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Abstract This paper is concerned with a recent conjecture of He (Electron. J. Comb.
14(1), 2007) on the spectral reconstruction of matrices. A counterexample is provided
by using Hadamard matrices. We also give some results to the above mentioned con-
jecture (with slight modifications) in the positive direction.
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1 Introduction

The graph reconstruction conjecture, also known as Kelly-Ulam’s conjecture, is one
of the most notoriously difficult problems to solve in graph theory. Various methods
have been attempted to tackle this conjecture, say, among others, the linear algebra
method, originated from Tutte [7], has been proved to be a useful one. For example,
Tutte [7] proved that, if the characteristic polynomial of the adjacency matrix of a
graph is irreducible, then the reconstruction conjecture is true.

Motivated by the original reconstruction conjecture and the attempts to deal with
it, it is natural to consider the following spectral version of the matrix reconstruction
problem:

Fix n > 3 from now on. Let A be an n by n real symmetric matrix, let A; denote
the matrix obtained from A by deleting the i-th row and i-th column. Denote by
¢ (A) =det(x1 — A) the characteristic polynomial of matrix A. Suppose that A and
B are two real symmetric matrices such that

¢(A) =¢(B) and ¢(A;) = ¢(B;) for each i. (D
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Then, what can be said about the relations between A and B under condition (1),
analogously to the reconstruction conjecture?

The above problem has been investigated by several authors [1-3, 5, 9] in some
different guises, as an attempt to deal with the reconstruction conjecture. In graph
context, [1] (see also [2]) showed that under condition (1), if all of the eigenvectors
of A are not orthogonal to the all-one vector, then the graphs with adjacency matrices
A and B are isomorphic; while [5] indicated that there exist two non-isomorphic
graphs whose adjacency matrices satisfy (1). In the matrix form, [8] showed that if A
and B are integral symmetric matrices with ¢ (A) being irreducible over the rationals,
then (1) implies B = DT AD for some diagonal matrix D with each entry equal to
41 (this slightly generalizes a result in [7]). However, this is no longer true even if
¢ (A) can be factored exactly into two distinct irreducible polynomials; see [9]. Thus,
it seems difficult to give a correct formulation of the matrix reconstruction conjecture
in the spectral form.

More recently, He [3] posed, among others, the following conjecture along this
line of research:

Conjecture 1 Let A be a real symmetric matrix. Then there exists a subgroup
G(A) C O(n) (the orthogonal group of order n) such that a real symmetric matrix B
satisfies condition (1) iff B=UT AU for some U € G(A).

Let’s give a few explanations to Conjecture 1: (i) If A and B satisfy condition (1),
then there certainly exist many orthogonal matrices U such that B = UT AU. Con-
jecture 1 asserts that we can choose some U for each B appropriately, then these U
form a group G(A) under matrix multiplication; (ii) For each U € G(A), matrices A
and B =: UT AU satisfy condition (1).

As mentioned previously, Conjecture 1 holds if A and B are integral symmetric
matrices with ¢(A) being irreducible. And accordingly, G(A) can be chosen to be
77, i.e., the group of diagonal orthogonal matrices.

However, in this paper, we show that Conjecture 1 is generally not true when ¢ (A)
is completely factored over the rationals. A counterexample will be given by using
Hadamard matrices of order 16.

On the other hand, attempts have also been made to give some results to Conjec-
ture 1 (with a slightly different reformulation) on the positive side. Based on a recent
work [9], we prove that a slight modification of Conjecture 1 holds under the condi-
tion that ¢ (A) can be factored exactly into two distinct irreducible polynomials. We
have the following

Theorem 1.1 Let A be an integral symmetric matrix. Suppose that ¢ (A) can be de-
composed exactly into two distinct irreducible polynomials over the rationals. Then
there exists a subgroup G(A) C O (n) such that an integral symmetric matrix B sat-
isfies condition (1) iff B = (UD)T A(U D) for some U € G(A) and some diagonal
orthogonal matrix D.

We prove the above theorem by finding the group G(A), i.e., we actually find
out all integral symmetric matrices B such that A and B satisfy condition (1). The
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proof is based on an observation in [9]: Let Q (# %) be a rational orthogonal matrix
that commutes with A (under the assumption of Theorem 1.1), then Q is essentially
unique (up to a sign). Without loss of generality (permuting rows and columns of A
simultaneously, if necessary) we can assume that Q = diag[Q1, Q2, - - -, Qk], where
Q; is a symmetric, rational orthogonal matrix, the underlying graph (in a precise
sense, see Sect. 3) of which is connected, for each i. Let G(A) be the set of all
matrices obtained from Q by replacing some of Q's with the identity matrices of
the same order. It is not difficult to show that G(A) forms a group under matrix
multiplication, and matrices (U D)” A(U D) and A satisfy condition (1). We manage
to prove that all integral symmetric matrices B satisfying condition (1) can be written
as B = (UD)T A(UD) for some U € G(A) and some diagonal orthogonal matrix D.

Finally, we mention that the similar result does not hold for Conjecture 1 without
the modification made in Theorem 1.1. This gives another counterexample to Conjec-
ture 1; see remarks in Sect. 4. Yet we do not know whether the method in the paper to
construct a counterexample to Conjecture 1 is still valid to provide a counterexample
to Theorem 1.1 without the assumption on ¢ (A).

The rest of the paper is organized as follows: In Sect. 2, we give a counterexample
to Conjecture 1. In Sect. 3, we present the proof of Theorem 1.1. Some remarks are
given in Sect. 4.

2 A counterexample to Conjecture 1

In this section, we give a counterexample to Conjecture 1 by using Hadamard ma-
trices. An n by n matrix H is a Hadamard matrix if each entry of H is £1 and
HTH =nl,. Two Hadamard matrices H; and H, are said to be inequivalent if Hy
can not be obtained from Hj by permuting rows, permuting columns, and multiplying
rows or columns by —1.

It is known (see e.g. [6]) that there exist exactly five classes of inequivalent
Hadamard matrices of order 16. We will need the following two inequivalent
Hadamard matrices H; and H, (which are the fifth and the first Hadamard matri-
ces given in [6], respectively) in the sequel.

1 1 1
-1 1 -1

1 1 1 1 1 1 1 1 1 1 1 1 7
1 -1 1 -1 1 1 1 1 -1 -1 -1 -1
1 -1 -1 1 1 -1 -1 1 I -1 -1 1 1 -1 -1
-1 -1 1 I -1 -1 1 1 -1 1 -1 1 -1 1 -1
1 1 1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 1 1
-1 1 -1 -1 1 =1 1 1 -1 -1 1 1 -1 -1 1
1 -1 -1 -1 -1 1 1 1 -1 -1 1 -1 1 1 -1
-1 -1 1 -1 1 1 -1 1
1 1 1 1 1 1 1 -r -1 -1 -1 -1 -1 -1 -1 |’
-1 1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1
1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1
-1 -1 1 I -1 -1 1 -1 1 -1 1 -1 1 -1 1
1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 -1 -1
-1 1 -1 -1 1 -1 1 -1 -1 -1 1 1 -1
1 -1 -1 -1 -1 1 1 —1 -1 1 -1 -1 1
-1 -1 1 -1 1 1 -1 -1 -1 1 1 -1 1 -1

—_

— m e e e e e e e e e e e e e

—_——
—_
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1 1 1 1 1 7
1 —1 1 —1 1 —1 1 —1
1 1 1 -1 -1
1 1 -1 -1 1
1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1
1 —1 1 -1 -1 1 -1 1
1 1 -1 -1 -1 -1 1 1
1 -1 -1 1 -1 1 1 —1
1 1 1 1 1 1 !1 -1 -1 -1 -1 -1 -1 -1 -1
-1 1 -1 1 -1 -1 1 -1 1 —1 1 -1 1 1 —1
1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1
-1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 —1 1
1 1 ! -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1
-1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1
1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1
-1 -1 1 -1 1 -1 1 —1 1 1 —1 1 —1 1 —1

To construct a counterexample to Conjecture 1, we need the following lemma
which gives a characterization of matrices with the same ¢ (A) and ¢ (4;).

Lemma 2.1 [4] Let A and B be two real symmetric matrices such that ¢ (A) =
¢ (B). Suppose all the eigenvalues of A (and hence B) are simple. Then for a fixed i,
$(A) = (By) iff (] &)* = (e[ 11)* (k=1,---,n), where & and i (k=1,---,n)
are the normalized eigenvectors of A and B respectively, and e; is the i-th standard
unit vector of R".

Lemma 2.2 Let A= PAPT and B= QAQT, where A = diag(A1, Ao, -+, Ap) isa
diagonal matrix with A; being distinct, and P and Q are orthogonal matrices respec-
tively. If there is an orthogonal matrix U such that B=UT AU, then U = PDQT
for some diagonal orthogonal matrix D.

Proof Clearly the i-th column §; of P and the i-th column n; of Q are the eigenvec-
tors of A and B associated with A;, respectively. By B = UT AU we get AU = UB.
Thus AUn; = UBn; = X;Un;. It follows that Un; is an eigenvector of A associ-
ated with A;. Note that A; is a simple eigenvalue of A, we get Un; = ££;. Hence
U Q = P D for some diagonal orthogonal matrix D, and the lemma follows. O

Now, let 1171 = H;/4 and I-:Vz = H/4. Then ﬁ] and 1172 are orthogonal matrices.
Let

A=HAH", B=HAH, )

where A = diag(A1, Az, -+, A,) is a diagonal matrix with A1, Ao, - -+, A, being dis-
tinct integers. Clearly we have ¢(A) = ¢(B). By Lemma 2.1, we have ¢(A;) =
¢(B;)fori=1,2,---,16.

Assume that Conjecture 1 is true, then there exists a real orthogonal matrix U and
a group G(A) C O(16) such that U € G(A) and B = UT AU. By Lemma 2.2, we

can write U = H 1Dl-jo for some diagonal orthogonal matrix D. Note that U is an
element of the group G(A), it follows that Ul =UT e GA). Conjecture 1 says
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that matrix
C= WNHTAUT = (H,DH, B)AH, DA, H)T

satisfies that ¢ (A) = ¢ (C) and ¢ (A;) = ¢ (C;) fori =1,2,---, 16.

Using Lemma 2.1 again, we obtain that V =: 4ﬁ1 DﬁgTH 1 is a Hadamard matrix
of order 16. However, next, we will show through some simple calculations that V
is not a Hadamard matrix for each diagonal orthogonal matrix D, which gives a
contradiction to Conjecture 1.

. . ~ T ~
First, it can be computed that H, Hj = [16 0

], where I is the identity matrix of

o X
order 6 and

2 2 0 1 1 0 -2 1 -1 07

2 2 0 -1 -1 0 2 -1 1 0

o 04 0 0 0 0 0 0 0

0o 00 2 -2 0 0 2 2 0
x_tfo oo 2 0o 2 0 -2 0 2
410 0 0 0 2 -2 0 0 2 2

o 00 2 2 0 2 0 0 =2

o 00 0 o0 0 2 2 -2 2

2 20 -1 1 2 0 1 1 0
-2 2 0 -1 1 2 0 1 1 0 |

Now let the corresponding matrix partition of D and H; be as follows:

| Dy O ~ W W,
D‘[o DZ]H‘_[WZ W4]’

where D; and D; are diagonal orthogonal matrices of order 6 and 10 respectively,
W1 is a square matrix of order 6 and

1 1 1 -1 -1 1 -1 1 1 -1
1 -1 1 -1 1 =1 -1 1 =1 1
1 1 -1 -1 -1 -1 -1 =1 -1 -1
1 -1 -1 -1 -1 -1 1 1 1 1
-1 -1 -1 -1 1 I -1 -1 1 1

W“:Z -1 1 -1 1 -1 1 -1 1 -1 1
-1 -1 -1 -1 1 1 1 1 =1 -1
-1 1 -1 1 1 =1 -1 1 1 -l
1 1 -1 1 1 -1 1 -1 =1 1
1 =1 -1 1 =1 1 1 =1 1 =1]

Then the right-bottom 10 x 10 sub-matrix Y of V equals 4W4 D> X. The first col-
umn of Y equals

W4D3[2,2,0,0,0,0,0,0,2, =217 = Wy[2¢1,2¢2,0,0,0,0,0,0, 2¢3, 264]7,

where g; = £1,i = 1,2, 3, 4. It can be verified for each choice of ¢; = %1, the first
column of Y cannot be a vector with each entry being equal to £1. That is, V can
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not be a Hadamard matrix for each diagonal orthogonal matrix D, as claimed. Thus
matrices A and B in (1) give a counterexample to Conjecture 1.

Let’s give a remark. In an attempt to construct a counterexample to Theorem 1.1
without the assumption on ¢ (A), using a similar method above, we have to show that
there exist two diagonal orthogonal matrices D1 and D; such that 4I:I] D ﬁzT DQI:I]
is a Hadamard matrix. But it needs heavy computational efforts to verify.

3 Proof of Theorem 1.1

In this section, we present the proof of Theorem 1.1. We shall assume in the sequel
that ¢ (A) can be decomposed as follows:

¢(A) = x1(x) x2(x), (€)

where yx1(x) and x2(x) are two distinct irreducible polynomials.
The following lemma is a key to the proof of Theorem 1.1.

Lemma 3.1 [9] Suppose that ¢ (A) satisfies (3). If there exist rational orthogonal
matrices Q which are distinct from %1, such that QT AQ = A, then Q is unique up
to a sign.

The underlying graph of an n by n real symmetric matrix M is a simple graph on
n vertices in which there is an edge between vertices i and j iff the (i, j)-th element
of M is not equal to zero.

01 0
0> 0,
Lemma 3.2 Let ) =pT ‘ P, where Q1,02+, O}
o 0,
(resp. Q), Q5.+, Q;,) are symmetric matrices whose underlying graphs are
connected, and P is a permutation matrix. Then we have | = m, and P =
diag[ Py, P2, -+, PI1P, where Py is a permutation matrix of the same order as
Q. for each k, and P is a permutation matrix that permutes the diagonal blocks
Qi = PkTQ;(Pk k=1,2,---,1) into Q1, Q2,---, Q;. (By abuse use of language,
we do not distinguish a permutation matrix and the corresponding permutation.)

Proof Denote by I'y (resp. F,’() the underlying graph of Qj (resp. QD' Then the
disjoint unions I' = | Ji_; [y and T’ = U}, I, are isomorphic. It follows that the
number of their connected components are equal, i.e., [ = m.

Let the subgraph I'; of I be indexed as 1 (I")) ={1,2,---,n1}, I(T}) = {n1 +1,
ny 42, ,ny+na}, IT) ={m-—1+ L,n_1+2,---,m_1 +ng}. Let Ty be
indexed as I(I'y) ={1,2,---,my}, I(Tp) ={m; + 1,my +2,---,m; + ma}, -,
I ={m-1+1L,m_1+2, -, m—_1 +m}.

Note that " can be obtained from I'’ by reindexing using permutation P. We claim
that for each k there must exist some iy such that P permutes / (F,’() into 1(I';,).
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Suppose that an element, say ny_1 + ng, of 1 (ch) is permuted into I (I';, ), we prove
that each element in /(I';) is permuted into I (I';,). For contradiction, assume that
each element in subset V7 (# ¢) of 1 (F,’() is permuted into / (I';, ), while the elements
in the subset V5 := I(I';) — Vi (# ¢) are not permuted into I(I';,). Since I} is
connected, there is an edge e = uv with u € V| and v € V,. Thus, the (u, v) entry
of the adjacency matrix A(I") of I" equals 1. Note that u € I(I';;) and v & I (I';), it
follows that A(T"),, = 0. Thus, we get a contradiction.

Since I/ can also be obtained from I' by reindexing using permutation P~!. It
can be shown in a similar way that for each j, there must exist some i; such that
p-! permutes /(I";) into I(Flfj). Thus, for each k, the image of I(I'x) under per-
mutation P equals exactly to some I (I'; ), for each k. Denote by P the permuta-
tion of {1, 2, ---, ni} into itself with Py (s —ng_1) = P(s) —m;,_1, where s € I(F;{)
and P(s) is the image of s under permutation P. Then we have PkT 0, P = Q.
Let P be a permutation that permutes Q;,, Q;,, -+, Q;, into Q1, Q2, -+, Q;. Then
P =diag[Py, P, - -, P[]IS, and the lemma follows. O

The following theorem is a slightly revised version of a theorem in [9], which is
proved for adjacency matrices of graphs and the proof can be carried out without
difficulty to integral symmetric matrices.

Theorem 3.3 (cf. [9]) Let A be an integral symmetric matrix. Suppose that ¢ (A)
satisfies (3). Then there exists an integral symmetric matrix B such that condition (1)
holds iff there exist two symmetric, rational orthogonal matrices Q1 and Q> such
that B can be written as follows:

B:(DPT[QI O]P)A(PT[Q1 O]PD)

0O I O I
_ T 12 O T 12 0
=(DP |:O QZ]P)A(P |:0 Q2:|PD), “4)

where 11 and I, are identity matrices, and P is some permutation matrix and D is a
diagonal orthogonal matrix.

Proof (a sketch) By a theorem in [9], there exists a matrix B such that condition (1)
holds iff there exist two symmetric, rational orthogonal matrices Q1 and Q> such
that PBPT can be written as follows (permuting rows and columns of A and B
simultaneously, if necessary):

T _ Ql o T Q] 0]
PBP _(A|: 7 A1:|)(PAP )([ 7 AI]A)
=<A[A02 QOJ)(PAPTX[%Z QOZ]A), )

where A and A, are diagonal orthogonal matrices, P is some permutation matrix
and A is some diagonal orthogonal matrix.
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Let D= PT AP. Then (4) follows immediately from (5). U

Proof of Theorem 1.1 We prove the theorem by actually finding the group G(A).

First suppose that for any integral symmetric matrix B with A and B satisfying
condition (1), B can be written as B = DA D for some diagonal orthogonal matrix D,
then G(A) can be chosen to be the trivial group with an identity matrix. Theorem 1.1
trivially holds. Next we will assume that there exists an integral symmetric matrix B
such that A and B satisfy condition (1), while A and B are not similar through any
diagonal orthogonal matrix.

It is easy to see that Theorem 1.1 holds for matrices A and B iff it holds for PAPT
and PBPT with P being a permutation matrix. By Theorem 3.3, it suffices to assume
that there exist symmetric, orthogonal matrices Q1 and Q; such that

_ 01 O 01 O
s-ofg 78

o
(D[O 0, })A([O 0, ]D>. (©)

Clearly Q1 and Q> are not +identity matrices, for otherwise A and B would
be similar through a dlagonal orthogonal matrix. Without loss of generallty we can
assume that Q1 = diag[ Q1. 0 -, O] and Q = diag[ Qx+1. Ok42. - O1l, where
the underlying graph of each Q; is connected.

Let/ C{1,2,---,1}, define G(A) to be the set of all symmetrlc ratlonal orthogo-
nal matrices obtained from Q = d1ag[Q1 Q2, Qk, Qk+ 1,- Ql] by replacing
Q, with an identity matrix of the same order, for i € I and all subsets 7. It is easy
to verify that G(A) form a group under matrix multiplication. We claim that G(A)
satisfies conditions of Theorem 1.1.

Let U € G(A) with index set I (i.e., U is generated from Q by replacing Q; with
an identity matrix, for i € ). Let Uy € G(A) with index set 1€ ={1,2,---,} — I.
Note that UUIT =0, weget M =UTAU = UITAUl. Clearly we have ¢(M) =
¢ (A). By the first equality of the above equation we get M; = UiTA,- U; fori €1, and
hence ¢ (M;) = ¢ (A;) for i € I. Similarly, it follows from the second equality that
¢ (M;)=¢(A;) for j € I°. Thus A and M satisty (1).

Now let C be any integral symmetric matrix such that A and C satisfy condi-
tion (1), whereas A and C are not similar through any diagonal orthogonal matrix
(the opposite case is trivial). It remains to show that there exists some U € G(A) and
some diagonal orthogonal matrix D such that C = (U D)T A(U D) holds.

According to Theorem 3.3, there exist symmetric, rational orthogonal matrices Q
and Q) (which are not &) such that

c=DPpP" [ 0/1 0} PHAPT [%1 0} P'D)

I I
=(D'PT [10 QOJ PHA(P'T [g gj P'D)), (7
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where P’ is some permutation matrix, and D’ is a diagonal orthogonal matrix. From
the second equalities in (6) and (7) we get

01 O, _ |01 O
A([O Qz])-([o QJ)A, @®)
1T Qll O:| N — /T|:Q/1 01| ’
A(P [0 0, P)=(P 0 0, PHA. )

That is, both matrices [%1 QO ] and P'T [QOI O, ] P’ commute with A.
)

By Lemma 3.1, we obtain that [ 0 0 ] +pT [%‘ 0, ] P’. First assume that
0
01 O 7| Q1 O |
=P P'. 10
[ 0 0 0 0 (10

Choose some permutation matrices Py and P, such that
Pl Q| Py =diag[Q1. Q2.+, O], and PJ Q) Py =diag[ Q1.+, Osl.

where the underlying graph of each Q; is connected.

It follows from (10) that matrices dlag[Ql, Qz Qk, Qk+1, Qk+2,"', Ql]
and dlag[Ql, Q2, .- Qr, Q,+1, .- QS] are similar through permutation matrix
dlag[P1 , PT]P/. By Lemma 3.2, we get that [ = s and

diag[P], P]1P' = diag[ Py, Py, ---, PP,

where ﬁ, is a permutation matrlx of the same order as Q, and P isA a permuta-
tion matrix such that d1ag[Q1 Q2 Q;] = Pleag[Q,I, Q,z, .- Ql,]P where
sz Q,z, .- Ql, are permutations of Ql, Q2 Ql, and Q, = P QJP for each

j=1,2,---,1. Thus P’ =diag[ P, Pz]dlag[Pl Py, ---, P]P.

Therefore, P'T [%1 1,] P’ equals
1
pr i _ B
T . P 010, o][Pm o 5
o o Pl|lo I]|Oo P A
PIT P
- 131T 01 . A,
=pT . P
L ﬁ[T Qr Il/ ﬁl
i Qil
= pT X P eG(A). (11
0i,
L I
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It follows from (7) and (11) that C = (UD)TAWUD'), where U =

- [QOI IO’] P’ € G(A), as claimed.
1

It remains to consider the case [ Q1 0 ] =-pT [ 2 0/ ] P’, from which we get
0 O 0 0,

— 10 . —
[ i _0 ] =pT [Q' , ] P’. Using the same arguments as above, a similar result
0 -0 0 0,

can also be obtained. This completes the proof. |

4 Some remarks

We end the paper by giving a few remarks.
1. If the underlying graphs of Q| and Q; (which are not diagonal matrices) are
connected, then G(A) can be simply chosen to be {I,,, Uy, Uy, U1U>}, where Uy =

[QO’ [01] and U = [102 Q02 ] Under such a situation, there is essentially a unique (up

to similarity through a diagonal orthogonal matrix) integral symmetric matrix
B=UlAU, =U] AU, (12)

such that (1) holds (except for the trivial case that B = DAD for some diagonal
orthogonal matrix D).

We mention that this is not always the case, namely, there are numerical exam-
ples showing that the number of connected components of the underlying graphs of
Q1 and Q> can be larger than 1, even if ¢ (A) can be decomposed exactly into two
distinct, irreducible polynomials.

2. Conjecture 1 does not hold without the modification of replacing U with U D
for some diagonal orthogonal matrix D. Let A be an integral symmetric matrix and
Q = diag[Q1, Q2] a symmetric, rational orthogonal matrix that commutes with A.
Assume further that the underlying graphs of Q1 and Q> are connected (such an A
with the above property does exist; see [9]).

Let B be defined as (12). Note that A and B satisfy (1). If Conjecture 1 is true,
then there exists U € G(A) suchthat B=UT AU. Itis easy tosee U = U or £U5.
Moreover, let D be any diagonal orthogonal matrix. Then C =: DAD and A satisfy
condition (1). Let C =UT AU, U € G(A), then U = +D or +0D. Since G(A) isa
group, we have DU € G(A), where U = £U; or £U,. Thus (DUYT A(DU) and A
satisfy (1).

By the previous discussions, we distinguish two cases: either (DU YTA(DU) =
D'AD’ or (DU)T A(DU)=D'BD' = D/UITAUlD’, where D’ is some diagonal or-
thogonal matrix. In the former case, it follows from Lemma 3.1 that DU D’ = &1
or +(Q; it is impossible. For the latter, we obtain that DUD'U; = +I or +Q.
That is, DU = U D’ or DU = £U,D’. Therefore, we have DU; = +U D’ or
DU, = £U,D’'. Let D = diag[Dy, D;] and D’ = diag[D}, D}]. It follows that
D1Q1 = Q1D] or D2Qs = Q2 D), where Dy (resp. D) is any diagonal orthogo-
nal matrix of the same order as Q1 (resp. Q2), and Di (resp. Dé) is some diagonal
orthogonal matrix of the same order as Q; (resp. Q»).

At this point, it is not difficult to construct another counterexample to Conjecture 1.
In [9], an example of a 16 x 16 (0,1)-symmetric matrix A is given that commutes
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with Q = diag[Q1, O2], where Q1 = O, = }TJ — I, and J and [ are the all-one
matrix and the identity matrix of order 8, respectively. If Conjecture 1 is true, then for
any diagonal orthogonal matrix D of order 8, there exists some diagonal orthogonal
matrix D’ of order 8, such that D(%J - = (%J — I)D’. Comparing the diagonal
entries of both sides gives D = D’. Thus we have DJ = J D holds for any D, which
gives a contradiction if we let D = diag[—1, 1, ---, 1].

3. It seems that the truthfulness of Theorem 1.1 is closely related to the factor-
ization properties of the characteristic polynomial ¢(A) of matrix A. It would be
interesting to give some further results in this direction of research.
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