ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Polarized and homogeneous embeddings of dual polar spaces

R.J. Blok1 , I. Cardinali2 , B. De Bruyn2 and A. Pasini4
1Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH 43403, USA
2Department of Pure Mathematics and Computer Algebra, Ghent University, Krijgslaan 281 (S22), 9000 Gent, Belgium

DOI: 10.1007/s10801-008-0166-8

Abstract

Let Γ  be the dual of a classical polar space and let e be a projective embedding of Γ , defined over a commutative division ring. We shall prove that, if e is homogeneous, then it is polarized.

Pages: 381–399

Keywords: keywords dual polar spaces; polarized embeddings; homogeneous embeddings

Full Text: PDF

References

1. Adamovich, A.M.: The submodule lattice of Weyl modules for symplectic groups with fundamental highest weights. Mosc. Univ. Math. Bull. 41, 6-9 (1986)
2. Blok, R.J., Brouwer, A.E.: Spanning point-line geometries in buildings of spherical type. J. Geom. 62, 26-35 (1998)
3. Blok, R.J., Cardinali, I., De Bruyn, B.: On the nucleus of the Grassmann embedding of the symplectic dual polar space DSp(2n, F), char(F) =
2. Eur. J. Comb. 30, 468-472 (2009)
4. Blok, R.J., Cooperstein, B.N.: The generating rank of the unitary and symplectic grassmannians. Preprint, July 2006
5. Blokhuis, A., Brouwer, A.E.: The universal embedding dimension of the binary symplectic dual polar space. Discrete Math. 264, 3-11 (2003)
6. Buekenhout, F., Cameron, P.J.: Projective and affine geometry over division rings. In: Buekenhout, F. (ed.) Handbook of Incidence Geometry, pp. 27-62. Elsevier, Amsterdam (1995)
7. Buekenhout, F., Cohen, A.M.: Diagram Geometry, in preparation; preliminary draft available at
8. Buekenhout, F., Lefèvre, C.: Generalized quadrangles in projective spaces. Arch. Math. 25, 540-552 (1974)
9. Cardinali, I., De Bruyn, B.: The structure of full polarized embeddings of symplectic and Hermitian dual polar spaces. Adv. Geom. 8, 111-137 (2008)
10. Cardinali, I., De Bruyn, B., Pasini, A.: Minimal full polarized embeddings of dual polar spaces. J. Al- gebr. Comb. 25, 7-23 (2007)
11. Cardinali, I., De Bruyn, B., Pasini, A.: On the simple connectedness of hyperplane complements in dual polar spaces. Discrete Math. 309, 294-303 (2009)
12. Cardinali, I., Lunardon, G.: A geometric description of the spin-embedding of symplectic dual polar spaces of rank
3. J. Comb. Theory Ser. A 115, 1056-1064 (2008)
13. Cooperstein, B.N.: On the generation of dual polar spaces of unitary type over finite fields. Eur. J. Comb. 18, 849-856 (1997)
14. Cooperstein, B.N.: On the generation of dual polar spaces of symplectic type over finite fields. J. Comb. Theory Ser. A 83, 221-232 (1998)
15. Cooperstein, B.N., Shult, E.E.: Geometric hyperplanes of embeddable Lie incidence geometries. In: Hirschfeld, J.W.P., et al. (eds.) Advances in Finite Geometries and Designs, pp. 81-91. Oxford University Press, Oxford (1991)
16. Cooperstein, B.N., Shult, E.E.: Frames and bases of Lie incidence geometries. J. Geom. 60, 17-46 (1997)
17. Cooperstein, B.N., Shult, E.E.: A note on embedding and generating dual polar spaces. Adv. Geom. 1, 37-48 (2001)
18. De Bruyn, B.: Near Polygons. Frontiers in Mathematics. Birkhäuser, Basel (2006)
19. De Bruyn, B.: A decomposition of the natural embedding spaces for the symplectic dual polar spaces. Linear Algebra Appl. 426, 462-477 (2007)
20. De Bruyn, B.: On the Grassmann-embeddings of the hermitian dual polar spaces. Linear Multilinear Algebra 56, 665-677 (2008)
21. De Bruyn, B.: The structure of the spin-embeddings of dual polar spaces and related geometries. Eur. J. Comb. 29, 1242-1256 (2008)
22. De Bruyn, B.: A note on the spin-embedding of the dual polar space DQ - (2n + 1, K). Ars Comb. (to appear)
23. De Bruyn, B.: Dual embeddings of dense near polygons. Ars Comb. (to appear)
24. De Bruyn, B.: On the Grassmann modules for the symplectic and unitary groups. Preprint, December 2007
25. De Bruyn, B., Pasini, A.: Generating symplectic and Hermitian dual polar spaces over arbitrary fields nonisomorphic to F2. Electron. J. Comb. 14 (2007), #R54, 17pp
26. De Bruyn, B., Pasini, A.: Minimal scattered sets and polarized embeddings of dual polar spaces. Eur. J. Comb. 28, 1890-1909 (2007)
27. Dienst, K.J.: Verallgemeinerte Vierecke in projektiven Räumen. Arch. Math. 35, 177-186 (1980)
28. Johnson, P.M.: Semiquadratic sets and embedded polar spaces. J. Geom. 64(1-2), 102-127 (1999)
29. Kasikova, A., Shult, E.E.: Absolute embeddings of point-line geometries. J. Algebra 238, 265-291 (2001)
30. Li, P.: On the universal embedding of the Sp2n(2) dual polar space. J. Comb. Theory Ser. A 94, 100-117 (2001)
31. Li, P.: On the universal embedding of the U2n(2) dual polar space. J. Comb. Theory Ser. A 98, 235- 252 (2002)
32. Pasini, A., Van Maldeghem, H.: Some constructions and embeddings of the tilde geometry. Note Mat. 21(2), 1-33 (2002/2003)
33. Premet, A.A., Suprunenko, I.D.: The Weyl modules and the irreducible representations of the symplectic group with the fundamental highest weights. Commun. Algebra 11, 1309-1342 (1983)
34. Ronan, M.A.: Embeddings and hyperplanes of discrete geometries. Eur. J. Comb. 8, 179-185 (1987)
35. Ronan, M.A.: Lectures on Buildings. Perspectives in Mathematics, vol.
7. Academic Press, Boston (1989)
36. Shult, E.E.: On Veldkamp lines. Bull. Belg. Math. Soc. Simon Stevin 4, 299-316 (1997)
37. Taylor, E., Donald, X.: The Geometry of the Classical Groups. Sigma Series in Pure Mathematics, vol.
9. Heldermann, Berlin (1992)
38. Tits, J.: Buildings of Spherical Type and Finite BN-pairs. Lecture Notes in Mathematics, vol. 386.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition