ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Hyperplanes of DW(5,\mathbb K) DW(5,{\mathbb{K}}) with \mathbb K {\mathbb{K}} a perfect field of characteristic 2

Bart De Bruyn

DOI: 10.1007/s10801-009-0180-5

Abstract

Let \mathbb K {\mathbb{K}} be a perfect field of characteristic 2. In this paper, we classify all hyperplanes of the symplectic dual polar space DW(5,\mathbb K) DW(5,{\mathbb{K}}) that arise from its Grassmann embedding. We show that the number of isomorphism classes of such hyperplanes is equal to 5+ N, where N is the number of equivalence classes of the following equivalence relation R on the set { l Ĩ \mathbb K  |  X 2+ l X+1 isirreducible \{λ\in {\mathbb{K}}\,|\,X^{2}+λX+1\mbox{ isirreducible} in \mathbb K[ X]} \mbox{in }{\mathbb{K}}[X]\} : ( λ  1, λ  2)\in  R whenever there exists an automorphism σ  of \mathbb K {\mathbb{K}} and an a Ĩ \mathbb K a\in {\mathbb{K}} such that ( λ  2 σ  )  - 1= λ  1  - 1+ a 2+ a.

Pages: 567–584

Keywords: keywords symplectic dual polar space; hyperplane; perfect field

Full Text: PDF

References

1. Blok, R.J., Cardinali, I., De Bruyn, B.: On the nucleus of the Grassmann embedding of the symplectic dual polar space DSp(2n, F), char(F) =
2. European J. Combin. 30, 468-472 (2009)
2. Blokhuis, A., Brouwer, A.E.: The universal embedding dimension of the binary symplectic dual polar space. Discrete Math. 264, 3-11 (2003)
3. Brouwer, A.E.: The composition factors of the Weyl modules with fundamental weights for the symplectic group. Preprint (1992)
4. Buekenhout, F., Cameron, P.J.: Projective and affine geometry over division rings. In: Handbook of Incidence Geometry, pp. 27-62, North-Holland, Amsterdam (1995)
5. Cameron, P.J.: Dual polar spaces. Geom. Dedicata 12, 75-85 (1982)
6. Cardinali, I., De Bruyn, B.: The structure of full polarized embeddings of symplectic and Hermitian dual polar spaces. Adv. Geom. 8, 111-137 (2008)
7. Cardinali, I., Lunardon, G.: A geometric description of the spin-embedding of symplectic dual polar spaces of rank
3. J. Combin. Theory Ser. A 115, 1056-1064 (2008)
8. Cardinali, I., De Bruyn, B., Pasini, A.: Minimal full polarized embeddings of dual polar spaces. J. Al- gebraic Combin. 25, 7-23 (2007)
9. Chevalley, C.C.: The Algebraic Theory of Spinors. Columbia University Press, New York (1954)
10. Cooperstein, B.N.: On the generation of dual polar spaces of symplectic type over finite fields. J. Combin. Theory Ser. A 83, 221-232 (1998)
11. De Bruyn, B.: Near Polygons. Frontiers in Mathematics. Birkhäuser, Basel (2006)
12. De Bruyn, B.: A decomposition of the natural embedding spaces for the symplectic dual polar spaces. Linear Algebra Appl. 426, 462-477 (2007)
13. De Bruyn, B.: The hyperplanes of DQ(2n, K) and DQ - (2n + 1, q) which arise from their spinembeddings. J. Combin. Theory Ser. A 114, 681-691 (2007)
14. De Bruyn, B.: The hyperplanes of DW (5, 2h) which arise from embedding. Discrete Math. 309, 304-321 (2009)
15. De Bruyn, B.: On a class of hyperplanes of the symplectic and Hermitian dual polar spaces. Electron. J. Combin. 16, R1 (2009), 20 pp.
16. De Bruyn, B.: Some subspaces of the k-th exterior power of a symplectic vector space. Linear Algebra Appl. 430, 3095-3104 (2009)
17. De Bruyn, B., Pasini, A.: Generating symplectic and Hermitian dual polar spaces over arbitrary fields nonisomorphic to F2. Electron. J. Combin. 14, R54 (2007), 17 pp.
18. De Bruyn, B., Pasini, A.: On symplectic polar spaces over nonperfect fields of characteristic
2. Linear Multilinear Algebra (to appear)
19. De Bruyn, B., Vandecasteele, P.: Valuations and hyperplanes of dual polar spaces. J. Combin. Theory Ser. A. 112, 194-211 (2005) J Algebr Comb (2009) 30: 567-584
20. Kasikova, A., Shult, E.E.: Absolute embeddings of point-line geometries. J. Algebra 238, 265-291 (2001)
21. Li, P.: On the universal embedding of the Sp(2n, 2) dual polar space. J. Combin. Theory Ser. A 94, 100-117 (2001)
22. Pasini, A.: Embeddings and expansions. Bull. Belg. Math. Soc. Simon Stevin 10, 585-626 (2003)
23. Pralle, H.: Hyperplanes of dual polar spaces of rank 3 with no subquadrangular quad. Adv. Geom. 2, 107-122 (2002)
24. Pralle, H.: The hyperplanes of DW (5, 2). Experiment. Math. 14, 373-384 (2005)
25. Shult, E.E.: Generalized hexagons as geometric hyperplanes of near hexagons. In: Groups, Combinatorics and Geometry (Durham, 1990). London Math. Soc. Lecture Note Ser., vol. 165, pp. 229-239. Cambridge Univ. Press, Cambridge (1992)
26. Shult, E.E.: On Veldkamp lines. Bull. Belg. Math. Soc. Simon Stevin 4, 299-316 (1997)
27. Shult, E.E., Yanushka, A.: Near n-gons and line systems. Geom. Dedicata 9, 1-72 (1980)
28. Shult, E.E., Thas, J.A.: Hyperplanes of dual polar spaces and the spin module. Arch. Math. 59, 610- 623 (1992)
29. Tits, J.: Buildings of Spherical Type and Finite BN-pairs. Lecture Notes in Mathematics, vol. 386.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition