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Abstract Let G be a finite simple graph with edge ideal I (G). Let I (G)∨ denote
the Alexander dual of I (G). We show that a description of all induced cycles of odd
length in G is encoded in the associated primes of (I (G)∨)2. This result forms the
basis for a method to detect odd induced cycles of a graph via ideal operations, e.g.,
intersections, products and colon operations. Moreover, we get a simple algebraic cri-
terion for determining whether a graph is perfect. We also show how to determine the
existence of odd holes in a graph from the value of the arithmetic degree of (I (G)∨)2.

Keywords Edge ideals · Odd cycles · Perfect graphs · Associated primes ·
Arithmetic degree

1 Introduction

A recent breakthrough in graph theory is the Strong Perfect Graph Theorem, proved
by Chudnovsky, Robertson, Seymour, and Thomas [2]. This result shows that a graph
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is perfect if and only if neither it nor its complementary graph has an odd induced cy-
cle of length at least five; these cycles are often referred to as odd holes. Consequently,
the ability to detect odd induced cycles in a graph in systematic ways is significant.
Chudnovsky, Cornuéjols, Liu, Seymour, and Vušković [1] proved the existence of a
polynomial time algorithm to determine if a graph is perfect. However, if G is not
perfect, then this algorithm does not tell us whether it is G or Gc that contains an odd
hole. More recently, Conforti, Cornuéjols, Liu, Vušković, and Zambelli [4] showed
that one can determine if a graph has an odd hole in polynomial time provided G

has a bounded clique number. In general, there is no known effective algorithm for
detecting the existence of odd holes.

Our goal in this paper is to expand the dictionary between graph theory and com-
mutative algebra by providing simple, explicit ways to detect all odd induced cycles
in graphs, allowing us to determine whether a graph is perfect and, if not, where the
offending odd hole lies. The novelty of our work is the surprising connection between
odd holes on the graph-theoretic side and associated primes on the commutative al-
gebra side. While the algorithms have exponential running time in the worst case, we
hope that our results will be useful from a theoretical perspective.

More precisely, suppose that G = (VG,EG) is a finite simple graph on the vertex
set VG = {x1, . . . , xn} with edge set EG. By identifying the vertices with the variables
in the polynomial ring R = k[x1, . . . , xn] over the field k, one can associate to G a
square-free quadratic monomial ideal

I (G) = ({xixj | {xi, xj } ∈ EG}).
The ideal I (G) is called the edge ideal of G. The edge ideal I (G), which was first
introduced by Villarreal [31], is an algebraic object whose invariants can be related
to the properties of G, and vice-versa. Simple graphs and hypergraphs can also be
viewed as clutters, and so edge ideals of clutters can be defined in the same way
(cf. [6, 14, 15]). Many researchers have been interested in using the edge ideal con-
struction to build a dictionary between the fields of graph theory and commutative
algebra. For general references, see [26, 30, 31]; for invariants encoded in the resolu-
tion, see [5, 7, 16–18, 22, 24]; for classes of (sequentially) Cohen–Macaulay graphs,
see [9, 12, 20, 29].

The first main result of this paper is to show that every odd induced cycle in a
graph can be detected from the associated primes of R/(I (G)∨)2, where I (G)∨ is
the Alexander dual of I (G), thus giving us a method for determining perfection. In
fact, not only do the associated primes tell us if an odd hole exists, they also indicate
which vertices make up the odd hole. In particular, we show:

Theorem 1.1 (Corollary 3.4) Let J = I (G)∨. A prime ideal P = (xi1, . . . , xis ) is in
Ass(R/J 2), the set of associated prime ideals of R/J 2, if and only if:

(1) P = (xi1, xi2), and {xi1, xi2} is an edge of G, or
(2) s is odd, and the induced graph on {xi1, xi2, . . . , xis } is an induced cycle of G.

Theorem 1.1 is not the first time the induced odd cycles of a graph have been
found using commutative algebra. Simis and Ulrich [25] showed that I (G){2}, the join
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of I (G) with itself, is generated by the square-free monomials xi1xi2 · · ·xir , where
r is odd, and the induced graph on {xi1, xi2, . . . , xir } is an induced cycle. We find
(Theorem 3.2) an irreducible decomposition for the ideal (I (G)∨)2, and then pair
this decomposition with a result of Sturmfels and Sullivant [27] to recover Simis and
Ulrich’s result (Corollary 3.7).

Our proof of Theorem 3.2, and subsequently Theorem 1.1, is based upon the
notion of a 2-cover of a graph. If G is simple graph on n vertices, then a =
(a1, . . . , an) ∈ N

n is a 2-cover if ai + aj ≥ 2 for all edges {xi, xj } ∈ EG. A 2-cover
a is reducible if there exist b, c ∈ N

n such that a = b + c, where b and c are both
1-covers, or one is a 2-cover, and the other is a 0-cover. (A 0-cover is simply any
nonzero vector a ∈ N

n.) Otherwise, we say a is irreducible. If we let J = I (G)∨,
then each generator of J (2), the second symbolic power of J , corresponds to some
2-cover of G, while the generators of J 2 correspond only to the reducible 2-covers
that are the sum of two 1-covers. The key ingredient in our proof is Dupont and
Villarreal’s classification of irreducible 2-covers [6]. This classification allows us to
describe the irreducible decomposition of J 2.

The algebra of vertex covers of a (hyper)graph was first studied by Herzog, Hibi
and Trung [19]. In [19], the authors use the terminology of decomposable and in-
decomposable covers instead of reducible and irreducible covers. We choose to use
reducible and irreducible covers to be consistent with the result of [6] that we require.

Theorem 1.1 also forms the basis for other methods to detect the existence of odd
holes in a graph using only the operations of commutative algebra. In particular, the
existence of odd holes can be characterized algebraically as follows:

Theorem 1.2 (Theorems 4.2 and 4.6) Let G be a simple graph with edge ideal I (G).
Set J = I (G)∨, and let

L =
∏

1≤i1<i2<i3<i4≤n

(xi1 + xi2 + xi3 + xi4).

Then the following are equivalent:

(a) G has no odd hole.
(b) J 2 : (L) = J 2.
(c) adeg(J 2) = 3|EG| + t (G), where adeg(J 2) denotes the arithmetic degree of J 2,

and t (G) is the number of triangles of G.

The proof of the equivalence of (a) and (b) follows from a well-known lemma (see
Lemma 4.1) that the saturation of an ideal J by an ideal K results in an ideal whose
associated primes do not contain K . For the equivalence of (a) and (c), we use
Sturmfels, Trung, and Vogel’s notion of standard pairs to compute the arithmetic
degree [28].

We note that the main bottleneck in using Theorems 1.1 and 1.2 to determine
perfection occurs in computing J . The generators of J are the minimal vertex covers
of G, and determining the vertex covers of a graph is an NP-complete problem [21].
Despite this, an algorithm based on Corollary 3.4 is simple to code and generally runs
reasonably quickly in Macaulay 2. See Sect. 3 for some specific examples.
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The structure of our paper is as follows. In Sect. 2, we collect together the needed
graph-theoretic and algebraic results, and we introduce Dupont and Villarreal’s clas-
sification of irreducible 2-covers. Section 3 is devoted to the proof of Theorem 1.1.
Finally, Sect. 4 contains two algebraic characterizations of graphs with odd holes.

2 Graph theory and irreducible covers

In this section, we recall the needed terms and results from graph theory, and further-
more, we introduce Dupont and Villarreal’s classification of irreducible 2-covers [6],
which forms a key ingredient for our proof of Theorem 3.2 and Corollary 3.4. We
continue to use the definitions and terms from the introduction.

Let G = (VG,EG) denote a finite simple graph (no loops or multiple edges) on
the vertex set VG = {x1, . . . , xn} and edge set EG. We shall abuse notation and write
xixj for an edge {xi, xj } ∈ EG. If S ⊆ VG, the induced subgraph of G on S, denoted
by GS , is the graph with vertex set S and edge set EGS

= {xixj ∈ EG | {xi, xj } ⊆ S}.

Definition 2.1 A cycle in a simple graph G is an alternating sequence of distinct
vertices and edges C = xi1e1xi2e2 · · ·xin−1en−1xinenxi1 in which the edge ej connects
the vertices xij and xij+1 (xin+1 = xi1 ) for all j . In this case, C has length n and we
call C an n-cycle. We shall often write a cycle simply as xi1xi2 · · ·xinxi1 or xi1 · · ·xin ,
omitting the edges. A chord is an edge that joins two nonadjacent vertices in the
cycle. We shall use Cn to denote an n-cycle without any chords. We usually refer to
Cn as an induced cycle since the induced graph on {xi1, xi2, . . . , xin} contains only the
edges and vertices in the cycle. If an induced cycle has an odd (resp., even) number
of vertices, we shall call it an odd (resp., even) cycle. An odd induced cycle of length
at least five is called an odd hole.

A subset W of VG is a vertex cover of G if every edge is incident to at least one
vertex of W . A vertex cover W is a minimal vertex cover if no proper subset of W is
a vertex cover. More generally, we can define vertex covers of any order.

Definition 2.2 Let N denotes the set of nonnegative integers. If G is a simple graph
on n vertices, then a nonzero vector a = (a1, . . . , an) ∈ N

n is a vertex cover of order
k (or a k-cover) if ai + aj ≥ k for all edges xixj ∈ EG. A k-cover a is reducible if
there exists an i-cover b ∈ N

n and a j -cover c ∈ N
n such that a = b+c and k = i +j .

Otherwise, we say a is irreducible.

Remark 2.3 When (a1, . . . , an) is a (0,1)-tuple, then a vertex cover of order 1 corre-
sponds to the standard notion of a vertex cover. At times, we shall write vertex covers
of order k as monomials, using the usual correspondence between monomials and
vectors of nonnegative integers, i.e., xa1

1 · · ·xan
n corresponds to the cover (a1, . . . , an).

We shall use a result of Dupont and Villarreal [6] that classifies irreducible 2-
covers. In fact, we shall state a slightly more general version than their result. The
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proof of the theorem was already embedded in the proof of [19, Theorem 5.1]. In the
statement below, the set N(A) denotes the neighbors of the set A ⊆ VG, that is,

N(A) = {y ∈ VG \ A | there exists x ∈ A such that xy ∈ EG}.
A set of vertices A ⊆ VG is independent if the induced graph GA contains no edges,
that is, there are no edges among the vertices of A. As well, G is called bipartite if
we can partition VG = V1 ∪ V2 so that every xy ∈ EG has the property that x ∈ V1
and y ∈ V2.

Theorem 2.4 see [6, Theorem 2.6] Let G be a simple graph.

(i) If G is bipartite, then G has no irreducible 2-covers.
(ii) If G is not bipartite and a is a 2-cover that cannot be written as the sum of two

1-covers, then (up to some permutation of the vertices)

a = (0, . . . ,0︸ ︷︷ ︸
|A|

, b1, . . . , b|B|︸ ︷︷ ︸
|B|

,1, . . . ,1)

for some (possibly empty) independent set A and a set B ⊇ N(A) such that
(1) bj ≥ 2 for all j = 1, . . . , |B|,
(2) B is not a vertex cover of G and V 	= A ∪ B , and
(3) the induced subgraph on C = V \ (A ∪ B) is not bipartite.
Moreover, if a is irreducible, then

a = (0, . . . ,0︸ ︷︷ ︸
|A|

,2, . . . ,2︸ ︷︷ ︸
|B|

,1, . . . ,1),

B = N(A), and the induced subgraph on C has no isolated vertices.

Proof Part (i) follows from part (b) of [19, Theorem 5.1]. To prove part (ii), we let A

be the set of vertices xi such that ai = 0. Since a is a 2-cover, for any xi ∈ N(A), we
must have ai ≥ 2. We may also include in B all other vertices xj not in N(A) such
that aj ≥ 2. Clearly, B ⊇ N(A), and (1) is satisfied.

If B is a vertex cover, then (0, . . . ,0, c1, . . . , c|B|, d1, . . . , d|C|), where ci ≥ 1 and
dj ≥ 0 for all i and j , is a 1-cover of G. Thus, a can be written as the sum of two
1-covers, a contradiction. Therefore, B is not a vertex cover of G. This also implies
that C is not empty, and (2) is satisfied.

It follows from part (b) of [19, Theorem 5.1] that if the induced subgraph on C is
bipartite, then it admits (1, . . . ,1) as a 2-cover that can be written as the sum of two
1-covers. Moreover, (0, . . . ,0︸ ︷︷ ︸

|A|
, c1, . . . , c|B|︸ ︷︷ ︸

|B|
), where ci ≥ 1 for all i, is a 1-cover of the

induced subgraph on A ∪ B . Thus, a can be written as the sum of two 1-covers, a
contradiction. Thus (3) is satisfied.

To prove the last statement we observe that if bj > 2 for some j , then a can be
written as the sum of a 0-cover (0, . . . ,0︸ ︷︷ ︸

|A|
,0, . . . ,0,1,0 . . . ,0︸ ︷︷ ︸

1 at the j -th place

,0, . . . ,0︸ ︷︷ ︸
|C|

) and another
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2-cover. This contradicts the irreducibility of a. Also, if there exists some xj ∈ B \
N(A), then a can be written in a similar fashion as the sum of a 0-cover and a 2-cover.
This contradiction thus implies that B = N(A). Similarly, if the induced subgraph on
C has an isolated vertex, say the last one, then a can be written as the sum of the
0-cover (0, . . . ,0︸ ︷︷ ︸

|A|
,0, . . . ,0︸ ︷︷ ︸

|B|
,0, . . . ,0,1︸ ︷︷ ︸

|C|
) and another 2-cover, again a contradiction. �

We round out this section by explaining how the 2-covers of a graph G are related
to the Alexander dual of the edge ideal I (G). First, we define the Alexander dual:

Definition 2.5 Suppose I is a square-free monomial ideal. The Alexander dual of
I , denoted by I∨, is the ideal whose primary components are given by the minimal
generators of I . That is, if I = (x1,1 · · ·x1,t1 , . . . , xr,1 · · ·xr,tr ), then

I∨ = (x1,1, . . . , x1,t1) ∩ · · · ∩ (xr,1, . . . , xr,tr ).

The ideal I (G)∨ is sometimes referred to as the cover ideal because of the well-
known fact that the generators of I (G)∨ correspond to vertex covers (see, e.g., [19]).

Next, we recall the notion of the symbolic power of an ideal, restricting to the
case in which I ⊂ R is a square-free monomial ideal. Suppose I has the primary
decomposition

I = P1 ∩ · · · ∩ Pr,

where each Pi is an ideal generated by a subset of the variables of R. The j th sym-
bolic power of I is the ideal

I (j) = P
j

1 ∩ · · · ∩ P
j
r .

Set J = I (G)∨. Graph-theoretically, we can interpret the minimal generators of
J (2) and J 2 in terms of 2-covers. For convenience, we denote covers by their corre-
sponding monomials instead of the vectors themselves. Note that

J (2) =
⋂

xixj ∈EG

(xi, xj )
2,

so J (2) is the ideal whose minimal generators yield a 2-cover of G. On the other hand,
J 2 is more restrictive. Its minimal generators are still 2-covers, but they must be able
to be partitioned into two ordinary vertex covers. That is, if m ∈ J 2, then m = m′m′′,
where m′ and m′′ are 1-covers of G. A main part of the proof of Theorem 3.2 is to
understand, via Theorem 2.4, the difference between the monomials in J (2) and those
in J 2.

3 Odd cycles and associated primes

In this section, we prove the main result of our paper, that is, the odd cycle structure
of a graph G appears in the associated primes of R/J 2, where J = I (G)∨.

The following definition is classical:
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Definition 3.1 Let M be an R-module. A prime ideal P is called an associated prime
of M if P = Ann(m), the annihilator of m, for some m ∈ M . The set of all associated
primes of M is denoted by Ass(M).

We begin with some observations. Because we will only be dealing with the case in
which I is a monomial ideal, all P ∈ Ass(R/I) will have the form P = (xi1, . . . , xit )

for some subset {xi1, . . . , xit } ⊂ {x1, . . . , xn}. Since J = I (G)∨ = ⋂
xixj ∈EG

(xi, xj ),

the associated primes of R/J are exactly the primes corresponding to the edges
of G, that is, the prime ideals (xi, xj ) where xixj is an edge of G. Moreover,
Ass(R/J (2)) = Ass(R/J ). However, R/J 2 can have additional associated primes,
and it is these primes we seek to identify. We proceed by computing something
stronger, namely, an irreducible decomposition for J 2. An irreducible monomial
ideal in n variables is an ideal of the form (x

a1
1 , . . . , x

an
n ) with a = (a1, . . . , an) ∈ N

n.
This ideal is usually denoted as ma, so, for example, the maximal homogeneous
ideal would be m(1,...,1). If ai = 0, then we adopt the convention that ma =
(x

a1
1 , . . . , x̂

ai

i , . . . , x
an
n ); that is, no power of xi is in the ideal. Every monomial ideal I

can be decomposed into the intersection of finitely many irreducible ideals, i.e.,
I = ma1 ∩ · · · ∩ mas (see, for example, [23, Lemma 5.18]).

Theorem 3.2 Let G be a finite simple graph. If J = I (G)∨, then the irredundant
irreducible decomposition of J 2 is

J 2 =
⋂

xixj ∈EG

[(
x2
i , xj

) ∩ (
xi, x

2
j

)] ∩
⋂

induced graph on {xi1, . . . , xis }
is an odd cycle

(
x2
i1
, . . . , x2

is

)
.

Proof Let L denote the ideal on the right-hand side in the statement of the theorem.
Consider a minimal generator M ∈ J 2, and thus M is the product of two 1-covers

of G. Since I (G)∨ ⊆ (xi, xj ) for every xixj ∈ EG, it follows that J 2 ⊆ (xi, xj )
2 ⊆

(x2
i , xj ), and similarly, J 2 ⊆ (xi, x

2
j ). Hence

M ∈
⋂

xixj ∈EG

[(
x2
i , xj

) ∩ (
xi, x

2
j

)]
.

Suppose that the graph G has an odd induced cycle on the vertices {xi1, . . . , xis }.
We claim that there exists some xij ∈ {xi1, . . . , xis } such that x2

ij
| M . Suppose not.

Then M = x
ai1
i1

· · ·xais

is
M ′, where 0 ≤ aij ≤ 1 for all j = 1, . . . , s, and no xij divides

M ′. Since M = M1M2, where M1,M2 ∈ J , both M1 and M2 must contain at least
(s + 1)/2 vertices of {xi1, . . . , xis } in order to cover the odd induced cycle on these
vertices. So, in the variables {xi1, . . . , xis }, M must have degree at least s + 1. But
we have assumed that M has degree at most s in these variables, a contradiction.
So, there exists some xij such that x2

ij
| M . Hence M ∈ (x2

i1
, . . . , x2

is
). Because this is

true for each odd induced cycle, M is also in the second set of intersections. Thus,
J 2 ⊆ L.

We now prove the converse. Consider a minimal generator N of L. Since N ∈⋂
xixj ∈EG

[(x2
i , xj ) ∩ (xi, x

2
j )], it is clear that N is a 2-cover of G. It suffices to show
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that N can be written as the sum of two 1-covers. Suppose that this is not the case.
Then by Theorem 2.4, for some independent set A, B ⊇ N(A) and C = V \(A∪B) 	=
∅, we have

N =
∏

xj ∈B

x
bj

j

∏

xj ∈C

xj ,

where bj ≥ 2 for all j , and the induced subgraph on C is not a bipartite graph. This
implies that the induced subgraph on C contains an odd cycle, say on the vertices
{xi1, . . . , xis }. From the expression of L, we have N ∈ (x2

i1
, . . . , x2

is
). However, as we

have seen, the power of any vertices of C in N is exactly one. This is a contradiction.
Hence, any minimal generator of L can be written as the sum of two 1-covers, that
is, L ⊆ J 2. �

Remark 3.3 The irreducible decomposition of J s , which is studied in [10], is sub-
stantially more complicated when s > 2 because of its relation to the chromatic num-
ber of induced subgraphs. When G is an odd cycle, the situation is much easier; the
associated primes of J s correspond to the edges and the odd cycle itself, and the ex-
ponents that appear in the irreducible components come from a formula depending
on s and |VG|.

Our main result is now an immediate corollary of Theorem 3.2.

Corollary 3.4 Let G be a finite simple graph, and set J = I (G)∨. A prime P =
(xi1, . . . , xis ) is in Ass(R/J 2) if and only if:

(1) P = (xi1, xi2), and xi1xi2 is an edge of G, or
(2) s is odd, and after re-indexing, xi1xi2 · · ·xis xi1 is an induced cycle of G.

Moreover, we get a method for detecting perfect graphs from the following corol-
lary:

Corollary 3.5 Let G be a finite simple graph with J = I (G)∨ and Jc = I (Gc)∨,
where Gc is the complementary graph of G. Then G is perfect if and only if neither
Ass(R/J 2) nor Ass(R/J 2

c ) contains a prime of height greater than three.

Our intent in this paper is to focus primarily on the connections between com-
mutative algebra and graph theory and not on the speed of algorithms. However, we
make a few comments here about using Corollary 3.5 to detect perfect graphs. While
any algorithm based on Corollary 3.5 does not run in polynomial time, it has the ad-
vantage that it tells us exactly where any odd holes occur, and whether they are in G

or Gc, which the polynomial time algorithm from [1] does not. An algorithm based
upon Corollary 3.5 has been included in the Macaulay 2 package EdgeIdeals [11] un-
der the command allOddHoles. Moreover, despite bad worst-case running time,
allOddHoles has been successful in computing relatively large examples. We ran
three examples on a standardly-equipped laptop and computed the time this algorithm
took to detect all the odd holes in randomly-chosen graphs. For a randomly-chosen
graph on 14 vertices with 40 edges, allOddHoles took 0.047 seconds to identify
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all odd holes in the graph. The command took 0.468 seconds for a randomly-chosen
graph on 20 vertices with 60 edges, and it took 13.665 seconds for a randomly-chosen
graph on 30 vertices with 200 edges. These times strike us as reasonable given the
size of the graphs and the usual difficulties of working with large polynomial rings in
computer algebra systems.

Corollary 3.4 also provides some crude bounds on the depth and projective dimen-
sion of R/J 2 in terms of the size of the largest induced odd cycle.

Corollary 3.6 Let G be a finite simple graph on n vertices, and let t denote the size
of the largest induced odd cycle of G. If J = I (G)∨, then

(a) depth(R/J 2) ≤ n − t ,
(b) projdim(R/J 2) ≥ t .

Proof By the Auslander–Buchsbaum Formula, it suffices to prove (a). For any ideal
I of R, depth(R/I) ≤ dimR/P for any P ∈ Ass(R/I). Now apply Corollary 3.4. �

We round out this section by using our methods to give an alternate proof of a
result of Simis and Ulrich [25] and Sturmfels and Sullivant [27] about the second-
secant of I (G).

The join of an ideal was studied in [25] and [27]. We recall a special case of
this definition. If I and J are ideals of k[x1, . . . , xn], then their join, denoted I ∗ J ,
is a new ideal of k[x1, . . . , xn] which is computed as follows. Introduce new vari-
ables y = {y1, . . . , yn} and z = {z1, . . . , zn}, and let I (y) (resp., J (z)) denote the
image of the ideal I (resp., J ) under the map xi �→ yi (resp., xi �→ zi ) in the ring
k[x1, . . . , xn, y1, . . . , yn, z1, . . . , zn]. Then

I ∗ J = (
I (y) + J (z) + (y1 + z1 − x1, . . . , yn + zn − xn)

) ∩ k[x1, . . . , xn].

When I = J , we call I ∗ I the second-secant ideal of I and denote it by I {2}. In the
proof of the following theorem, we use the notation of I [a] found in Sect. 5.2 of [23]
for the generalized Alexander dual of I .

Corollary 3.7 ([25, Proposition 5.1], [27, Corollary 3.3]) Let G be a finite simple
graph. Then

I (G){2} = ({xi1 · · ·xis | G{xi1 ,...,xis } is an odd induced cycle});

that is, the generators correspond to the vertices of the induced odd cycles.

Proof Since J = I (G)∨ is a square-free monomial ideal, every monomial gen-
erator of J divides x1 · · ·xn, and so every generator of J 2 divides x2

1 · · ·x2
n . Set

1 = (1, . . . ,1) ∈ N
n. By applying [27, Corollary 2.7] with a = 1, which is sufficiently

large since J is square-free, we have

I (G){2} = ((
I (G)[1])2)[2·1] modulo m1+1,
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where modulo m1+1 = m2 = (x2
1 , . . . , x2

n) refers to removing all the monomial
generators divisible by x2

i for some i. Now I (G)[1] = I (G)∨, so I (G){2} =
(J 2)[2] modulo m2, where 2 := 2 · 1 = (2, . . . ,2). By [23, Theorem 5.27], the
generators of (J 2)[2] are in one-to-one correspondence with the irreducible compo-
nents of J 2; in particular, by Theorem 3.2, combined with [23, Theorem 5.27], we
have

(
J 2)[2] = ({

xix
2
j , x2

i xj | xixj ∈ EG

})

+ ({xi1 · · ·xis | G{xi1 ,...,xis }is an odd induced cycle}).
When we remove the monomial generators of (J 2)[2] divisible by x2

i for some i,
we are removing the first ideal, while the second remains, and hence the conclusion
follows. �

4 Algebraic classification of odd cycles

In this section, we describe two algebraic approaches to detecting the existence of
odd induced cycles (and, in particular, odd holes) in a graph. The first method is
based upon taking quotients of ideals and is well-suited for constructing an algo-
rithm to detect odd cycles using the ideal operations of commutative algebra. The
second method is based upon the arithmetic degree of an ideal, which, although hard
to compute, is interesting from a theoretical point of view. Of course, one could use
Corollary 3.4 to determine if a graph has an odd cycle; however, Corollary 3.4 not
only tells us if an odd cycle exists, it tells us which vertices make up the cycle. If one
is simply interested in the question of existence, the results of this section may be
more relevant.

4.1 Method 1. Colon ideals

Using the technique of ideal saturation, we can describe an algebraic approach to
detecting odd cycles. Recall that if I and K are ideals of R, then the saturation of I

with respect to K , denoted (I : K∞), is defined by

(
I : K∞) =

⋃

N≥1

(
I : KN

)
.

The ideal I : K∞ is then related to the primary decomposition of I as in Lemma 4.1.
We omit the proof; see, for example, [8, Lemma 2.4].

Lemma 4.1 Let I be an ideal of R = k[x1, . . . , xn] with primary decomposition

I = Q1 ∩ Q2 ∩ · · · ∩ Qr.

If K is an ideal of R, then

(
I : K∞) =

⋂

K 	⊂√
Qi

Qi.
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We use this result to give a method for detecting odd induced cycles.

Theorem 4.2 Let G be a simple graph, and set J = I (G)∨. Fix an integer t > 1, and
set

Lt =
∏

1≤i1<i2<···<it≤n

(xi1 + xi2 + · · · + xit ).

Then G has no odd induced cycle of length ≥t if and only if J 2 : (Lt ) = J 2.

Proof Let J 2 = Q1 ∩· · ·∩Qr be the primary decomposition of J 2. By Corollary 3.4,
we know that

√
Qi = (xi1, xi2) where {xi1, xi2} is an edge of our graph, or

√
Qi =

(xi1, . . . , xis ) with s odd, and the induced graph on the vertices in
√

Qi is a cycle of
odd length. Note that if K and L are any ideals, K : L∞ = K if and only if K : L = K ,
so it suffices to show that G has no odd induced cycle of length ≥t if and only if
J 2 : (Lt )

∞ = J 2.
Suppose that G has no odd induced cycle of length ≥ t , i.e., if Pi = (xi1, . . . , xis ) is

an associated prime, then s = 2 or s is odd and s < t . In both cases (Lt ) 	⊂ √
Qi = Pi

for all i. Hence, by Lemma 4.1,

J 2 : (Lt )
∞ =

⋂

(Lt )	⊂√
Qi

Qi =
r⋂

i=1

Qi = J 2.

On the other hand, suppose that G has an odd induced cycle of length ≥ t , i.e.,
there exists some Qi such that

√
Qi = (xi1, . . . , xis ) with s ≥ t odd. Now, xi1 + xi2 +

· · · + xit ∈ √
Qi , so Lt ∈ √

Qi , and hence

J 2 : (Lt )
∞ =

⋂

(Lt )	⊂√
Qi

Qi �

r⋂

i=1

Qi = J 2.

The result now follows. �

By specializing Theorem 4.2 to the case that t = 4, we can detect graphs with odd
holes.

Corollary 4.3 Let G be a simple graph, and set J = I (G)∨. Set

L =
∏

1≤i1<i2<i3<i4≤n

(xi1 + xi2 + xi3 + xi4).

Then G has an odd hole if and only if J 2 : (L) � J 2.

4.2 Method 2. Arithmetic degree

The second main result of this section is to show that one can identify graphs with
odd holes via the arithmetic degree.
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Definition 4.4 Let I be a homogeneous ideal of R = k[x1, . . . , xn]. The arithmetic
degree of I is

adeg(I ) =
∑

homogeneous prime ideals P ⊆ R

multI (P )deg(P ).

In the above definition, multI (P ) is the length of the largest ideal of finite length in
the ring RP /IRP . It can be shown that multI (P ) > 0 if and only if P is an associated
prime of I . So, the above formula gives us information about the existence of certain
associated primes. Note that when I is a monomial ideal, all the associated primes
have the form P = (xi1, . . . , xis ), and deg(P ) = 1 for all of these ideals. So, when I

is a monomial ideal, the above formula reduces to

adeg(I ) =
∑

P ∈ Ass(R/I)

multI (P ).

In the paper of Sturmfels, Trung, and Vogel [28], a combinatorial formula for
multI (P ) is given when I is a monomial ideal. Let X = {x1, . . . , xn}. Any prime
monomial ideal of R is generated by some subset of the variables. In particular, any
monomial prime is determined by the variables not in the ideal; that is, for each
monomial prime ideal P , there is a subset Z ⊆ X such that P = PZ := ({xi | xi ∈
X \ Z}). For a monomial M ∈ R, we let supp(M) denote the support of M , i.e., the
set of variables appearing in M . By [28, Lemma 3.3], multI (PZ) equals the number
of standard pairs of the form (·,Z). If M is a monomial, and Z ⊆ X, a pair (M,Z) is
standard if

(a) (M,Z) is admissible, i.e., supp(M) ∩ Z = ∅,
(b) (M · k[Z]) ∩ I = ∅, and
(c) (M,Z) is minimal with respect to the partial order

(M,Z) ≤ (
M ′,Z′) ⇐⇒ M divides M ′ and supp

(
M ′/M

) ∪ Z′ ⊆ Z

for all pairs (M,Z) that satisfy (b).

We now specialize to the case of the monomial ideal J 2 = (I (G)∨)2. By Corol-
lary 3.4, we know that PZ is an associated prime of J 2 if the induced graph on
X \ Z is either an edge of G or an odd cycle of G. Note that if xixj ∈ EG, and
Z = X \ {xi, xj }, then

multJ 2(PZ) = multJ 2

(
(xi, xj )

) = deg(xi, xj )
2 = 3

because PZ is a minimal prime. (See, e.g., [28, Sect. 1]. We thank an anonymous
referee for pointing this out and greatly simplifying our original argument.)

We need one other multiplicity calculation.

Lemma 4.5 Let the induced graph on {xi, xj , xk} be a three-cycle, and set Z = X \
{xi, xj , xk}. Then multJ 2(PZ) = 1.
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Proof We begin with some observations about the generators of J = I (G)∨
and J 2. If M is a minimal generator of J , then M must be divisible by one
of xixj , xixk or xjxk because M corresponds to a minimal vertex cover, and
we need at least two of the three vertices to cover the edges of the triangle
formed by {xi, xj , xk}. Hence, any monomial of J 2 must be divisible by one of
x2
i x2

j , x2
i xj xk, xix

2
j xk, x

2
i x2

k , xixj x
2
k , x2

j x2
k . In particular, every monomial of J 2 must

be divisible by at least one of x2
i , x2

j , x2
k .

All the admissible pairs of the form (·,Z) are:

(1,Z),
(
xa
i ,Z

)
,
(
xb
j ,Z

)
,
(
xc
k ,Z

)
,
(
xa
i xb

j ,Z
)
,
(
xa
i xc

k ,Z
)
,
(
xb
j xc

k ,Z
)
,
(
xa
i xb

j xc
k ,Z

)
.

We claim that all but the last pair fail to be a standard pair, and the last is standard
only when a = b = c = 1. The conclusion of the lemma then follows.

Note that (1,Z ∪ {xi}) < (1,Z), and (1,Z ∪ {xi}) has the property that
k[Z ∪ {xi}] ∩ J 2 = ∅ since every monomial of J 2 is divisible by either xj or xk

(because xjxk is an edge of G), but no such monomial belongs to k[Z ∪ {xi}]. So,
(1,Z) is not a standard pair since it is not minimal with respect to the partial order.

For (xa
i ,Z), we have (1,Z ∪ {xi}) < (xa

i ,Z) since 1 | xa
i and supp(xa

i /1) ∪ Z ⊆
Z ∪ {xi}. But as noted above, k[Z ∪ {xi}] ∩ J 2 = ∅. Thus (xa

i ,Z) is not minimal, so
it cannot be a standard pair. A similar argument eliminates (xb

j ,Z) and (xc
k ,Z).

To rule out (xa
i xb

j ,Z), we first note that (xj ,Z ∪ {xi}) < (xa
i xj ,Z). But we also

have xj k[Z ∪ {xi}] ∩ J 2 = ∅ since for every monomial M in J 2 such that xj | M

but x2
j � M , we must have xk | M . But xk 	∈ k[Z ∪ {xi}], and hence the intersection is

empty. Therefore, (xa
i xj ,Z) is not standard, and by a symmetric argument, neither

is (xix
b
j ,Z). Suppose now that a, b > 1, and consider (xa

i xb
j ,Z). Pick a minimal

vertex cover M1 of G containing xi and xj but not xk . Then M2
1 = x2

i x2
j N2

1 , where

N1 ∈ k[Z]. Thus xa−2
i xb−2

j M2
1 = xa

i xb
j N2

1 ∈ xa
i xb

j k[Z] ∩ J 2, and (xa
i xb

j ,Z) is not
standard. The same argument with the variables permuted eliminates (xa

i xc
k ,Z) and

(xb
j xc

k ,Z).

Suppose now that a > 1, and consider the pair (xa
i xb

j xc
k ,Z). Note that xixj

and xixk are each covers of the three-cycle, and x2
i xj xk divides xa

i xb
j xc

k . Let
M1 = xixjN1 be any minimal vertex cover of G divisible by xixj but not xk ,
and let M2 = xixkN2 be any minimal vertex cover of G divisible by xixk but
not xj . Then xa−2

i xb−1
j xc−1

k M1M2 = xa
i xb

j xc
kN1N2 ∈ xa

i xb
j xc

kk[Z] ∩ J 2, and there-

fore (xa
i xb

j xc
k ,Z) fails property (b) when a > 1. A similar argument shows that

(xa
i xb

j xc
k ,Z) fails property (b) if b > 1 or c > 1.

Hence multJ 2(PZ) ≤ 1 since (xixj xk,Z) is the only remaining candidate for a
standard pair. Because PZ is an associated prime, multJ 2(PZ) ≥ 1, and thus the mul-
tiplicity is equal to 1. �

Theorem 4.6 Let G be a simple graph with |EG| the number of edges of G and t (G)

the number of triangles. Set J = I (G)∨. Then G has no odd holes if and only if

adeg
(
J 2) = 3|EG| + t (G).
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Proof By definition,

adeg
(
J 2) =

∑

P ∈ Ass(R/J 2)

multJ 2(P ).

The associated primes P of J 2 are either P = (xi, xj ) where xixj ∈ EG, P =
(xi, xj , xk), where the induced graph on {xi, xj , xk} is a triangle (i.e., a 3-cycle),
or P = (xi1, . . . , xis ) where the induced graph on {xi1, . . . , xis } is an odd hole. Thus

adeg
(
J 2) =

∑

xixj ∈ EG

multJ 2

(
(xi, xj )

)

+
∑

{xi, xj , xk} is a triangle

multJ 2

(
(xi, xj , xk)

)

+
∑

{xi1, . . . , xis } is an odd hole

multJ 2

(
(xi1, . . . , xis )

)
.

So G has no odd hole if and only if

adeg
(
J 2) =

∑

xixj ∈ EG

multJ 2

(
(xi, xj )

)

+
∑

{xi, xj , xk} is a triangle

multJ 2

(
(xi, xj , xk)

)

= 3
∣∣E(G)

∣∣ + t (G),

where the final equality follows from Lemma 4.5 and the calculation just before it. �

Corollary 4.7 Let G be a simple graph, and J = I (G)∨. Then

deg
(
J 2) = 3

∣∣E(G)
∣∣.

Proof The formula for the degree of an ideal I is similar to the formula of the arith-
metic degree of I , except one sums over all minimal associated primes, instead of all
associated primes. Since the minimal associated primes of J 2 are precisely those that
correspond to edges of G, the result now follows. �
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