivial one-dimensional module for H2(u) cor-
responding to the fourth module of the classification. The question is now how to
generalize this to higher n.

The paper treated the representation theory of En(u) for u generic, where one
expects En(u) to be semisimple, as observed above for n = 2,3. It is therefore natural
to ask for a formal proof of semisimplicity beyond the cases n = 2,3. If one had an
explicit formula for the dimension of S(Λ) it would be natural to try to generalize
the above proof for n = 2,3. On the other hand, in view of the nondegeneracy of
the form defined in Sect. 5 and Wenzl’s treatment of the Brauer algebra in [22], an
attractive alternative approach to proving semisimplicity of En(u) would be to look
for an analog of the Jones basic construction [8] in the setting, using the embedding
En(u) ⊂ En+1(u).

As already mentioned in Sect. 2, it is possible to define a specialized algebra
En(u0), for example by choosing u0 to be an lth root of unity. This should be a
nonsemisimple algebra. A natural first step into the representation theory of this spe-
cialized algebra is to show that En(u) is a cellular algebra in the sense of [5]. We
firmly believe that this indeed is the case, but also think that a new set of tools would
be needed to establish it. In this paper, the tensor module was a crucial ingredient in
our determination of the rank of En(u) and so for the completeness of the paper we
found it most natural to construct the Specht modules inside it.

Finally, the tensor module itself raises the question of determining its endomor-
phism algebra EndEn(u)(V

⊗n) and setting up an analog of Schur–Weyl duality. Given
the result of the paper, EndEn(u)(V

⊗n) should be an interesting combination of quan-
tum groups and symmetric groups/Hecke algebras.
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