Matching polytopes, toric geometry, and the totally non-negative Grassmannian
Alexander Postnikov
, David Speyer
and Lauren Williams
was supported in part by the NSF. A. Postnikov \cdot D. Speyer Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA A. Postnikov
DOI: 10.1007/s10801-008-0160-1
Abstract
In this paper we use toric geometry to investigate the topology of the totally non-negative part of the Grassmannian, denoted ( Gr k, n ) \geq 0. This is a cell complex whose cells Δ G can be parameterized in terms of the combinatorics of plane-bipartite graphs G. To each cell Δ G we associate a certain polytope P( G). The polytopes P( G) are analogous to the well-known Birkhoff polytopes, and we describe their face lattices in terms of matchings and unions of matchings of G. We also demonstrate a close connection between the polytopes P( G) and matroid polytopes. We use the data of P( G) to define an associated toric variety X G . We use our technology to prove that the cell decomposition of ( Gr k, n ) \geq 0 is a CW complex, and furthermore, that the Euler characteristic of the closure of each cell of ( Gr k, n ) \geq 0 is 1.
Pages: 173–191
Keywords: keywords total positivity; Grassmannian; CW complexes; Birkhoff polytope; matching; matroid polytope; cluster algebra
Full Text: PDF
References
1. Billera, L., Sarangarajan, A.: The Combinatorics of Permutation Polytopes. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 24 (1996)
2. Cox, D.: What is a toric variety? In: Topics in Algebraic Geometry and Geometric Modeling. Contemp. math., vol. 334, pp. 203-223. Amer. Math. Soc., Providence (2003)
3. Fomin, S., Shapiro, M.: Stratified spaces formed by totally positive varieties. Mich. Math. J. 48, 253- 270 (2000)
4. Fomin, S., Zelevinsky, A.: Cluster algebras I: foundations. J. Am. Math. Soc. 22, 497-527 (2002)
5. Fulton, W.: Introduction to Toric Varieties. Annals of Mathematics Studies, vol.
131. Princeton University Press, Princeton (1993)
6. Gawrilow, E., Joswig, M.: Polymake: a framework for analyzing convex polytopes and simplicial complexes. (1997-2003). Version 2.0, with contributions by Thilo Schroder and Nikolaus Witte
7. Gelfand, I., Goresky, R., MacPherson, R., Serganova, V.: Combinatorial geometries, convex polyhedra, and Schubert cells. Adv. Math. 63(3), 301-316 (1987)
8. Lovasz, L., Plummer, M.: Matching Theory. Elsevier Science, New York (1986)
9. Lusztig, G.: Introduction to total positivity. In: Hilgert, J., Lawson, J.D., Neeb, K.H., Vinberg, E.B. (eds.) Positivity in Lie Theory: Open Problems, pp. 133-145. de Gruyter, Berlin (1998)
10. Lusztig, G.: Total positivity in partial flag manifolds. Represent. Theory 2, 70-78 (1998)
11. Lusztig, G.: Total positivity in reductive groups. In: Lie Theory and Geometry: in Honor of Bertram Kostant. Progress in Mathematics, vol.
123. Birkhauser, Basel (1994)
12. Marsh, R., Rietsch, K.: Parametrizations of flag varieties. Represent. Theory, 8 (2004)
13. Postnikov, A.: Total positivity, Grassmannians, and networks.
14. Rietsch, K.: Total positivity and real flag varieties. PhD dissertation, MIT (1998)
15. Rietsch, K.: Closure relations for totally non-negative cells in G/P . Math. Res. Lett. 13(5-6), 775- 786 (2006)
16. Rietsh, K., Williams, L.: The totaly nonnegative part of G/p is a CW complex. Transformation Groups, to appear
17. Scott, J.: Grassmannians and cluster algebras. Proc. Lond. Math. Soc. 92(2), 345-380 (2006)
18. Sottile, F.: Toric ideals, real toric varieties, and the moment map. In: Topics in Algebraic Geometry and Geometric Modeling. Contemp. Math., vol. 334, pp. 225-240 (2003)
19. Speyer, D., Williams, L.: The tropical totally positive Grassmannian. J. Algebr. Comb. 22(2), 189-210 (2005)
20. Talaska, K.: A formula for Plücker coordinates of a perfectly oriented network. Int.
2. Cox, D.: What is a toric variety? In: Topics in Algebraic Geometry and Geometric Modeling. Contemp. math., vol. 334, pp. 203-223. Amer. Math. Soc., Providence (2003)
3. Fomin, S., Shapiro, M.: Stratified spaces formed by totally positive varieties. Mich. Math. J. 48, 253- 270 (2000)
4. Fomin, S., Zelevinsky, A.: Cluster algebras I: foundations. J. Am. Math. Soc. 22, 497-527 (2002)
5. Fulton, W.: Introduction to Toric Varieties. Annals of Mathematics Studies, vol.
131. Princeton University Press, Princeton (1993)
6. Gawrilow, E., Joswig, M.: Polymake: a framework for analyzing convex polytopes and simplicial complexes. (1997-2003). Version 2.0, with contributions by Thilo Schroder and Nikolaus Witte
7. Gelfand, I., Goresky, R., MacPherson, R., Serganova, V.: Combinatorial geometries, convex polyhedra, and Schubert cells. Adv. Math. 63(3), 301-316 (1987)
8. Lovasz, L., Plummer, M.: Matching Theory. Elsevier Science, New York (1986)
9. Lusztig, G.: Introduction to total positivity. In: Hilgert, J., Lawson, J.D., Neeb, K.H., Vinberg, E.B. (eds.) Positivity in Lie Theory: Open Problems, pp. 133-145. de Gruyter, Berlin (1998)
10. Lusztig, G.: Total positivity in partial flag manifolds. Represent. Theory 2, 70-78 (1998)
11. Lusztig, G.: Total positivity in reductive groups. In: Lie Theory and Geometry: in Honor of Bertram Kostant. Progress in Mathematics, vol.
123. Birkhauser, Basel (1994)
12. Marsh, R., Rietsch, K.: Parametrizations of flag varieties. Represent. Theory, 8 (2004)
13. Postnikov, A.: Total positivity, Grassmannians, and networks.
14. Rietsch, K.: Total positivity and real flag varieties. PhD dissertation, MIT (1998)
15. Rietsch, K.: Closure relations for totally non-negative cells in G/P . Math. Res. Lett. 13(5-6), 775- 786 (2006)
16. Rietsh, K., Williams, L.: The totaly nonnegative part of G/p is a CW complex. Transformation Groups, to appear
17. Scott, J.: Grassmannians and cluster algebras. Proc. Lond. Math. Soc. 92(2), 345-380 (2006)
18. Sottile, F.: Toric ideals, real toric varieties, and the moment map. In: Topics in Algebraic Geometry and Geometric Modeling. Contemp. Math., vol. 334, pp. 225-240 (2003)
19. Speyer, D., Williams, L.: The tropical totally positive Grassmannian. J. Algebr. Comb. 22(2), 189-210 (2005)
20. Talaska, K.: A formula for Plücker coordinates of a perfectly oriented network. Int.