ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

On maximal weakly separated set-systems

Vladimir I. Danilov , Alexander V. Karzanov and Gleb A. Koshevoy

DOI: 10.1007/s10801-010-0224-x

Abstract

For a permutation ω \in  S n , Leclerc and Zelevinsky in Am. Math. Soc. Transl., Ser. 2 181, 85-108 ( 1998) introduced the concept of an ω - chamber weakly separated collection of subsets of {1,2,\cdots , n} and conjectured that all inclusionwise maximal collections of this sort have the same cardinality \ell ( ω )+ n+1, where \ell ( ω ) is the length of ω . We answer this conjecture affirmatively and present a generalization and additional results.

Pages: 497–531

Keywords: keywords weakly separated sets; rhombus tiling; generalized tiling; weak Bruhat order; cluster algebras

Full Text: PDF

References

1. Berenstein, A., Fomin, S., Zelevinsky, A.: Parametrizations of canonical bases and totally positive matrices. Adv. Math. 122, 49-149 (1996)
2. Birkhoff, G.: Lattice Theory, 3rd edn. Am. Math. Soc., Providence (1967)
3. Danilov, V., Karzanov, A., Koshevoy, G.: Tropical Plücker functions and their bases. In: Litvinov, G.L., Sergeev, S.N. (eds.) Tropical and Idempotent Mathematics. Contemp. Math. 495, 127-158 (2009)
4. Danilov, V., Karzanov, A., Koshevoy, G.: Plücker environments, wiring and tiling diagrams, and weakly separated set-systems. Adv. Math. 224, 1-44 (2010)
5. Elnitsky, S.: Rhombic tilings of polygons and classes of reduced words in Coxeter groups. J. Combin. Theory, Ser. A 77, 193-221 (1997)
6. Fan, C.K.: A Hecke algebra quotient and some combinatorial applications. J. Algebraic Combin. 5, 175-189 (1996)
7. Knuth, D.E.: Axioms and Hulls. Lecture Notes in Computer Science, vol.
606. Springer, Berlin (1992)
8. Leclerc, B., Zelevinsky, A.: Quasicommuting families of quantum Plücker coordinates. Am. Math.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition