ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Bounds for codes and designs in complex subspaces

Aidan Roy

DOI: 10.1007/s10801-009-0170-7

Abstract

We introduce the concepts of complex Grassmannian codes and designs. Let G m, n \mathcal{G}_{m,n} denote the set of m-dimensional subspaces of \Bbb C n : then a code is a finite subset of G m, n \mathcal{G}_{m,n} in which few distances occur, while a design is a finite subset of G m, n \mathcal{G}_{m,n} that polynomially approximates the entire set. Using Delsarte's linear programming techniques, we find upper bounds for the size of a code and lower bounds for the size of a design, and we show that association schemes can occur when the bounds are tight. These results are motivated by the bounds for real subspaces recently found by Bachoc, Bannai, Coulangeon and Nebe, and the bounds generalize those of Delsarte, Goethals and Seidel for codes and designs on the complex unit sphere.

Pages: 1–32

Keywords: keywords codes; designs; bounds; Grassmannian spaces; complex subspaces; linear programming; delsarte; association schemes

Full Text: PDF

References

1. Agrawal, D., Richardson, T.J., Urbanke, R.L.: Multiple-antenna signal constellations for fading channels. IEEE Trans. Inf. Theory 47, 2618-2626 (2001)
2. Bachoc, C.: Linear programming bounds for codes in Grassmannian spaces. IEEE Trans. Inf. Theory 52, 2111-2125 (2006)
3. Bachoc, C., Bannai, E., Coulangeon, R.: Codes and designs in Grassmannian spaces. Discrete Math. 277, 15-28 (2004)
4. Bachoc, C., Coulangeon, R., Nebe, G.: Designs in Grassmannian spaces and lattices. J. Algebr. Comb. 16, 5-19 (2002) J Algebr Comb (2010) 31: 1-32
5. Böröczky Jr., K.: Finite Packing and Covering. Cambridge Tracts in Mathematics, vol.
154. Cambridge University Press, Cambridge (2004)
6. Brouwer, A.E., Cohen, A.M., Neumaier, A.: Distance-Regular Graphs. Springer, Berlin (1989)
7. Bump, D.: Lie Groups. Graduate Texts in Mathematics, vol.
225. Springer, New York (2004)
8. Calderbank, A.R., Hardin, R.H., Rains, E.M., Shor, P.W., Sloane, N.J.A.: A group-theoretic framework for the construction of packings in Grassmannian spaces. J. Algebr. Comb. 9, 129-140 (1999)
9. Conway, J.H., Hardin, R.H., Sloane, N.J.A.: Packing lines, planes, etc.: packings in Grassmannian spaces. Exp. Math. 5, 139-159 (1996)
10. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups, 2nd edn. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol.
290. Springer, New York (1993)
11. Delsarte, P.: An algebraic approach to the association schemes of coding theory. Philips Res. Rep. Suppl. (1973), vi+97
12. Delsarte, P., Goethals, J.M., Seidel, J.J.: Bounds for systems of lines, and Jacobi polynomials. Philips Res. Rep. (1975), pp. 91-105
13. Fulton, W., Harris, J.: Representation Theory. Springer, New York (1991)
14. Godsil, C.D.: Polynomial spaces. In: Proceedings of the Oberwolfach Meeting “Kombinatorik”, vol. 73 (1986), pp. 71-88 (1989)
15. Godsil, C.D., Rötteler, M., Roy, A.: Mutually unbiased subspaces, in preparation
16. Godsil, C.D., Roy, A.: Mutually unbiased bases, equiangular lines, and spin models. Eur. J. Comb.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition