ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Some Hecke algebra products and corresponding random walks

Rosena R.X. Du and Richard P. Stanley

DOI: 10.1007/s10801-009-0193-0

Abstract

Let i=1+ q+ \cdot \cdot \cdot + q i - 1. For certain sequences ( r 1,\cdots , r l ) of positive integers, we show that in the Hecke algebra \Bbb H n ( q) of the symmetric group \mathfrak S n \mathfrak{S}_{n} , the product (1+ r 1 T r 1) \frac{1}{4} (1+ r l T r l) (1+\boldsymbol{r}_{\boldsymbol{1}}T_{r_{1}})\cdots (1+\boldsymbol{r}_{\boldsymbol{l}}T_{r_{l}}) has a simple explicit expansion in terms of the standard basis { T w }. An interpretation is given in terms of random walks on \mathfrak S n \mathfrak{S}_{n} .

Pages: 159–168

Keywords: keywords Hecke algebra; tight sequence; reduced decomposition; random walk

Full Text: PDF

References

1. Cherednik, I.V.: Special bases of irreducible representations of a degenerate affine Hecke algebra.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition