ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Tutte polynomials of bracelets

Norman Biggs

DOI: 10.1007/s10801-010-0220-1

Abstract

The identity linking the Tutte polynomial with the Potts model on a graph implies the existence of a decomposition resembling that previously obtained for the chromatic polynomial. Specifically, let { G n } be a family of bracelets in which the base graph has b vertices. It is shown here (Theorems 3 and 4) that the Tutte polynomial of G n can be written as a sum of terms, one for each partition π  of a nonnegative integer \ell \leq  b:
( x -1) T( G n; x, y)= å p m p( x, y)\operatorname tr( N p( x, y)) n. (x-1)T(G_n;x,y)=\sum_{π}m_{π}(x,y)\operatorname {tr}\bigl(N_{π}(x,y)\bigr)^n.

Pages: 389–398

Keywords: keywords tutte polynomial; Potts model; transfer matrix; Specht modules

Full Text: PDF

References

1. Biggs, N.L.: Interaction Models. University Press, Cambridge (1977)
2. Biggs, N.L.: Chromatic polynomials and representations of the symmetric group. Linear Algebra Appl. 356, 3-26 (2002)
3. Biggs, N.L.: Specht modules and chromatic polynomials. J. Comb. Theory, Ser. B 92, 359-377 (2004)
4. Biggs, N.L., Damerell, R.M., Sands, D.A.: Recursive families of graphs. J. Comb. Theory, Ser. B 12, 123-131 (1972)
5. Brylawski, T., Oxley, J.G.: The Tutte polynomial and its applications. In: Matroid Applications. University Press, Cambridge (1992)
6. Chang, S.-C., Shrock, R.: Structural properties of Potts model partition functions and chromatic polynomials for lattice strips. Physica A 296, 131-182 (2001)
7. Chang, S.-C., Shrock, R.: Transfer matrices for the partition function of the Potts model on cyclic and Möbius lattice strips. Physica A 347, 314-352 (2005)
8. Chang, S.-C., Shrock, R.: Transfer matrices for the partition function of the Potts model on lattice strips with toroidal and Klein bottle boundary conditions. Physica A 364, 231-262 (2006)
9. Fortuin, C.M., Kasteleyn, P.W.: On the random cluster model. Physica 57, 536-574 (1972)
10. Kramers, H.A., Wannier, G.H.: Statistics of the two-dimensional ferromagnet I. Phys. Rev. 60, 252- 262 (1941)
11. Kramers, H.A., Wannier, G.H.: Statistics of the two-dimensional ferromagnet II. Phys. Rev. 60, 263- 276 (1941)
12. Richard, J.-F., Jacobsen, J.L.: Character decomposition of Potts model partition functions II: toroidal geometry. Nucl. Phys. B 760, 229-249 (2006)
13. Royle, G.F., Sokal, A.D.: The Brown-Colbourn conjecture on zeros of reliability polynomials is false. J. Comb. Theory, Ser. B 91, 345-360 (2004)
14. Sagan, B.E.: The Symmetric Group. Springer, New York (2001)
15. Sands, D.A.: Dichromatic polynomials of linear graphs. Ph.D. thesis, University of London (1972)
16. Sokal, A.D.: The multivariate Tutte polynomial. In: Surveys in Combinatorics 2005, pp. 173-226.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition