ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

P-orderings of finite subsets of Dedekind domains

Keith Johnson

DOI: 10.1007/s10801-008-0157-9

Abstract

If R is a Dedekind domain, P a prime ideal of R and S\subseteq  R a finite subset then a P-ordering of S, as introduced by M. Bhargava in (J. Reine Angew. Math. 490:101-127,  1997), is an ordering { a i } i=1 m of the elements of S with the property that, for each 1< i\leq  m, the choice of a i minimizes the P-adic valuation of \prod  j< i ( s -  a j ) over elements s\in  S. If S, S $^{\prime}$ are two finite subsets of R of the same cardinality then a bijection φ : S\rightarrow  S $^{\prime}$ is a P-ordering equivalence if it preserves P-orderings. In this paper we give upper and lower bounds for the number of distinct P-orderings a finite set can have in terms of its cardinality and give an upper bound on the number of P-ordering equivalence classes of a given cardinality.

Pages: 233–253

Keywords: keywords $P$-ordering; $P$-sequence; Dedekind domain

Full Text: PDF




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition