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Abstract In this paper we describe the right-sided combinatorial Hopf structure of
three Hopf algebras appearing in the context of renormalization in quantum field
theory: the non-commutative version of the Faa di Bruno Hopf algebra, the non-
commutative version of the charge renormalization Hopf algebra on planar binary
trees for quantum electrodynamics, and the non-commutative version of the Pinter
renormalization Hopf algebra on any bosonic field.

We also describe two general ways to define the associative product in such Hopf
algebras, the first one by recursion, and the second one by grafting and shuffling some
decorated rooted trees.
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1 Introduction

In the paper [13], Loday and Ronco gave the definition of a right-sided combinatorial
Hopf algebra (CHA) which includes the examples of Hopf algebras describing the
renormalization in quantum field theory. The toy example, which inspired the work
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in [13], is Kreimer’s Hopf algebra on rooted trees introduced in [9]. In this paper, we
describe the CHA structure of three other such examples: the non-commutative ver-
sion of the Faa di Bruno Hopf algebra given in [3], the non-commutative version of
the charge renormalization Hopf algebra on planar binary trees given in [1] for quan-
tum electrodynamics, and the non-commutative version of the Pinter renormalization
Hopf algebra on bosonic quantum fields, as given in [4].

Since Loday and Ronco work in the context of cofree-coassociative CHAs, we
describe our examples, which are all free-associative CHAs, by considering their
linear duals. A right-sided cofree-coassociative CHA is completely determined by
the brace structure on the set of its primitive elements. Therefore, to describe our
examples, it will be sufficient to give their brace structure.

In the first section we fix the notation on right-sided cofree-coassociative CHAs
and brace algebras from [13]. We also give a recursive definition of the product and
show how to construct it starting from the one defined on decorated rooted trees, that
is, the product defined on the right-sided CHA induced by the free brace algebra over
the space of decorations. Then we fix the notation for the dual Hopf algebras, which
are used in the sequel. Each example is then treated in a separate section.

2 Combinatorial Hopf algebras from dual Hopf algebras
2.1 Right-sided combinatorial Hopf algebras

In this section we recall the definition and main properties of a right-sided combina-
torial Hopf algebra (r-s CHA), as given by Loday and Ronco in [13], in the cofree-
coassociative case.

A right-sided cofree-coassociative CHA is, up to an isomorphism, a tensor coal-
gebra T(R) = @, R®" with the deconcatenation coproduct, endowed with an as-
sociative product » which makes it into a bialgebra and which satisfies the right-sided
condition: for any p > 0, the subspace T=?(R) = P R®" is arightideal of T (R),
that is

nzp

TZP(R)«T(R) C TZP(R).

This condition is equivalent to demanding that the product = induces a right action of
T (R) on the quotient space T, (R) = T(R)/T=P(R), that is

T_p(R)* T(R) C T-p(R). @2.1)

Loday and Ronco proved that a cofree-coassociative CHA is right-sided if and
only if the set of its primitive elements R is a brace algebra, that is, it is endowed
with a brace product {; ..., } acting on R ® T (R) with value in R, satisfying the
brace relation

sy ombizn o 2

=Z{x;z1,---,{y1;2k1,---,},---,{yn;an,---},...,Zm}, (2.2)
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for any x, y;, z; € R. The brace product restricted to R® R®4 is also denoted by M 19>
if one wishes to specify the number of variables on the right, or to underline that it is
a special case of a multibrace product M, defined on any power R®P ® R®4,

The brace product can be found from the associative product « by projecting the
result onto the space R of co-generators. If we denote by  : T (R) — R the canonical
projection, this means that

Mgy yg) =m(x* (i yg)),

for any x € R and y; - -y, € R®?, where we denote the tensor product in 7'(R) by
the concatenation. In particular, for any x € R we have

Mio(x; 1) = Myp(x) =m(x x1) =x,

therefore Mo =1d on R.

Conversely, the product * in 7' (R) can be reconstructed from the brace product
on R, using the deconcatenation coproduct to recover 7 (R) from R. The resulting
formula of Loday and Ronco for the product is (cf. [13])

(e xn) *x (Y1 Yim)
ZZ Z Z (Mpg, - Mpg 11+ X5 Y12+ Y (2.3)

k>1 pit+-+pr=n q1++qr=m
Pl k=01 q1,....qx=0

where each map M, is applied to a block of p generators x and g generators y, with
the following assumptions:

My =0 and My = Mo=1d,
Mop=Mpo=0 forp>1, 2.4)
Mpy; =0 forp>1landg+#0,

and where the operators M1, for g # 0 of course satisfy the brace relation (2.2).

Applying formula (2.3) requires some computations. Let us take the example of
x = y. For k =1 we have p; = ¢ = 1 and the only term is M. For k = 2 we have
(p1. p2) = (1,0) or (p1, p2) = (0, 1) and (g1, g2) = (1, 0) or (1. ¢2) = (0, 1). This
gives us the four terms M1 Moo + M1oMo1 + Mo1 Mo + MooMi1. Since Mgy =0,
we have only two terms left M1oMoy; + MoiMg. For k > 2, all the terms are zero
because each term contains a factor M. In general, the terms with k > n 4+ m are
zero in the product (x1 - - - x,) * (y1 - - - ym). Therefore, using (2.4), we get

x*xy="M1(x;y)+ [MioMo11(x; y) + [Mo1 Miol(x; y)
=M1 (x;y) + Mio(x) Mo (y) + Mo1 () Mio(x) = My1(x; y) +xy + yx.

Similarly, for (xy) x z, we have two terms for k = 2: M1 M9+ M19M1; and three
terms for k = 3: Moy MgM 9 + MioMoy Mo + MigM19Mpi, so that

(xy)xz=xM11(y;2) + M1 (x; 2)y +zxy + x2y +xyz.
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For x x (yz), we have one term for k = 1: M1,, two terms for k = 2: M1 Mo +
Mo1 M1 and three terms for k = 3: Mo Mo1 M10 + Moi1 M1oMo1 + M1oMoi Mo, SO
that

x*(yz) = Mi2(x; y2) + yMyi(x; 2) + M1 (x; )z + yzx + yxz + xyz.

In particular then, formula (2.3) for n = 1 gives

m m—i

Xx i ym) =D ¥y Mig(X:Yig1 e Yivg) Yitgi1 Ym-  (2.5)
i=0 g=0

2.2 Recursive definition of the product

Formula (2.3) can be given in a recursive way. To do it, let us denote by M : R ®
T (R) — R the brace product {; ..., } induced on R by the associative product x on
T(R), and let us denote by X, Y, Z, ... the generic words in T (R).

Proposition 2.1 Given the brace product M on R, the x product on T (R) can be re-
constructed in the following recursive way. For any X,Y € T(R), with X, Y ¢ TO(R):

XY= > (X's¥Y")M(Xx*Y?)

x=x1x2
y=yly2

SR TUIENE
x=x1x2
y=rly2
= > (X'*Y")M(x% Y} (XP YY), (2.6)
x=x1x2x3
y=yly2y3
where the sums run over all possible factorizations of X and Y with respect to the
concatenation.

Proof With the assumptions (2.4) on M, formula (2.3) can be expressed as

X«y=>3" > M(xv')...M(x*rh), 2.7)
xk

k>1 x=x1...
y=yl..yk

where the sum runs other all the factorizations (for the concatenation) of X =
X'...XFand Y = Y!...Y*. Note that the factors can be in 7°(R) but the condi-
tion M(1; 1) = 0 ensures that the sum is finite. It also ensures that formula (2.6) is
recursive.

If we then use this formula to express the factor X! » Y1 in line (2.6), we obtain
the desired expression for X x Y. O
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In particular, if we expand the words X and Y of T(R) in terms of elements x;
and y; of R, with the notation of Sect. 2.1, formula (2.6) becomes

(X1 Xn) % (Y1 Ym)
= [(xl s Xp—1) * (01 "‘)’m)]xn + [(xl o Xp) * (Y1 "'ymfl)])’m

m—1
+ ) [ X ) % 01 YD) M o Yie1 -+ m)- (2.8)
i=1

Corollary 2.2 The brace relation (2.2) is equivalent to the identity
M(M(X;Y); Z)=M(X;Y * Z), (2.9)
forany X e Rand Y, Z € T(R).

Proof If wecall X =x,Y =y;---y, and Z =z - - - 2y, the left-hand side of the
brace relation (2.2) is simply M (M (X; Y); Z). The right-hand side, instead, becomes

Y M(xim(yhzh) - m(yk; ZY),
k>1 y=yl..yk
z=z1..7k
where we use the assumptions (2.4) on M. From (2.7) it then follows that the right-
hand side is equal to M (X; Y x Z). Il

Remark 2.3 The right-sided combinatorial Hopf algebras, as well as the shuffle and
the quasishuffle Hopf algebras, are examples of more general cofree-coassociative
combinatorial Hopf algebras 7 (R) introduced by Loday and Ronco, where R is a
so-called multibrace algebra. See [13] and the references therein for details. In all
these examples, as well as in the general case, the product x on T (R) can be de-
fined recursively from the multibrace product on R. The expressions (2.7), (2.6)
and (2.9), with X € T(R), are valid in the most general case as well as in all the
examples.

2.3 Right-sided Hopf algebras and trees

Let T(R) be a right-sided CHA such that the brace algebra R is a finite dimen-
sional or a graded vector space. In the first part of this section we forget the brace
structure on R and consider the free brace algebra on R modeled by planar rooted
trees. The free brace algebra has already been described in terms of trees by Chapo-
ton in [5], as a consequence of his construction of the Brace operad. Here we give
a direct description of the free brace algebra within the notations we established in
Sect. 2.2.

In the second part of this section we relate the free brace structure on R with the
original one, and deduce a way to describe the associative product x on 7 (R) starting
from the one defined on trees. Again, this is a particular case of the equivalence
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between the categories of brace and dendriform algebras given by Chapoton in [5].
However, it seems to us useful for computations to write an explicit statement.

Let 7 denote the set of plane rooted trees and for any non-empty tree ¢ denote by
V (¢) the set of its vertices and by |¢| the cardinality of V (7). If d is a map from V (¢)
to R®! then the pair (¢, d) is a plane tree with decorations in R. For example, the
following tree with 4 vertices is decorated by the given map d:

v
\)dy\)”
— .
X

For any t € 7, we denote by R’ the linear span of all the decorated trees of shape 7,
modulo the obvious linear relations coming from R, such as:

v

v v
y \) Aty + Aup y \) uj y \) u
=\ + Ao .
X X

X

Then the vector space

RT=Pr

teT

contains the decorated trees of any shape, and the elements of the tensor space T(RT)
are called decorated forests. From now on, we denote by the concatenation the tensor
product between trees, and we simply denote by ¢ a decorated tree, omitting the
decoration.

We now define the structure of a brace algebra on R7, and consequently that of
a right-sided CHA on T(RT), using the results of Sect. 2.2. Therefore, we endow
T (R7) with the free (deconcatenation) coproduct and we suppose that the product *
is defined through the brace product M on RT.

To define the brace product, consider, for any x € R, the linear map

B*:T(RT)— RT

which maps a forest f =1t ---t, into the tree ¢+ = B7 (f) obtained by joining the

ordered trees t1, ..., t, to a new root decorated by x. For instance
v
v
v
B l. 1= .
Yy u X
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Any tree ¢ can be written as By (f). If ¢ is made only of the root, decorated by x, the
forest f is the formal unit of T(RT), thatis 1 € (RT)O.

Theorem 2.4 Let M : RT ® T(RT) — R7 be the linear map defined on any deco-
rated tree t = BY (f1) and any decorated forest f, by

M(BL(f); f2) = BL(fi * f2), (2.10)

where * is the product induced by M on T(RT) according to (2.7) and with the
assumptions (2.4).

Then M is a brace product on R, and consequently % is an associative product
on T(RT) which makes it into a right-sided CHA.

Proof Assuming conditions (2.4) on the maps M, it suffices to show that M satis-
fies the brace identity (2.9), that is

M(M(t1: f2); f3) = M(t1; fo* f3)

for any tree #; and any forests f>, f3. If #1, f2, f3 have respectively ni, no and n3
vertices, we prove the brace identity by induction on the total number of vertices
niy+ny+ns.

Since 1, is a tree, it has at least one vertex (the root) and therefore ny +n, +n3 > 1.
If ny +ny +n3 =1, only #; is a tree, namely the single root, and f>, f3 are scalars.
Because 1 x 1 =1 and M9 = My; = Id, both terms in the equality produce #; and
therefore coincide.

Now suppose that the brace identity holds for n; +ny +n3 <n,foragivenn > 1.
According to the previous sections, this implies that the product x is associative up
to the same number n of vertices. (In fact, the associativity of » does not depend on
the definition (2.10) of M and was proved in general by Loday and Ronco.) Then
consider a tree and two forests with a total number of vertices ny +ny +n3 =n + 1.
Using the definition of M and the associativity of x up to n, for 1{ = B (f1) we
obtain

M(M(BL(f1); f2); f3) = M(BL(f1 % f2); f3)
= B ((fi* f)* f3) (Recursion)
=Bi(fix(fax f3)
=M (BL(f1); fa* f3). [

Lemma 2.5 The brace product M on R7T can be expressed in terms of graftings of
trees: if t € RT and S1---8p € T(RT), then M(t;sy---Sy,) is the sum of the terms
obtained by grafting the trees s1, . .., s, onto the vertices of t, in all the possible ways
which preserve the order of the s;’s from left to right.

Similarly, the product x on T(R7) is the sum of terms mixing all possible shuffles
and all possible graftings of the trees on the right-hand side onto the vertices of the
trees on the left-hand side.
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This result shows that the recursive definition of the brace product (2.10) is equiv-
alent to the definition given in [5] in terms of grafting of trees.

Proof We prove it by induction on the size of the forests, given by the total number of
vertices. For this, we need to treat at the same time M and *, which is given by (2.6).
The induction starts with the first non-trivial operations:

M| oo =B-)|C- ° =I
Xy y X

is the grafting of the second e on the first one. The claim is obtained because this is
the only possible grafting. Similarly, according to (2.6), the product

e *e=M| o 0| T le*x1|M|1l;iq]+]|1xe|M]|e:1 :I+o eteo o
Xy Xy X y y X X xy y x

is exactly made of the only possible grafting and the two allowed shuffles.

Now suppose that M(¢1; f>) is made of all possible ordered graftings of the trees
composing the forest f, on the vertices of the tree #1, for #{ and f> having a total
number of vertices n| + ny < n, for some n > 1. Similarly, suppose that f1 x f> is
made of the terms mixing all possible shuffles of the trees of f| with those of f>, and
of graftings of the trees of f> over the vertices of those contained in f1, for f] and f>
having a total number of vertices nj + ny < n.

Then, consider #; and f> with n; +ny =n + 1. Applying the definition (2.10) for
t1 = BY (f1), we see that

M(BL(f1); f2) = BL(fi1* f2)

is the grafting of f x f> onto the original root. The claim is then guaranteed by the
inductive hypothesis on fi x f>.

Similarly, consider #; and f> with ny +n, =n+ 1. Applying formula (2.6) we see
that

fixfa= Y (FA* MUL: )
=115
=115

contains exactly all possible shuffles mixed with all possible graftings. This is guar-
anteed by the inductive hypothesis on the factors f{ x f; and M (f{’; f,'), and the fact
that the sum runs over all decompositions of f; and f; into two factors, including the
trivial ones. 0

Here are some examples of graftings and shuffles:
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v u v u
y u v oy u u y v v
AR ZEVIRN R SRy
M| = + + THE R
X X X X X X

o o
u v
y u v
+ N
by
w w
w w u w o u
Vb
O*.I=OOI+..I+.I.+I I+ Te
x \u v U v o u v u v x X v X u X

According to the results of Loday and Ronco, in particular paragraph 3.14 in [13],
we can conclude that

Corollary 2.6 The brace algebra R7, endowed with M, is the free brace algebra
over R.

Remark 2.7 The algebras R7 and T(RT), or their duals, or their non-planar and
commutative versions, appeared in many recent works. We quote, but the list is surely
not exhaustive, the works by Grossman and Larson [7], Chapoton [5], Foissy [6],
Guin and Oudom [8], Ronco [15] and Loday and Ronco [13].

Now suppose that R itself is a brace algebra, and therefore 7 (R) is a right-sided
CHA. We are going to show that the » product defined in 7 (R) can be found by
computing its lifting to T(RT).

Let ¢ be the linear morphism from 7 (R) to T(RT) defined by ¢(1) =1 and

taxrexg) =B (1) BY (D= o-
X1 Xn
It is clear that ¢ preserves the concatenation in 7' (R) and T(RT), and that it identifies
R with R* c R”.
Note that the map ¢ does not preserve the brace product, in fact

Ya
M|oio---o ?éL(M(X;)’l"'yq))z ° )

X Y1 Yg X M(x; 91 yq)

and therefore it does not preserve the product x in 7 (R) and T(RT). We show that ¢
has an inverse map which allows to compute the product x in 7'(R) starting from that
in T(RT).
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Theorem 2.8 Let w the linear morphism from T(RT) to T(R) defined recursively
by

L p)=1,
2. pu(ty .. ty) = () .. u(f),
3. w(BY(51...59)) = Mg (x; ju(sy ...59)).

Then, for any X, Y € T(R), we have
X*Y =p((X)*u(Y)). (2.11)

Proof The proof is straightforward and relies on the recursive formulas in brace al-
gebras and on the fact that o =Idyg). f X =x1---xp and ¥ = y; --- y, then

X«¥= Y (X'«¥")M(x*Y?).

x=x1x2
y=rly2

Since R is a brace algebra, either XZ=1lorX?= Xp.

e If X2 =1, then
M(1LY?) =72 = pu(1(V?) = (M (1 1(7?)).

o If X2 = Xp, then

M(xp, ¥?) = n(BY («(r?)) = m(M(c(xp); (¥?)))-

Recursively, we get

XxY= Y (X'«¥")M(x*Y?)

x=x1x2
y=rly2

= D n(lX) (Y ))r(M((x):(r?))

x=x1x2
y=rly2

=M< Z (L(Xl)*L(Yl))M(L(Xz);l(YZ))>

(X)=0(xux2)
(V=¥ Hur?2)

Z/L(L(X)*L(Y)). O

This result means that one can compute the = product in 7 (R) with the help
of the » product in 7(R7). This last product, given by shuffle and grafting of
trees, is quite easy to handle. Let us illustrate the application with an exam-
ple:
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xx(y2)=i|le*|e o
Z
y Z
y Z
=Mooo+ooo+ooo+I et e I+ v
Xy z Y X z Yy z X X Z Yy X X

=xyz+ yxz+yzx + My1(x; y)z + yMi1(x; 2) + Mia(x; y2).

This computation can be compared with that made in Sect. 2.1.

Remark 2.9 The result of theorem (2.8) can be obtained also as a consequence of
the equivalence between the categories of brace and dendriform algebras proved by
Chapoton in [5]. Since w is by assumption a brace homomorphism between RT
and R, this equivalence allows to state that for any f; and f> in T(R7) we have

w(f1) * w(f2) = u(f1 = f2). If we then choose f; =(X) and f> = ((Y), we obtain
formula (2.11).

Remark 2.10 The algebra T(R7) is the dual of Foissy’s Hopf algebra of decorated
plane trees, cf. [6]. Foissy’s Hopf algebra on rooted trees has a “universal property”,
in the sense that it is endowed with the Hochschild cocycle operator B . Note that
the property that we show for T(R7) is not the dual property of that one.

2.4 Right-sided CHAs from dual Hopf algebras

In the next sections we determine some right-sided CHAs 7' (R) from the dualization
of given Hopf algebras 7 (V) where the vector space V is itself graded. In this case,
the vector space R coincides with the dual space V*, and we give a general tool to
compute the brace structure on R starting from the coproduct on 7' (V). This tool is
then used in the examples presented in the rest of the paper.

Let H be a graded Hopf algebra that is free as an algebra, finite dimensional in
all degrees, and with generators which are themselves graded. If we denote by V be
the vector space spanned by all the generators of H (infinite but countable many), the
Hopf algebra can be givenas H=T(V) =P, , V.

The dual Hopf algebra H* is defined as follows. As a vector space, it is the graded
linear dual vector space of H, that is H* = T(V*), where V* is the graded linear
dual vector space of V. If we denote by {v,,n > 1} a generic basis of V, that is
a set of generators of 7, the element v’ dual to each v, is defined by the pairing
(v¥|vm) = 8, m- Therefore, the dual of a generic basis element vy, - - - v,, in H is the
element vy, --- vy in H* defined by the pairing

<U;lkl o v:i‘vml '”Umj> = aisJ'(v:l ’Um1>"‘<v:i}vmi)'

As a coalgebra, H* inherits the coproduct A* dual to the product of H, that is,
such that

* * * * *
(A (Um ...vni)|(vml ...Umj)®(vpl ...Upk))=<vnl ...vni Uml ...Umjvpl ...vpk>.
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Since H is free and unital as an algebra, H* is cofree and counital as a coalgebra, that
is, A* is the deconcatenation coproduct

A*(v)=vi®1l+1Qv;,
k
* * * _ * * * *
A (vm "'vnk) - Zvﬂl T Uy ®vﬂi+1 " U
i=0

and with the counit ¢ = 1*. In this expression, 1 is not (yet) a unit, it denotes the
generator of (V*)®%, The set of primitive elements of 7{* is then obviously the dual
V* of the set of generators of H.

Finally, as an algebra, H* inherits the product » dual to the coproduct A of H, that
is, the product such that

<(v;lk| ”'v:i) *(v;:ll .”v;k"j)’ Upy "'vﬁk>:<v:il "'v;lki ® v:;ll '“v;k"_/" Avp, .”vl’k))'

The right-sided condition (2.1) for the Hopf algebra 7'(V*) is equivalent to the re-
quirement that the coproduct A on 7' (V') induces a right coaction of the Hopf algebra
T (V) on the subspace T="(V) =D, -, V@ thatis

A(T=P(V)) CT=P(V)®T(V). (2.12)

Explicitly, this means that for any element a = vy, ---v,, € V®P the coproduct
A(a) =Y aq) ® ag) (in Sweedler’s notation) produces terms with a(y € T=P(V).
Since the coproduct is an algebra morphism, and the product is free, it is suf-
ficient that this property holds for p = 1: for any generator v € V, the coprod-
uct A(v) =Y vy @ vy produces terms with vy € T=' (V)= K @ V (cf. [13],
Sect. 3.6).

Finally, the brace product on V* is the projection of * onto V*. The projection
w: T(V*) — V*, in this case, is the map

n(a*) = Z(a*|vm)v;;,

m

for any a* € T (V*). Therefore, the maps My, : V*® (V*)®7 — V* are simply given
by

Myg(v);a*) = Z(v; *a*|vp vy = Z(v;f ® a*| Avp v, (2.13)

m m

This sum is infinite. In fact, let us denote by |a| [resp. |a*|] the degree of the elements
in the graded Hopf algebra T'(V) [resp. T (V*)]. We recall that if |v,| denotes the de-
gree of a generic basis element of V, then the degree of an element vy, - - - vy, € T(V)
is given by |vy, -+ Un, | = Vg, |+ - - +|Un, |. Then the sum over m in (2.13) is limited
by the fact that |v}; | = v, | = [v)] + |a*].
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3 The right-sided combinatorial structure of the Hopf algebra (7¢4if>n¢)*

Let HYE1¢ be the non-commutative Hopf algebra of formal diffeomorphisms, as de-
fined in [16] or [3] (where it was denoted by HYE). It is the graded and connected
Hopf algebra Q(vy, v2,...) = T(V) on the generators V = Span{vy, vy, ...} graded
by |v,| = n, considered with the free (tensor) product, and endowed with the coprod-
uct

n
AN = v ® > Vkg Uk *** Vky» 3.1)
m=0

ko+ki+-+km=n—m

where we set vp = 1, and with the counit &(v,) = §,,0. This Hopf algebra is a free-
associative CHA, and the formula (3.1) clearly says that the coproduct AYf satisfies
the right-sided condition (2.12).

Let (HYfn¢)* — 7(V*) be its dual Hopf algebra, as described in Sect. 2, with
primitive elements in V* = Span{v], v3,...}. Then (RYifneys — T(V*) is a right-
sided cofree-coassociative CHA, and moreover a dendriform algebra, and V* is a
brace algebra.

Proposition 3.1 The brace product on V* which induces the CHA structure on
(HYERCY* s given by

n+1
{v,’f;v;’;”-- } Mg (v 7;,1'“”:;:(,):< g )v:+m1+-"+mq'

Proof According to (2.13), for any v, € V and any a € H4""¢, we have
0 .
Mlq Z vr®a* Adlfvm>v:1.
m=1
If we put vy = 1, the coproduct of v, becomes [3]

m
i k
Ay, =3 " ue® o)), (),

k=0
with
k+1
k+1
(k)
ka(v)=2< l ) Yo v
=1 J1sees j1>0
i ji=m—k
Therefore,
o0
Mig(viia®) =Y (a* | O3, )},

m=1
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(n)

We take @ = vy, - - - U, and we evaluate vy, - - vj,;q | O, (v)). From the definition

of Qf,f)_n(v), we must have [ = ¢, j1 =my, ..., j; =my. Therefore, m —n = j; +

...+jq:m1+...+mqand

n+1
Mg (v v, -+ vp,) = ( q )v:+ml+“'+mq' O

4 The right-sided combinatorial structure of the Hopf algebra (7{*"¢)*

Let Y be the set of planar binary rooted trees, that is, planar graphs without loops
with internal vertices of valence three and a preferred external edge called the root.
For instance,

DR A T SR

For a tree ¢, we denote by |¢| the number of its internal vertices. We denote by Y,, the
set of planar binary trees with n internal vertices, so that Y = ;2 Y;.

Let H*™ be the non-commutative lift of the Hopf algebra H® introduced in [1, 2]
to describe the renormalization of the electric charge in the perturbative expansion of
quantum electrodynamics based on planar binary trees. It is the graded and connected
Hopf algebra QY spanned by all planar binary trees, endowed with the product over,
cf. [11]: given two planar binary trees s, # |, the tree s over ¢, denoted by s/¢, is
the tree obtained by grafting the root of s over the left-most leaf of ¢, that is,

N

s/t= "t.

This product is not commutative, and the root tree | is the unit. Moreover, any tree

can be decomposed as the over product of subtrees which have nothing branched on
t

their left-most leaf. If we set v(¢) = \/ to denote these trees, the algebra H*" is

in fact isomorphic to the free algebra 7 (V), where V = Span{v(¢),t € Y}.

The coproduct A : H*"¢ — H®M @ H* can be described in an elegant way
in the form proposed by Palacios in her Master Thesis [14]. For this, we need some
notation. Let us denote by Vv : Y, x Y, = Y441 the operation which grafts two
trees on a new root, that is

s t
sVt= vy ,
and call dressed comb the tree y (1, ..., tx) recursively given by
t
yO=tv|= "y,
Ik
)
I

y(,n,.... )= Vy(,...,.ir) =
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Then, any tree ¢ # | can be written as t = y (t1, 12, .. ., #) for some suitable trees ;.
The coproduct A“ is the unital algebra homomorphism defined on the generators
as

A =1®Y+Y® |,
A%() = | @v(t) + ZU()’(HU)»QU),---,fk(l))) Qto/tbe/ ke, @1

where r =y (1,12, ..., fx) and Y _ t; 1y ® I; o) = A% (t;) is the Sweedler notation for the
coproduct applied to each subtree #;.

Finally, the counit ¢ : H*"™ — Q is the unital algebra morphism with value
&(v(t)) = 0 on the generators.

Let (H*™)* = T (V*) be its dual Hopf algebra, with primitive elements given by
V* = Span{v(t*), t € Y}, where t* is the dual form of the tree ¢. Then (H*")* is a
right-sided cofree-coassociative CHA, and V* is a brace algebra. We describe here
its brace structure.

Theorem 4.1 For any q > 0, the brace product Mi4 on V* which induces the CHA
structure on (HY5)* is given by

Mg (Y55 v(sD)* - v(sg)*) =0
and for any t # | by
M[q (U(t)*, U(Sl)* e ‘U(Sq)*) = Zv(y(p*(l>, ey p*(k)))*s

where fort =y (t1, ..., 1) we set p* = (] --- 1) x (v(s1)* - - v(s4)*), and where we
use the Sweedler notation

k—1
Zp*m P n® - ®piy=(4%)" p*
for the deconcatenation coproduct A* applied k — 1 times to p*.

Proof According to (2.13), if we denote a* = v(s1)* - - - v(sy)™, the brace product on
V* can be computed as

My, (v(t)*; a*) = Z(v(r)* *a*|v(u))v(u)* = Z(v(t)* ®a* |A°’v(u))v(u)*

ueY ueY
=(v()* @ a*| A% (D(D* + Z(v(t)* ® a*| A% () (u)*.
u# |

4.2)

The first term gives
o ®a|y® |+ @Y =0,

because (a* | |) =0 forg > 0, and (v(¢)*| |) =0 for any ¢.
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Then we suppose that u # | and we evaluate the second term of (4.2) using the
expression (4.1) for A%v(u). The first part gives

(v ®a*| | ®vw)=0

for any choice of ¢.
The second part gives

(U(t)* ® a*|v(y(u1(1), UD(1)y o ves Ul(l))) ® Ml(z)/u2(2)/ ce /Ul(2)>
= (U(l)*|v(7/(1/ll(1>» U2(1yy - e Ml(l))))(a*|ul(2)/”2(2)/ s /MI(Z)), (4.3)

where we write u as y (41, ..., u;). The only primitive element v(¢) which can not be
of the form v(y (u1qy, U2y, - - Ukpy)) is v(|) =1 . In this case, the brace product is
obviously

Mig(y*:a") =0

for any g > 0. Finally, let us consider the case t # |. Thent =y (#1, ..., ), and the
first pairing of (4.3) is non-zero only if

Y Wiy, U2y, - wiy) =t =y, ..., f),
that is, if and only if / = k and
Uia =1, Uy =1, Cee, Uy = Ik.
Therefore we have
Mg (v()*; a*)

= Z (U(t)* | U(V(ulu),--~,Mk<1)))>(a* | M1(2)/"'/ul(2)>v(7/(141»~~~»Mk))*

Ul,.. Uk
= Z (fl*fif | ”Ml)"'“k(l))(a* | “1(2)/"'/1"[(2))0()/(“11 .--,uk))*
ULy U
= Y {igea | A%/ (v, un)”
Up,.., Uk
= Z ((ti"-ut,f)*a* ‘ u1/~~~/uk)v(y(u1, ...,uk))*.
Ul,...,Ug

Now, note that the deconcatenation coproduct A* in (H*"¢)* is dual to the product /
in H*"°, that is

(a* |b/c) = <A*(a*) |b ® c).

Let us call p* = (¢f ---#) » a*. If we apply k — 1 times the deconcatenation co-
product A* to p*, and we use the Sweedler notation ) p* ) @ p*p, ® --- Q p*y, =
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(A*)*=1 p*| we obtain the final result
Mlq(v(t)*; a*)

= Z Z(P*(l)@)l’*(z)@“'@l’*(k) w @ @uiJo(y . up)”

ULyl

:ZU(V(P*(I)’---vP*(k)))*' -

Examples 4.2 The simplest example is given by My;( Y’ * Y. We have V' =
v(y) =v(y(])),sothatk =1and t; = |. Therefore, p* = | * xy* =y * and

M (Y 5y =0l () =0 ) = ¥
Similarly

(Y )=l (v ) =Y )= ¥

3
Another simple example is given by M ( :? ;™). We have :§/ =v(y(y)), so
that k =1 and #; = . Since for any ¢ formula (2.13) gives

Y xR0 = o) Y ()" 4 Mig (Y5 v(0)%) =)y +y (@),

because My, (v *; v(1)*) =0, we get p* =y xy* =2 ¥ and finally

(¥ ) =2 ) =2 ) =2

%
Now let us compute Mn(\%y ;Y ™). We have f:v(y(\, |)) so that k =2 and
t1 =1 =|.Since |*|* = |*, we have p* = | " x* = * and therefore

%
Mu (Y ) =v(r iy, D) +o(r (1) = o () (V)
k *
Ly
Finally, let us compute an example of M, with ¢ > 1. We consider

Mlz(?’ YY), We have v = w(y())), so that k =1 and 1, = |. Therefore,
Pr=Fx (v =" and

M(Y "y ) =l (0) = (¥ ) = ¥

Similarly
M (Y ) =o(r YL D) +o(r ) (), )

(Y () ($) = T
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Remark 4.3 The brace structure can be described as follows:

Mg (v 00D v(5)*) =D vw)*,

u

where the sum runs over any tree u obtained by branching the trees v(s;) or any block
v(s;)/---/v(s;) on the \-leaves of ¢ or inside the \-branches of ¢, by preserving the
order from left to right of the trees v(s;) and of the \-branches of ¢.

5 The right-sided combinatorial structure of the Hopf algebra T (T (B))*

In the paper [4], Brouder and Schmitt introduced a non-commutative version H of a
renormalization Hopf algebra inspired by Pinter’s work on the Epstein—Glaser renor-
malization of quantum fields on the configuration space. In this section we describe
the brace structure on the set of primitive elements of its dual Hopf algebra H*.

As an algebra, H is the tensor algebra 7'(V) on a set of generators V = T (B) =
D,~,; B®" which is the augmentation ideal of the tensor algebra over a given bial-
gebra B.

In order to apply the dualization procedure described in Sect. 2, we have to assume
that the bialgebra B admits at most a countable basis, and that this has been fixed.
Let us denote by {x,} the chosen basis of B. We also denote the product (in B) by
a dot, namely x - y for any x, y € B, and the coproduct (in B) through the Sweedler
notation 8(x) =Y x) ® X ().

In V = T(B), we denote the tensor products by tuples. Therefore the elements
Vny,.om = (X, ..., Xp,) form a basis of V. On V we consider two coproducts. The
first one is the extension of the coproduct on B as an algebra morphism, namely

d(x,y,...,2)= Z(X(l)’ Yy -+ 2a) ® (X2, Y2y, - -1 22))-

For a generic element v of V, we use the same Sweedler notation §(v) =) _ v, @ v
as on B. The second coproduct is the (reduced) deconcatenation coproduct

AX,y,...,0)0=0)R0,..., 0+ X, .., + -+ (x,y,...) R (2).

For this coproduct we use a modified Sweedler notation A(v) = > vy ® vy

Finally, in ‘H = T(V), we denote the tensor product by the concatenation.
A generic element in H is then of the form a = uv---w, where u,v,...,w eV,
and for any elements a, b we denote their product (in 7' (V')) by ab. Both coproducts
8 and A can be extended to H. The renormalization coproduct is then the algebra
homomorphism defined on a generator v € V as

o
AH(U) = ZZ(M(UUM)), cees M(U[nlu))) Ve V@) (5.1
n=1

where ) v ® -+ ® vy = A"~ 1(v) is the result of the deconcatenation applied n —
1 times to v, and w : T(B) - B, u(x,y,...,7) =x - y---z is the product of B
extended to many factors.
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Note that for any v € V, the left tensor factor (i (vpy), .-, L(Vm@e)) of (5.1)
belongs to V (in fact it belongs to B®"), while the right factor vy, - - - Vjj(1) belongs
to V®", therefore A™ cannot be defined in V.

Note also that any monomial of elements of B in v € V has finite length. Since the
deconcatenation of v vanishes if repeated more then the length of v, the sum over n
in formula (5.1) is indeed finite. For example, let us compute the simplest coproducts,
for x, y and z in B:

AT @) =) (xa) ® (),
AT, y) =) (s Ya) ® (Ke)(Ve) + (k- Ya) ® (e, Yoo,
ATy, 2) = ) (ay vy 20) © () (e) (2a)
+ Y &y - 20) ® Ke) e 20)
+ Y - Y 20) ® (K, yo) (2e)
+ Z(X(l) Yoy Zay) @ (X, Yoy, Z@)-

It is important to remark that, if v = (x,,, ..., x,,), then AMy is a sum of elements
of B®* tensorized by elements of T (B)®*, for k =1 to [.

We now consider the dual Hopf algebra H* = T'(V*), where V* is the graded dual
space T (B*). Here B* is the dual bialgebra of B, with basis elements x* such that
(x5 | X4) = 8m,n. The product and coproduct in B* are defined in terms of those of B
by the standard duality

<x* Y Z) _ <x* ® ", 32),
((Sx*, y® z) = <x*, y- z).
In V* =T (B*) we have (x1,...,x,)* = (x}, ..., x}) and therefore

(3o ) [ On e ym)) = nm{xd [ 1) (5 [ ).

As we said, H* is a right-sided cofree-coassociative CHA, with deconcatenation co-
product A* and product «. In this section we describe the brace product induced by
on the set V* of primitive elements of H*.

Theorem 5.1 The brace product M1, on V* = T (B*) which induces the CHA struc-
ture on H* is given on the elements v* = (x', ..., x")* and uj,..., u;,forany q >0,
by
Mlq(v*;u’f-nuZ):O, ifn#gq,
and, for n = q, by
1 1 1 k 1 kg \*
Mlq(v*;MT"’”Z) =(x M Ve Xk 'yll’~"’xq<l>’yq""’xq<kq>'yqq) ’

whereu}k=(yil,...,yl{{")*,f0ri=1,...,q.
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Proof 1If n # q, we already remarked in the expression (5.1) of the coproduct that no
term can occur.

If n = g, consider v = (x',...,x9) € B®? and uy,...,u, in B, ... B®a,
respectively. Seta =u; - --uy € V®4. Then

Mlqva ZZv®a|AH>

k weB®k

= Z Z Z(v* ®a* | wy @we)w’,

k weB®k

where the sums run over the generators w of B®*_ that is, elements of the form
w = (z',..., %) where 7' are generators of B, and where > w, ® wg, = §(w)
denotes the coproduct of B.

As a consequence, the term corresponding to w appears in M1, (v*; a*) if wgy =v
and w,, = a. The equality w;, =v = (x!,..., x9) can be rewritten

ki+1 kitky _ 2
Zay Ry =X

ki+-tkg—1+1 k

ok a
Za) Zay =47

The equality w) =a =uy - - - u4 can be rewritten

1 ki
(Z(z)w”,Z(z)) =ui,
k141 ki+ko\ _
(Z(z) y o9 Z(2) )_u27
ky+--tkg—1+1 k
(Z(2> 7~--7Z<z>) =Ugq.

The second equality means that k = k1 + - - - + k, . Because of this special form, each
block can be treated independently.

We consider the first block and we write k = k| and u; = (yy, ..., yr). We have

now, for the first block and after putting x = x!,

X = Z (") ® G1s ey (228 ® (2l oo 2N 2h)T
= Z ((x*)’(z(ll) Z<1>)><(y1""’yk) (Z(z)""’zi;)))(zl’""Zk)*
= Z (xzkl)’z<11>>"'(x?k>’zfl>><yikﬁz(lz>>'"<y1>ck’zi{2>)(zl"-"Zk)*’
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where we used the fact that the coproduct in B* is the dual of the product in B. Now
we use the fact that the product in B* is the dual of the coproduct in B, and obtain

X= Z (XT1>~yi*»Zl)-- (x% X Vo2 >( lw--’Zk)*

zl,., 2k

=Y Xy Yl X YT
The same is done for each block and we finally find
Mg (v a*) = (x/ - yl,...,x}kl)-y,ll,.. cxly vt xd yk). O
Examples 5.2 Examples of M1 are:
M () (7)) = (- »7),
M ((c); (67, 2%) = (0 y* e 2),
Min((7): 07 9m) = (T 3T X - 3)-
Examples of M, are:
M ((x, »)%5 (9)* (1)) =

MIZ((-xv )’)*, (S)*(ll, t2)*

x-s,y-1)F,
(x5, Y0 11, Yo - 12)",
M12((X W (s1,8)" (1)) =

Mia((5): (5T 53) (1) =

(X(l) cS1,X@2) " 82,) t)*,

MMM7

* * *
(.x (1)'51,...,x (m)‘Sm

* k * k
y (1)'t1,...,y (")'tn)‘
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