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Abstract To every subspace arrangement X we will associate symmetric functions
P [X] and H[X]. These symmetric functions encode the Hilbert series and the mini-
mal projective resolution of the product ideal associated to the subspace arrangement.
They can be defined for discrete polymatroids as well. The invariant H[X] specializes
to the Tutte polynomial T [X]. Billera, Jia and Reiner recently introduced a quasi-
symmetric function F [X] (for matroids) which behaves valuatively with respect to
matroid base polytope decompositions. We will define a quasi-symmetric function
G[X] for polymatroids which has this property as well. Moreover, G[X] specializes
to P [X], H[X], T [X] and F [X].

Keywords Matroids · Polymatroids · Symmetric function · Quasi-symmetric
function · Tutte polynomial · Subspace arrangement · Hyperplane arrangement

1 Introduction

1.1 Combinatorial invariants

Let X be a set with d elements. Suppose that Vx, x ∈ X are subspaces of an n-
dimensional vector space. Then A = ⋃

x∈X Vx is called a subspace arrangement.
Let Pow(X) be the set of all subsets of X. The rank function rk : Pow(X) → N :=
{0,1,2, . . . } is defined by

rk(A) = dimV − dim
⋂

i∈A Vi
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for all subsets A ⊆ X.
Surprisingly, many topological invariants of the complement V \ A of subspace

arrangements are combinatorial, i.e., they can be expressed in terms of n := dimV

and the rank function. For example, Zaslavsky (see [40]) proved that number of re-
gions in the complement of a real hyperplane arrangement is equal to

(−1)nχ(−1) =
∑

A⊆X

(−1)rk(A)+|A|,

where χ(q) is the characteristic polynomial of the hyperplane arrangement defined
by

χ(q) =
∑

A⊆X

qn−rk(A)(−1)|A|.

For complex hyperplane arrangements, the cohomology ring H�(V \ A) is isomor-
phic to the Orlik-Solomon algebra (see [29]), which is defined explicitly in terms of
the rank function. For arbitrary real subspace arrangements, the topological Betti
numbers of the complement V \ A are expressed in terms of the rank function using
the Goresky-MacPherson formula (see [17]).

One may wonder whether various algebraic objects associated to a subspace
arrangements are combinatorial invariants. Let K be a base field of characteristic
0, and denote the coordinate ring of V by K[V ]. Terao defined the module of deriva-
tions D(A) along a hyperplane arrangement A (see [36]). An arrangement is called
free if D(A) is a free K[V ]-module. Terao has conjectured that “freeness” is a combi-
natorial property, i.e., whether D(A) is free is determined by its rank function. Terao
showed that free arrangements have the property that their characteristic polynomial
factors into linear polynomials (see [36]). One should point out that for example the
Hilbert series of the module D(A) is not a combinatorial invariant.

In a recent paper, the author found an algebraic object which is a combinatorial
invariant for subspace arrangements. Let Jx ⊆ K[V ] be the vanishing ideal of Vx ⊆ V

and let J = ∏
x∈X Jx be the product ideal. The author showed in [12] that the Hilbert

series H(J, t) of J is a combinatorial invariant. For hyperplane arrangements the
Hilbert series of J is always equal to td/(1 − t)n and is therefore not an interesting
invariant. Let W be an arbitrary vector space and denote its dual by W�. We can
tensor all the spaces with W�. So let Jx(W) ⊆ K[V ⊗ W�] be the vanishing ideal of
the subspace Vx ⊗W� of V ⊗W� and J (W) = ∏

x∈A Jx(W). Then the Hilbert series
H(J (W), t) is an interesting invariant, even for hyperplane arrangements. Moreover,
since we have an action of GL(W) on all the rings and ideals involved, we can define
a GL(W)-equivariant Hilbert series which is a more refined invariant for subspace
arrangement.

1.2 Symmetric functions

The ring of symmetric functions is spanned by the Schur symmetric functions sλ
where λ runs over all partitions. Let X = (X, rk) where rk is the rank function com-
ing from a subspace arrangement

⋃
x∈X Vx ⊆ V . In Section 2.3, we will define a



J Algebr Comb (2009) 30: 43–86 45

symmetric function P [X] using a recursive formula (see Definition 2.3). We define
another symmetric function H[X] = H[X](q, t) with coefficients in Z[q, t] by

H[X](q, t) =
∑

A⊆X

P [X |A]qrk(A)t |A|. (1)

Here X |A= (A, rk |A) can be viewed as the rank function of the sub-arrangement⋃
x∈A Vx ⊆ V . The definitions of P [X] and H[X](q, t) make sense even if the rank

function rk does not come from a subspace arrangement. Therefore, these symmetric
functions can also be defined for polymatroids. The symmetric function H[X](q, t)

essentially encodes Hilbert series of J and the GL(W)-equivariant Hilbert series of
J (W). Also, the minimal free resolutions of J and J (W) can be expressed in terms
of H[X](q, t). The symmetric functions behave nicely with respect to direct sums of
polymatroids, namely

P [X ⊕ Y] = P [X] · P [Y] (2)

H[X ⊕ Y](q, t) = H[X](q, t) · H[Y](q, t) (3)

(see Proposition 2.6). The Tutte polynomial is defined by

T [X](x, y) =
∑

A⊆X

(x − 1)rk(X)−rk(A)(y − 1)|A|−rk(A). (4)

The Tutte polynomial was introduced in [37] and generalized to matroids in [4]
and [8]. It has the multiplicative property and it behaves well under matroid dual-
ity (see (5)). It specializes to the characteristic polynomial, namely

χ(q) = qn−rk(X)T [X](1 − q,0).

The coefficients of T [X](x, y) as a polynomial in x and y have combinatorial in-
terpretations and are nonnegative. The invariant H[X](q, t) specializes to the Tutte
polynomial. The functions P [X] and H[X](q, t) do not seem to behave nicely under
matroid duality. If the polymatroid X is realizable as a subspace arrangement in char-
acteristic 0, then the coefficients of P [X], H[X](q, t) and some of their specializa-
tions have homological interpretations. Therefore, the coefficients of these functions
satisfy certain non-negativity conditions.

Brylawski defined a graph invariant in [5] which he called the polychromate.
Sarmiento [31] proved that the polychromate is equivalent to the U-polynomial stud-
ied by Noble and Welch [28]. The polychromate and the U-polynomial specialize to
Stanley’s chromatic symmetric polynomial [35]. There are graphs whose graphical
matroids are the same, that can be distinguished by the Stanley symmetric func-
tion. This means that the Stanley symmetric function, the polychromatic, and the
U-polynomial cannot be viewed as invariants of matroids.

Inspired by these graph invariants, Billera, Jia and Reiner defined a quasi-
symmetric function which is an invariant for matroids (see [3]). This invariant will
be discussed later.
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1.3 Polarized Schur functions

Let us denote the Schur functor corresponding to the partition λ by Sλ. Suppose
our base field K has characteristic 0, Z is a finite dimensional K-vector space, and
Z1, . . . ,Zd ⊆ Z are subspaces. For a partition λ with |λ| = d we will define a sub-
space

Sλ(Z1,Z2, . . . ,Zd) ⊆ Sλ(Z)

as the subspace spanned by the all π(z1 ⊗ · · · ⊗ zd) where zi ∈ Zi for all i and

π : Z ⊗ Z ⊗ · · · ⊗ Z︸ ︷︷ ︸
d

→ Sλ(Z)

is a GL(Z)-equivariant linear map.
The space Sλ(Z1, . . . ,Zd) has various interesting properties which will be dis-

cussed in Section 6. For example

Sλ(Z,Z, . . . ,Z
︸ ︷︷ ︸

d

) = Sλ(Z).

Also, permuting the spaces Z1, . . . ,Zd does not change the subspace Sλ(Z1, . . . ,Zd).
Let V = Z� be the dual space, and define Vi = Z⊥

i to be the subspace of V orthog-
onal to Zi . Consider the subspace arrangement A = V1 ∪ · · · ∪ Vd ⊆ V . Then the
dimension of Sλ(Z1, . . . ,Zd) can be expressed in terms of H[A](q, t). This implies,
that the dimension of Sλ(Z1, . . . ,Zd) is determined by the numbers

dim
∑

i∈A Zi, A ⊆ {1,2, . . . , d}.

1.4 Quasi-symmetric functions

Billera, Jia and Reiner defined a quasi-symmetric function F [X] for any matroid X
in [3]. This invariant behaves nicely with respect to direct sums of matroids, matroid
duality. There is also a very natural definition of this invariant in terms of the com-
binatorial Hopf algebras studied in [1] (see Section 7.4). In [3] it was proved that
this quasi-symmetric function behaves valuatively with respect to matroid polytope
decompositions, so it can be a useful tool for studying such decompositions. The
quasi-symmetric F [X] does not specialize to H[X](q, t) because F [X] cannot dis-
tinguish between a loop or an isthmus, and H[X](q, t) can. We will show that F [X]
does specialize to P [X]. To prove this, we introduce another quasi-symmetric func-
tion G[X] which should be of interest on its own right. First of all, we will choose a
convenient basis {Ur} of the ring of quasi-symmetric functions where r runs over all
finite sequences of nonnegative integers. A complete chain is a sequence

X : ∅ = X0 ⊂ X1 ⊂ · · · ⊂ Xd = X

such that Xi has i elements for all i. The rank vector of this chain X is defined by

r(X) = (rk(X1) − rk(X0), . . . , rk(Xd) − rk(Xd−1)).
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Now we define

G[X] =
∑

X

Ur(X)

where X runs over all d! maximal chains in X. We will show that G[X] behaves nicely
with respect to direct sums and matroid duality. It defines a Hopf algebra homomor-
phism from the Hopf algebra of polymatroids to the Hopf algebra of quasi-symmetric
functions. But unlike F [X], it can distinguish between a loop and an isthmus. More-
over, G[X] specializes to the Billera-Jia-Reiner quasi-symmetric function F [X] as
well as to H[X](q, t). We will also show that G[X] has the valuative property with
respect to polymatroid polytope decompositions in Section 8. We question whether
G[X] might be universal with this property.

2 Symmetric functions associated to polymatroids

In this section we will define the invariants H[X](q, t) and P [X].

2.1 Discrete polymatroids

Definition 2.1 A (discrete) polymatroid is a pair X := (X, rk) where X is a finite set,
and rk : Pow(X) → N = {0,1,2, . . . } is a function satisfying

1. rk(∅) = 0;
2. rk(A) ≤ rk(B) if A ⊆ B (nondecreasing);
3. rk(A ∪ B) + rk(A ∩ B) ≤ rk(A) + rk(B) (submodular).

If X = (X, rk) is a polymatroid, and A ⊆ X is a subset, then we restrict X to A

to get a polymatroid X |A:= (A, rk |A). If Ac = X \ A is the complement, then the
deletion of A in X is the polymatroid X \ A := X |Ac= (Ac, rk |Ac). The polymatroid
X/A := (Ac, rkX/A) is defined by

rkX/A(B) = rk(A ∪ B) − rk(A)

for all B ⊆ Ac. We call X/A the contraction of A in X.
Two polymatroids X = (X, rkX) and Y = (Y, rkY ) are isomorphic if there exists

a bijection ϕ : X → Y such that rkY ◦ϕ = rkX . A polymatroid X = (X, rkX) is a
matroid if rkX({x}) ∈ {0,1} for all x ∈ X. For more on matroids, see [30, 38]. If
X = (X, rkX) is a matroid, then its dual is X∨ := (X, rk∨

X) where rk∨
X is defined by

rk∨
X(A) := |A| − rkX(X) + rkX(X \ A)

for all A ⊆ X. The Tutte polynomial behaves nicely with respect to matroid duality:

T [X∨](x, y) = T [X](y, x). (5)

There is also a formula expressing F [X∨] in terms of F [X] (see [3]).
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Definition 2.2 If X = (X, rkX) and Y = (Y, rkY ) are polymatroids, then we define
their direct sum by

X ⊕ Y := (X � Y, rkX�Y )

where X � Y is the disjoint union of X and Y and rkX�Y : X � Y → N is defined by

rkX�Y (A ∪ B) := rkX(A) + rkY (B)

for all A ⊆ X, B ⊆ Y .

The Tutte polynomial satisfies the multiplicative property

T [X ⊕ Y] = T [X] · T [Y]. (6)

2.2 The ring of symmetric functions

Let

Sym := Z[e1, e2, e3, . . . ] ⊂ Z[x1, x2, x3, . . . ]
be the ring of symmetric functions in infinitely many variables, where

ek :=
∑

i1<i2<···<ik

xi1xi2 · · ·xik

is the k-th elementary symmetric function. The monomials in e1, e2, . . . form a Z-
basis of Sym. A partition of n is a tuple λ = (λ1, λ2, . . . , λr ) of positive integers with
λ1 ≥ · · · ≥ λr ≥ 1 and |λ| := λ1 + · · · + λr equal to n. Another basis of Sym is given
by the Schur symmetric functions sλ where λ runs over all partitions. For standard
results on symmetric functions, we refer to the book [22]. The natural grading of
Z[x1, x2, x3, . . . ] induces a grading on Sym. In this grading ek has degree k and sλ
has degree |λ|. Let

Sym = Z[[e1, e2, e3, . . . ]]
be the set of power series in e1, e2, . . . . Define

σ = 1 + s1 + s2 + s3 + · · · ∈ Sym .

The inverse is given by

σ−1 = 1 − e1 + e2 − e3 + · · · = 1 − s1 + s11 − s111 + · · · . (7)

2.3 The definitions of P [X] and H[X](q, t)

Definition 2.3 For every polymatroid X = (X, rk) we define a symmetric polynomial
P [X] ∈ Sym by induction as follows. If X = ∅, then P [X] = 1. If X �= ∅, then we may
assume that P [X |A] has been defined for all proper subsets A ⊂ X. We define

P [X] = u0 + u1 + · · · + u|X|−1 (8)
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where ui ∈ Sym is homogeneous of degree i for all i such that

∞∑

i=0

ui = −
∑

A⊂X

P [X |A]σ rk(X)−rk(A)(−1)|X|−|A|. (9)

Here A runs over all proper subsets of X.

Definition 2.4 For every polymatroid X = (X, rk) we define a symmetric polynomial

H[X](q, t) ∈ Sym[q, t] = Z[q, t] ⊗Z Sym

by

H[X](q, t) =
∑

A⊆X

P [X |A]qrk(A)t |A|. (10)

The coefficient of t |X| in H[X](q, t) is qrk(X)P [X].

Remark 2.5 If we evaluate (10) at q = σ−1 and t = −1, then we obtain

H[X](σ−1,−1) =
∑

A⊆X

P [X |A]σ− rk(A)(−1)|A| ∈ Sym .

From (8) and (9) it follows that H[X](σ−1,−1) vanishes in degree < d = |X|.

Proposition 2.6 (multiplicative property) For polymatroids X = (X, rkX) and Y =
(Y, rkY ) we have

P [X ⊕ Y] = P [X] · P [Y] (11)

and

H[X ⊕ Y](q, t) = H[X](q, t) · H[Y](q, t). (12)

Proof We prove the proposition by induction on |X| + |Y |. The case where X = Y =
∅ is clear. So let us assume that |X| + |Y | > 0. We may assume that

P [X |A ⊕Y |B ] = P [X |A] · P [Y |B ]
for all subsets A ⊆ X and B ⊆ Y such that A �= X or B �= Y .

H[X ⊕ Y](q, t) =
∑

C⊆X�Y

P [(X ⊕ Y) |C]qrkX�Y (C)t |C|

=
∑

A⊆X

∑

B⊆Y

P [X |A ⊕Y |B ]qrkX(A)+rkY (B)t |A|+|B|

=
∑

A⊆X

P [X |A]qrkX(A)t |A| ·
∑

B⊆Y

P [Y |B ]qrkY (B)t |B|
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+ (
P [X ⊕ Y] − P [X]P [Y])qrkX(X)+rkY (Y )t |X|+|Y |

= H[X](q, t) · H[Y](q, t)

+ (
P [X ⊕ Y] − P [X]P [Y])qrkX(X)+rkY (Y )t |X|+|Y |. (13)

If we substitute q = σ−1 and t = −1 we get

H[X ⊕ Y](σ−1,−1) − H[X](σ−1,−1) · H[Y](σ−1,−1)

= (−1)|X|+|Y |(P [X ⊕ Y] − P [X] · P [Y])σ− rkX(X)−rkY (Y ).

The left-hand side has no terms in degree < |X| + |Y | by Remark 2.5 and

P [X ⊕ Y] − P [X] − P [Y]
is a symmetric polynomial of degree < |X| + |Y |. It follows that

P [X ⊕ Y] = P [X] · P [Y].
From (13) it follows that

H[X ⊕ Y](q, t) = H[X](q, t) · H[Y](q, t). �

The Tutte polynomial is closely related to the rank generating function

R[X](q, t) =
∑

A⊆X

qrk(A)t |A|.

We have

(x − 1)rk(X)R[X]((y − 1)−1(x − 1)−1, (y − 1)) = T [X](x, y),

so the Tutte polynomial is completely determined by the rank generating function
and vice versa. The rank generating function makes sense for polymatroids, not just
matroids. The Tutte invariant may not be a polynomial for polymatroids, because we
could have rk(A) > |A| for some subset A ⊆ X. Define

� : Sym → Q

by

�(sλ) =
{

1 if λ = ();
0 otherwise.

Using base extension, we also get a Q(q, t)-linear map

Sym⊗QQ(q, t) → Q(q, t)

which we also will denote by �. It is straightforward to prove by induction on |X|
that �(P [X]) = 1.
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Corollary 2.7 We have

�(H[X](q, t)) =
∑

A⊆X

qrk(A)t |A| = R[X](q, t).

So H[X](q, t) specializes to the rank generating function and the Tutte polynomial.

3 Examples

Example 3.1 Let 0 = ({v}, rk0) be the loop matroid, and 1 = ({v}, rk1) be the co-loop
matroid defined by

rk0(v) = 0 and rk1(v) = 1.

Then we have P [0] = P [1] = 1, H[0] = 1 + t , H[1] = 1 + qt , G[0] = U(0) and
G[1] = U(1).

An important class of matroids is the class of graphical matroids. Suppose that 	 =
(Y,X,φ) where Y is the set of vertices, X is the set of edges, and φ : X → Pow(Y ) is
a map such that φ(e) is the set of endpoints of the edge e. So φ(e) has 1 or 2 elements
for all e ∈ X. Let V = Kn, and denote the coordinate functions by x1, . . . , xn. To
each vertex e ∈ X, with φ(e) = {i, j} we can associate a subspace Ve ⊆ V defined by
xi = xj . So Ve is a hyperplane unless e is a loop (i.e., i = j ), in which case Ve = V .
For A ⊆ X, we define VA = ⋂

a∈A Va . We define a rank function by

rk(A) = dimV − dimVA, A ⊆ X.

Now X = (X, rk) is a matroid.

Example 3.2 Suppose (Y,X,φ) is an m-gon.

m = 6 :

Then we have

T [X](x, y) = y + x + x2 + · · · + xm−1,

P [X] = 1 − s1 + s11 − · · · + (−1)m−1s1m−1 ,

H[X](q, t) = (1 + qt)m − (qt)m + qm−1tmP [X],
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G[X] = m!U(1,1,...,1,0).

Example 3.3 Suppose that (Y,X,φ) is the graph with 2 vertices and m edges between
them.

m = 5 :

Then we have

T [X](x, y) = x + y + y2 + · · · + ym−1,

P [X] = 1 − (
m−1

1

)
s1 + (

m−1
2

)
s2 − · · · + (−1)m−1

(
m−1
m−1

)
sm−1, (14)

H[X](q, t) = 1 + q

m∑

i=1

(
m

i

)

t i

⎛

⎝
i−1∑

j=0

(−1)j
(

i − 1

j

)

sj

⎞

⎠ . (15)

Here, we use the convention s0 = 1. To prove the formulas (14) and (15) it suffices to
show that the right-hand side of (15) vanishes in degree < m if we substitute q = σ−1

and t = −1. If we make these substitutions, we get (using the combinatorial identity
[23, §1.2.6, (33)])

1 + σ−1
m∑

i=1

(
m

i

)

(−1)i

⎛

⎝
i−1∑

j=0

(−1)j
(

i − 1

j

)

sj

⎞

⎠

= 1 + σ−1
m−1∑

j=0

sj

m∑

i=j+1

(−1)i+j

(
m

i

)(
i − 1

j

)

= 1 + σ−1
m−1∑

j=0

sj

(

(−1)j+1
(−1

j

)

+
m∑

i=0

(−1)i+j

(
m

i

)(
i − 1

j

))

= 1 − σ−1
m−1∑

j=0

sj . (16)

This vanishes in degree < m because σ = 1 + s1 + s2 + · · · . We also have

G[X] = m!U(1,0,0,...,0).

The following example appeared in [5], and was pointed out to the author by
Nathan Reading.
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Example 3.4 The Gray graphs

G1 = , G2 =

have the same Tutte polynomial, namely

T [G1](x, y) = T [G2](x, y) = y5 + 4y4 + xy4 + x2y3 + 6xy3 + 7y3

+ x3y2 + 6y2 + 6x2y2 + 13xy2 + 10xy + x4y + 13x2y + 6x3y

+ 2y + 2x + 7x3 + x5 + 4x4 + 6x2.

However, the coefficients of s2,2,2 in P [G1] and P [G2] are 56 and 55 respectively.

The examples below appeared in the survey of Brylawski and Oxley in [39, pp. 197],
and were also featured in [3].

Example 3.5 Consider 6 points in P
2 = P

2(C) according to the diagram below

(17)

Here 3 or more points are collinear if and only if they lie on a line segment in the
diagram. Dualizing gives us 6 projective lines in P

2 which can be viewed as 6 hyper-
planes in C

3.
Denote the matroid associated with this arrangement by X. Consider 6 points in

P
2 according to the diagram below

(18)

Again, dualizing gives a hyperplane arrangement in C
3. Denote the matroid associ-

ated with this arrangement by Y.
Then X and Y give nonisomorphic matroids, but they have the same Tutte polyno-

mial and the same Billera-Jia-Reiner quasi-symmetric function (see [3]). Moreover,

P [X] = P [Y] = 1 − 3s1 + 3s2 + 6s1,1 − s3 − 8s2,1 − 8s1,1,1

+ 3s3,1 + 6s2,2 + 11s2,1,1 − 3s3,2 − 4s3,1,1 − 3s2,2,1,
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H[X](q, t) = H[Y](q, t),

and

G[X] = G[Y] = 72U(1,1,0,1,0,0) + 648U(1,1,1,0,0,0).

The last equation can easily be computed by hand as follows. There are 6! ways of
labeling the points in diagram (17) by p1,p2,p3,p4,p5,p6. If p1,p2,p3 are not
colinear, then the labeling gives the rank sequence (1,1,0,1,0,0), because p1 spans
a subspace of dimension 1 in C

3, p1 and p2 span a subspace of dimension 1 + 1,
p1,p2,p3 span a subspace of dimension 1 + 1 + 0, p1,p2,p3,p4 span a subspace
of dimension 1 + 1 + 0 + 1, etc. There are 2 · 3!2 = 72 ways of choosing a labeling
such that p1,p2,p3 are colinear. All other 720 − 72 = 648 labelings, give the rank
sequence (1,1,1,0,0,0). A similar reasoning can be used to compute G[Y].

Example 3.6 Let X be the matroid corresponding to the hyperplane arrangement dual
to the point arrangement of the following diagram

Let Y be the matroid corresponding to the hyperplane arrangement dual to the point
arrangement of the following diagram

The Tutte polynomial is the same for X and Y. The Billera-Jia-Reiner quasi-
symmetric function does distinguish the arrangements. We have

P [X] = 1 − 4s1 + 6s2 + 9s1,1 − 4s3 − 17s2,1 − 10s1,1,1

+ s4 + 12s3,1 + 13s2,2 + 17s2,1,1 − 3s4,1 − 10s3,2 − 10s3,1,1 − 8s2,2,1

+ 2s4,2 + 2s4,1,1 + 2s3,3 + 3s3,2,1 + s2,2,2
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and

P [Y] = 1 − 4s1 + 6s2 + 9s1,1 − 4s3 − 17s2,1 − 10s1,1,1

+ s4 + 12s3,1 + 14s2,2 + 17s2,1,1 − 3s4,1 − 12s3,2 − 10s3,1,1 − 10s2,2,1

+ 3s4,2 + 2s4,1,1 + 2s3,3 + 4s3,2,1 + s2,2,2.

We also have

G[X] = 3456U(1,1,1,0,0,0,0) + 1080U(1,1,0,1,0,0,0) + 264U(1,1,0,0,1,0,0)

+ 216U(1,0,1,1,0,0,0) + 24U(1,0,1,0,1,0,0)

and

G[Y] = 3456U(1,1,1,0,0,0,0) + 1104U(1,1,0,1,0,0,0) + 240U(1,1,0,0,1,0,0)

+ 192U(1,0,1,1,0,0,0) + 48U(1,0,1,0,1,0,0).

So the invariants H, P and G distinguish these two matroids as well.

4 Ideals and regularity

4.1 Equivariant free resolutions

Let K be a field, and V be an n-dimensional K-vector space. For any partition λ,
Sλ denotes its corresponding Schur functor. In particular, SdV is the d-th symmetric
power of V , and S1d V = S1,...,1V is the d-th exterior power. Let R = K[V ] be the
ring of polynomial functions on V . The space Rd of polynomial functions of degree
d can be identified with Sd(Z), where Z = V � is the dual space of V . Also, the ring
R = ⊕∞

d=0 Rd can be identified with the symmetric algebra S(Z) := ⊕∞
d=0 Sd(Z)

on Z = V �. By choosing a basis in V and a dual basis {x1, . . . , xn} in V � we may
identify R with the polynomial ring K[x1, . . . , xn]. Let m = ⊕∞

d=1 Rd = (x1, . . . , xn)

be the maximal homogeneous ideal of R.
Suppose that M is a finitely generated graded R-module. Its minimal resolution

can be constructed as follows. First define D0 := M and E0 = D0/mD0. Then E0 is a
finite dimensional, graded vector space. The homogeneous quotient map ψ0 : D0 →
E0 has a homogeneous linear section φ0 : E0 → D0 (which does not need to be an
R-module homomorphism) such that ψ0 ◦ φ0 = id. We can extend φ0 to a R-module
homomorphism φ0 : R ⊗K E0 → D0 in a unique way. The tensor product R ⊗K E0
has a natural grading as a tensor product of two graded vector spaces, and φ0 is
homogeneous with respect to this grading. We inductively define Di,Ei,ψi,φi as
follows. Define Di as the kernel of φi−1 : R ⊗ Ei−1 → Di−1. We set Ei = Di/mDi .
Let φi : Ei → Di be a homogeneous linear section to the homogeneous quotient map
ψi : Di → Ei . We can extend φi to an R-module homomorphism φi : R ⊗ Ei → Di .
By Hilbert’s Syzygy theorem (see [21] and [13, Corollary 19.7]), we get that Di = 0
for i > n. We end up with the minimal free resolution

0 → R ⊗ En → R ⊗ En−1 → ·· ·R ⊗ E0 → M → 0.
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Here Ei can be naturally identified with Torj (M,K).
For a group G and sets X and Y on which G acts, we say that a map φ : X → Y

is G-equivariant if it respects the action, i.e., φ(g · x) = g · φ(x) for all x ∈ X and
g ∈ G. Suppose that G is a linearly reductive linear algebraic group and V is a repre-
sentation of G. Assume that G also acts on the finitely generated graded R-module
M = ⊕

d Md such the multiplication R × M → M is G-equivariant, and Md is a
representation of G for every d . By the definition of linear reductivity, we can choose
the sections φi : Ei → Ki to be G-equivariant. So by induction we see that G acts
regularly on D0,E0,D1,E1,D2,E2, . . . . Also, by induction one can show that the
structure of Di as a G-equivariant graded R-module, and Ei as graded representation
of G do not depend on the choices of the G-equivariant sections φi . We conclude that
Ei

∼= Tori (M,K) has a well-defined structure as a graded G-module.

4.2 Castelnuovo-Mumford regularity

For a finite dimensional graded K-vector space W = ⊕
d∈Z

Wd we define

deg(W) := max{i | Wi �= 0}.
If W = {0} then we define deg(W) = −∞. A finitely generated graded R-module M

is called s-regular if deg(Tori (M,K)) ≤ s + i for all i. The Castelnuovo-Mumford
regularity reg(M) of M is the smallest integer s such that M is s-regular. See [13,
§20.5] for more on Castelnuovo-Mumford regularity.

4.3 Product ideals and regularity bounds

Suppose that Vx , x ∈ X are subspaces of V for some finite set X with d elements.
Assume that X = {1,2, . . . , d}. Let Jx ⊆ K[V ] = S(Z) be the vanishing ideal of Vx .
The ideal Jx is generated by the subspace Zx = V ⊥

x ⊆ Z = V � of all linear functions
vanishing on Vx . For every subset A ⊆ X, we define JA := ∏

x∈X Jx , and let J = JX .
A crucial result we need is:

Theorem 4.1 (Conca and Herzog [7]) The Castelnuovo-Mumford regularity of J is
equal to d .

We define

Ck =
⊕

|A|=k

JA. (19)

Following [33, Chapter IV] we construct a complex

0 → Cd → Cd−1 → ·· · → C0 → 0. (20)

The map ∂k : Ck → Ck−1 can be written as ∂k = ∑
A,B ∂

A,B
k , where

∂
A,B
k : JA → JB.
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Suppose that A = {i1, i2, . . . , ik} with i1 < i2 < · · · < ik , then we define

∂
A,B
k :=

{
0 if B �⊆ A;
(−1)r id if B = {i1, . . . , ir−1, ir+1, . . . , ik}.

The homology of the complex is denoted by

Hk = ker ∂k/ im ∂k+1.

Remark 4.2 Since ∂d is injective, we have that Hd = 0.

Proposition 4.3 [33] If VX := ⋂
x∈X Vx = (0), then the homogeneous maximal ideal

m kills all homology, i.e., mHi = 0 for all i.

The following result is Corollary 20.19 in [13].

Lemma 4.4 If A,B,C are finitely generated graded modules, and

0 → A → B → C → 0

is exact, then

1. reg(A) ≤ max{reg(B), reg(C) + 1};
2. reg(B) ≤ max{reg(A), reg(C)};
3. reg(C) ≤ max{reg(A) − 1, reg(B)}.

Proposition 4.5 Suppose that VX = ⋂
x∈X Vx = (0). Then Hk is concentrated in

degree k (and in particular, it is finite dimensional).

Proof We have reg(Ci) ≤ i by Theorem 4.1. Let Zi and Bi be the kernel, respectively,
the cokernel of ∂i .

First, we prove that

reg(Hi) ≤ reg(Bi) − 1 (21)

for i = 0,1, . . . , d − 1. Since mHi = 0, Hi is just equal to a number of copies of K

in various degrees. From the Koszul resolution it follows that

deg(Torj (Hi,K)) = deg(Hi) + j

for j = 0,1,2, . . . , n, hence reg(Hi) = deg(Hi). The exact sequence

0 → Bi → Zi → Hi → 0 (22)

gives rise to a long exact Tor sequence

0 → Torn(Bi,K) → Torn(Zi,K) → Torn(Hi,K) → Torn−1(Bi,K) → ·· · .

Since Zi is a submodule of a free module, its projective dimension is ≤ n − 1 and
Torn(Zi,K) = 0. Therefore

deg(Torn−1(Bi,K)) ≥ deg(Torn(Hi,K)) = reg(Hi) + n.
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It follows that

reg(Bi) + n − 1 ≥ deg(Torn−1(Bi,K)) ≥ reg(Hi) + n.

This proves (21).
From (22) and Lemma 4.4 it follows that

reg(Zi) ≤ max{reg(Bi), reg(Hi)} = reg(Bi). (23)

By induction on i we will show that reg(Bd−i ) ≤ d − i + 1, reg(Zd−i ) ≤ d − i + 1
and reg(Hd−i ) ≤ d − i. For i = 1 we have reg(Bd−1) = reg(Cd) = d , reg(Zd−1) ≤ d

by (23) and reg(Hd−1) ≤ d − 1 by (21).
Suppose that i > 1. We may assume by induction that Zd−i+1 is (d − i + 2)-

regular. From the exact sequence

0 → Zd−i+1 → Cd−i+1 → Bd−i → 0

it follows that

reg(Bd−i ) ≤ max{reg(Zd−i+1) − 1, reg(Cd−i+1)} ≤ d − i + 1

by Lemma 4.4. Now we have reg(Zd−i ) ≤ d − i + 1 by (23) and reg(Hd−i ) ≤ d − i

by (21).
�

Suppose that G is a linearly reductive group and let Ĝ denote the set of isomor-
phism classes of irreducible representations of G. Let Z

Ĝ be the set of maps Ĝ → Z.
Elements of Z

Ĝ may be thought of as G-Hilbert series. If M is a G-module such that
every irreducible representation appears only finitely many times, then we define

〈M〉 = 〈M〉G ∈ Z
Ĝ.

For every irreducible represention U of G, 〈M〉(U) is the multiplicity of U in M .

Lemma 4.6 Suppose that G acts on Z such that every irreducible representation of
G appears only finitely many times in S(Z). Then we have

∑

A⊂X

(−1)|A|〈JA〉 =
d∑

i=0

(−1)i〈Ci〉 =
d−1∑

i=0

(−1)i〈Hi〉. (24)

Proof The first equality follows from the definition (19). For every i we have exact
sequences

0 → Zi → Ci → imBi−1 → 0

and

0 → Bi → Zi → Hi → 0.
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So we have
∑

i

(−1)i〈Ci〉 =
∑

i

(−1)i〈Zi〉 +
∑

i

(−1)i〈Bi−1〉

=
∑

i

(−1)i〈Zi〉 −
∑

i

(−1)i〈Bi〉 =
∑

i

(−1)i〈Hi〉. (25)
�

5 Realizable polymatroids

5.1 The tensor trick

Let us fix a field K .

Definition 5.1 An arrangement realization of a polymatroid X = (X, rk) over K is
a finite dimensional K-vector space V together with a collection of subspaces Vx ,
x ∈ X such that

rk(A) = dimV − dimVA

for every A ⊆ X, where

VA =
⋂

x∈X

Vx.

Let X = (X, rk) be a polymatroid and set d = |X|. From now on, assume that K is a
field of characteristic 0. Suppose that V is an n-dimensional K-vector space and Vx ,
x ∈ X is a collection of subspaces that form a realization of X.

Let W be another K-vector space and let R(W) := K[V ⊗ W�] be the ring of
polynomial functions on V ⊗ W� = Hom(W,V ). Note that GL(W) acts regularly on
K[V ⊗ W�]. Let Jx(W) ⊆ R(W) be the vanishing ideal of Vx ⊗ W� ⊆ V ⊗ W�. For
a subset A ⊆ X we define

JA(W) =
∏

x∈A

Jx(W)

and we set J (W) := JX(W). Define

Ci(W) :=
⊕

A⊆X
|A|=i

JA(W).

As in (20), we have a complex

0 → Cd(W) → Cd−1(W) → ·· · → C1(W) → C0(W) → 0. (26)

Let Hi(W) be the i-th homology group. By Lemma 4.6, we have

d−1∑

i=0

(−1)i〈Hi(W)〉 =
d∑

i=0

(−1)i〈Ci(W)〉 =
∑

A⊆X

(−1)|A|〈JA(W)〉. (27)
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If f = ∑
λ aλsλ ∈ Z[[e1, e2, . . . ]], then we define

f � W =
∑

aλ〈Sλ(W)〉.

For example, we have

σ � W = (s0 + s1 + s2 + s3 + · · · ) � W =
∞∑

i=0

〈Si(W)〉 = 〈S(W)〉.

If f,g ∈ Z[[e1, e2, . . . ]], then

(f · g) � W = (f � W) ⊗ (g � W).

5.2 Product ideals and the invariants P [X], H[X](q, t)

Theorem 5.2 We have

(
σn−rk(X)P [X]) � W =

∑

A⊆X

(−1)|A|〈JA(W)〉 (28)

and
(
σnH[X](σ−1,−1)

)
� W = 〈J (W)〉. (29)

Proof We prove the statement by induction on d = |X|. If X = ∅, then P [X] = 1 and

σn � W = 〈S(W)⊗n〉 = 〈S(W ⊗ V �)〉 = 〈K[V ⊗ W�]〉 = 〈R(W)〉 = 〈J∅(W)〉,
so (28) holds.

For every A ⊆ X, define

ZA :=
∑

B⊆A

(−1)|B|〈JB(W)〉.

By Möbius inversion, we get

〈JB(W)〉 =
∑

A⊆B

(−1)|A|ZA.

By induction we may assume that

(
σn−rk(A)P [X |A]) � W = ZA

for all proper subsets A ⊂ X.
Let us assume that VX = (0). From (27) and Proposition 4.5 it follows that ZX is

a combination of 〈Sλ(W)〉 with |λ| < d . Consider

(
σnH[X](σ−1,−1)

)
� W − 〈J (W)〉
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=
∑

A⊆X

(−1)|A|(σn−rk(A)P [X |A]) � W − 〈J (W)〉

= (−1)|X|(σn−rk(X)P [X] � W − ZX

) +
∑

A⊆X

(−1)|A|ZA − 〈J (W)〉

= (−1)|X|(σn−rk(X)P [X] � W − ZX

)
. (30)

In (σ nH[X](σ−1,−1)) � W and 〈J (W)〉 only terms 〈Sλ(W)〉 appear with |λ| ≥ d .
On the other hand, in σn−rk(X)P [X] � W and ZX only terms 〈Sλ(W)〉 appear with
|λ| < d . It follows that the left-hand side and the right-hand side of (30) are equal to
0.

Suppose that VX �= (0). Let V ′ be a complement of VX in V of dimension n −
r(X). Define V ′

x = V ′ ∩ Vx for all x ∈ X and V ′
A = V ′ ∩ VA = ⋂

x∈A V ′
x for all

A ⊆ X. We have that V ′
X = V ′ ∩ VX = (0) and V ′

A = V ′
A ⊕ VX for all A ⊆ X. It

follows that

rk(A) = dimV − dimVA = (dimV ′ + dimVX) − (dimV ′
A + dimVX)

= dimV ′ − dimV ′
A.

Let J ′
x(W) ⊆ K[V ′ ⊗W�] be the vanishing ideal of V ′

x ⊗W� inside V ′ ⊗W�. Define
J ′

A(W) = ∏
x∈A J ′

x(W) and set J ′(W) = J ′
X(W). By the previous case,

(
σ rk(X)H[X](σ−1,−1)

)
� W = 〈J ′(W)〉

and

P [X] � W =
∑

A⊆X

(−1)|A|〈J ′
A(W)〉.

It follows that

J (W) = J ′(W) ⊗ S(V �
X ⊗ W) = J ′(W) ⊗ S(W)⊗(n−rk(X))

and
(
σnH[X](σ−1,−1)

)
� W = (

σ rk(X)H[X](σ−1,−1)
)
� W ⊗ 〈S(W)⊗(n−rk(X))〉

= 〈J ′(W) ⊗ S(W)⊗(n−rk(X))〉 = 〈J (W)〉. (31)

Similarly, from

P [X] � W =
∑

A⊆X

(−1)|A|〈J ′
A(W)〉

it follows that

(σ n−rk(X)P [X]) � W =
∑

A⊆X

(−1)|A|〈J ′
A(W) ⊗ S(W)⊗(n−rk(X))〉

=
∑

A⊆X

(−1)|A|〈JA(W)〉.
�
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Corollary 5.3 Suppose that VX = (0). If we write

P [X] = u0 − u1 + u2 − · · · + (−1)d−1ud−1

where ui is a homogeneous symmetric polynomial of degree i for all i, then

ui � W = 〈Hi(W)〉.

Proposition 5.4 We can write

H[X](σ−1,−1) = wd − wd+1 + wd+2 − wd+3 + · · · ,

where d = |X| and wi is a homogeneous symmetric polynomial of degree i. We have

wd+i � W = 〈Tori (J (W),K)〉.

Proof Since J (W) is d-regular and generated in degree d , it has a linear minimal
free resolution. We can choose this resolution to be GL(W)-equivariant. Define

Ei(W) := Tori (J (W),K).

The minimal resolution has the form

0 → E
(W) ⊗ R(W) → ·· · → E1(W) ⊗ R(W) → E0(W) ⊗ R(W) → J (W) → 0,

where 
 = pd(J (W)) is the projective dimension of J (W). We have

(
σnH[X](σ−1,−1)

)
� W = 〈J (W)〉 =


∑

i=0

(−1)i〈Ei(W) ⊗ R(W)〉,

so

H[X](σ−1,−1) � W = ( ∞∑

i=0

(−1)iwd+i

)
� W =


∑

i=0

(−1)i〈Ei(W)〉. �

Example 5.5 Let V = C and let V1 = V2 = · · · = Vd = {0}. The rank function is the
same as in Example 3.3.

H[X](q, t) = 1 + q

d∑

i=1

(
d

i

)

t i

⎛

⎝
i−1∑

j=0

(−1)j
(

i − 1

j

)

sj

⎞

⎠ .

The ideal J (W) = m(W)d where m(W) is the maximal homogeneous ideal in K[V ⊗
W�] ∼= K[W�] ∼= S(W).

For d = 1 we have

H[X](q, t) = 1 + qt.

It follows that

H[X](σ−1,−1) = 1 − σ−1 = s1 − s1,1 + s1,1,1 − · · · .
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This shows that the i-th free module in the free resolution is S(W) ⊗ S1,1,...,1W ∼=
S(W) ⊗ ∧i

(W). So the minimal resolution is

· · · → S(W) ⊗ S1,1(W) → S(W) ⊗ W → m(W) → 0,

which is of course the Koszul resolution of the maximal ideal m(W). For d = 2, we
get

H[X](q, t) = 1 + 2qt + qt2(1 − s1)

and

H[X](σ−1,−1) = 1 − σ−1(1 + s1) = s2 − s2,1 + s2,1,1 − · · · .

So this means the equivariant minimal free resolution of m(W)2 looks like

· · · → S(W) ⊗ S2,1,1(W) → S(W) ⊗ S2,1(W) → S(W) ⊗ S2(W) → m(W)2 → 0.

5.3 Nonnegativity results for the coefficients of P [X] and H[X](q, t)

Corollary 5.6 Suppose that X = (X, rk) is realizable over a field K of characteris-
tic 0.

1.

σ rk(X)H[X](σ−1,−1) =
∑

λ

aλsλ, (32)

where λ runs over all partitions with |λ| ≥ d and aλ ≥ 0 for all λ;
2.

P [X] =
∑

λ

(−1)|λ|bλsλ,

where λ runs over all partitions with |λ| < d and bλ ≥ 0 for all λ;
3.

H[X](σ−1,−1) =
∑

λ

(−1)|λ|cλsλ,

where λ runs over all partitions λ with |λ| ≥ d with more than |λ|/ rk(X) parts,
and cλ ≥ 0 for all λ.

Proof Assume, as before, that V together with Vx , x ∈ X form a realization of X. We
may also assume that VX = (0).

(1) From Remark 2.5 it follows that no sλ with |λ| < d appears in the left-hand
side of (32). If we choose dimW ≥ |λ| then Sλ(W) �= 0 and 〈Sλ(W)〉 appears with a
nonnegative coefficient on the right-hand side of (31). Therefore, the coefficient of sλ
in σ rk(X)H[X](σ−1,−1) is nonnegative.

(2) This follows from Corollary 5.3.
(3) The nonnegativity of cλ follows from Proposition 5.4. If 
 = pd(J (W)) is the

projective dimension of J (W), then we have


 = pd(J (W)) = pd(R(W)/J (W)) − 1 < dimV dimW = rk(X)dimW.
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Suppose λ = (λ1, . . . , λk) and the coefficient of sλ in H[X](σ−1,−1) is nonzero. If
W is k-dimensional, then Sλ(W) �= 0, so E|λ|(W) �= 0 and |λ| ≤ 
 < rk(X)k. �

Conjecture 5.7 Corollary 5.6 is true, even if X = (X, rk) is a polymatroid that is not
realizable.

5.4 The Rees ring and the invariant H̃ [X](q, t, y)

Instead of looking at the GL(W)-Hilbert series of J (W), one could also consider the
GL(W)-Hilbert series of the Rees ring

R(W)[yJ (W)] = R(W) ⊕ yJ (W) ⊕ y2J (W)2 ⊕ · · · ,

where y is an indeterminate. This Hilbert series is

σn
∞∑

i=0

H[Xi](σ−1,−1)yi,

where

Xi = X ⊕ X ⊕ · · · ⊕ X︸ ︷︷ ︸
i

.

It is therefore natural to define the invariant

H̃[X](q, t, y) :=
∞∑

i=0

H[Xi](q, t)yi .

Another interesting ring is the subalgebra T (W) of R(W) generated by

(W ⊗ Z1)(W ⊗ Z2) · · · (W ⊗ Zd).

The degree kd part in T (W) (or degree k after rescaling) is equal to the degree (kd, d)

part in R(W). If we take

σnH̃[X](σ−1,−1, z−1),

replace sλ by z|λ|dsλ for all λ and then set z = 0, then we obtain the Hilbert series of
T (W).

It was proven in [6] that the algebra T (W) is Koszul when Z1,Z2, . . . ,Zd are
transversal. If Conjecture 4.2 in that paper is true, then T (W) is Koszul for arbitrary
subspaces Z1, . . . ,Zd . Such a Koszul duality would lead to new interesting interpre-
tations of the coefficients of H̃.

6 The polarized Schur functor

6.1 The space Sλ(Z1, . . . ,Zd)

Assume again that X = (X, rk) is a polymatroid, K is a field of characteristic 0, and
that we have a realization given by a vector space V and subspaces Vx , x ∈ X. Define
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Z = V �, and for every x ∈ X, let Zx = V ⊥
x be the set of all linear functionals on V

vanishing on Vx . Also, for any A ⊆ X, let

ZA = V ⊥
A =

∑

x∈A

Zx.

We have

rk(A) = dimV − dimVA = dimZA

for all A ⊆ X.
Let �d be the symmetric group on d letters. Its irreducible representations are Tλ

where λ runs over all partitions of d .
Schur-Weyl duality gives a decomposition

Z⊗d := Z ⊗ Z ⊗ · · · ⊗ Z︸ ︷︷ ︸
d

∼=
⊕

λ

SλZ ⊗ Tλ

as a representation of GL(Z) × �d . Let

πλ : Z⊗d → SλZ ⊗ Tλ

be the GL(Z) × �d -equivariant projection. There is a unique GL(Z) × �d -
equivariant linear map

θλ : Z⊗d ⊗ T �
λ → Sλ(Z)

such that

θλ(z ⊗ ϕ) = (id⊗ϕ)πλ(z)

for every z ∈ Z⊗n and ϕ ∈ T �
λ . Note that T �

λ
∼= Tλ as representations of �d .

Definition 6.1 We define

Sλ(Z1,Z2, . . . ,Zd) = θλ(Z1 ⊗ Z2 ⊗ · · · ⊗ Zd ⊗ Tλ).

Remark 6.2 For a permutation τ ∈ �d we have

Sλ(Z1, . . . ,Zd)

= θλ(Z1 ⊗ · · · ⊗ Zd) ⊗ Tλ)

= θλ(τ
−1(Z1 ⊗ · · · ⊗ Zd ⊗ Tλ))

= θλ(τ
−1(Z1 ⊗ · · · ⊗ Zd) ⊗ Tλ)

= θλ(Zτ(1) ⊗ · · · ⊗ Zτ(d)) ⊗ Tλ)

= Sλ(Zσ(1), . . . ,Zσ(d)). (33)

In other words, Sλ(Z1, . . . ,Zd) does not depend on the order of Z1, . . . ,Zd .
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Note that

Sλ(Z,Z, . . . ,Z
︸ ︷︷ ︸

d

) = Sλ(Z).

6.2 The connection between Sλ(Z1, . . . ,Zd) and H[X](q, t)

Proposition 6.3 Let us write

σnH[X](σ−1,−1) =
∑

λ

aλsλ,

where λ runs over all partitions with |λ| ≥ d . Then we have

aλ = dimSλ(Z1,Z2, . . . ,Zd,Z, . . . ,Z
︸ ︷︷ ︸

|λ|−d

).

Proof Let r = |λ| and m(W) be the maximal homogeneous ideal of R(W). The de-
gree r part of J (W) is

J1(W)J2(W) · · ·Jd(W)m(W)r−d .

Set U = W ⊗ V � = W ⊗ Z and Ui = W ⊗ Zi . Then Cauchy’s formula tells us that

R(W) = S(W ⊗ Z) =
⊕

λ

SλW ⊗ SλZ.

The degree r part of J (W) is

U1 · U2 · · ·Ud · Ur−d ⊂ Sr(U) =
⊕

|λ|=r

SλW ⊗ SλZ.

So if

πU
r : U ⊗ U ⊗ · · · ⊗ U︸ ︷︷ ︸

r

→ Sr(U)

is the canonical projection, then the degree r part of J (W) is

πr(U1,U2, . . . ,Ud,U, . . . ,U
︸ ︷︷ ︸

r−d

).

Let γλ : Sr(U) → SλW ⊗ SλZ be the projection. The isotypic component of J (W)

for the representation Sλ(W) is

γλ(πr(U1 ⊗ · · · ⊗ Ud ⊗ Ur−d)).

We have

U⊗r = (Z ⊗ W)⊗r = Z⊗r ⊗ W⊗r =
⊕

λ

Sλ(W) ⊗ Tλ ⊗ Z⊗r
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∼=
⊕

λ

Sλ(W) ⊗ Z⊗r ⊗ Tλ.

If we first project U⊗r onto Sλ(W) ⊗ Z⊗r ⊗ Tλ and then we apply

id⊗πZ
λ : Sλ(W) ⊗ Z⊗r ⊗ Tλ → SλW ⊗ SλZ

then we get a nonzero GL(V ) × GL(Z) × �r equivariant linear map

U⊗r → SλW ⊗ SλZ.

This map must be, up to a non-zero scalar, equal to the composition γλ ◦πr . It follows
that

γλ(πr(U1 ⊗ · · · ⊗ Ud ⊗ Ur−d)) = id⊗πλ(Sλ(W) ⊗ Z1 ⊗ · · · ⊗ Zd ⊗ Zr−d ⊗ Tλ)

= SλW ⊗ Sλ(Z1, . . . ,Zd,Z, . . . ,Z
︸ ︷︷ ︸

r−d

).

So, as GL(W)-modules, we have an isomorphism

J (W) ∼=
⊕

λ

Sλ(Z1,Z2, . . . ,Zd,Z, . . . ,Z
︸ ︷︷ ︸

|λ|−d

) ⊗ Sλ(W).

Since aλ is the multiplicity of SλW in J (W), we get

aλ = dimSλ(Z1, . . . ,Zd,Z, . . . ,Z
︸ ︷︷ ︸

r−d

).

�

For A ⊆ X, let us define

Sλ,A := Sλ(Vx1 , . . . , Vxk
,V , . . . , V
︸ ︷︷ ︸

|λ|−k

),

where k = |A| and A = {x1, . . . , xk}. If |λ| < k, then we define Sλ,A = 0. Define

Cλ,k =
⊕

|A|=k

Sλ,A.

Then we get

Ck =
⊕

λ

Cλ,k ⊗ Sλ(W).

The maps in the complex (26) are GL(W)-equivariant, and by taking the isotypic
component for Sλ(W) we get a complex

0 → Cλ,
 ⊗ Sλ(W) → ·· · → Cλ,1 ⊗ Sλ(W) → Cλ,0 ⊗ Sλ(W) → 0,
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where 
 = min{d, |λ|}. Since all maps in this complex are GL(W)-equivariant, the
complex is obtained from a complex

0 → Cλ,
 → ·· · → Cλ,1 → Cλ,0 → 0 (34)

by tensoring it by Sλ(W). The map ∂k : Cλ,k → Cλ,k−1 can be written as ∂k =
∑

A,B ∂
A,B
k , where

∂
A,B
k : Sλ,A → Sλ,B.

Suppose that A = {i1, i2, . . . , ik} with i1 < i2 < · · · < ik , then we have

∂
A,B
k :=

{
0 if B �⊆ A;
(−1)r id if B = {i1, . . . , ir−1, ir+1, . . . , ik}.

Let Hλ,i be the i-th homology group of (34). From

Hi(W) =
⊕

λ

Hλ,i ⊗ Sλ(W)

and Corollary 5.3 now follows the following statement.

Corollary 6.4 Suppose that VX = 0, which means that ZX = Z. Write

P [X] =
∑

λ

(−1)|λ|bλsλ.

Then we have

dimHλ,i =
{

0 if |λ| �= i;
bλ if |λ| = i.

The dimension of

SλZ = Sλ(Z,Z, . . . ,Z
︸ ︷︷ ︸

d

)

(where d = |λ|) is exactly the number of Young Tableau of shape λ and entries in the
set {1,2, . . . , n}. In fact, given a basis of Z, an explicit basis of SλZ can be given in
terms of these Young tableaux (see [14, §8.1, Theorem 1]).

Problem 6.5 Give a combinatorial interpretation of

dimSλ(Z1,Z2, . . . ,Zd),

perhaps in terms of certain fillings of Young diagrams. Moreover, can one give an
explicit basis of Sλ(Z1, . . . ,Zd)?

Such a combinatorial setup might still have a meaning for non-realizable polyma-
troids. An explicit bases of Sd(Z1, . . . ,Zd) was given in [6, Corollary 5.10] in case
the subspaces Z1, . . . ,Zd of Z are generic.

Also, one can ask the same questions for Hλ := Hλ,|λ|. Such results might prove
Conjecture 5.7.
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7 Quasi-symmetric functions associated to polymatroids

7.1 The Hopf algebras Mat and PolyMat

Although most of the Hopf algebras in this section can be defined over the integers
Z, we will choose to define them over Q for simplicity. In [32] the matroid Hopf
algebra Mat was introduced (see also [9–11]). This construction easily generalizes to
polymatroids.

Let us first introduce the Hopf algebra of polymatroids, PolyMat. For a polyma-
troid X = (X, rk), we denote its isomorphism class by [X]. As a Q-vector space,
PolyMat has a basis consisting of all isomorphism classes of polymatroids. We de-
fine a product by

[X] · [Y] := [X ⊕ Y].
Also, a coproduct � : PolyMat → PolyMat⊗Q PolyMat is defined by

�[X] =
∑

A⊆X

[X |A] ⊗ [X/A].

This coproduct is coassociative, but in general not cocommutative. The unit is [∅]
where ∅ denotes the empty polymatroid. A counit ε : PolyMat → Q is given by

ε([X]) =
{

1 if X = ∅
0 otherwise.

The bialgebra PolyMat has a grading such that [X] has degree |X| for every poly-
matroid X = (X, rk). This makes PolyMat into a connected graded bialgebra. It was
shown in [27] that one can define an antipode such that PolyMat becomes a Hopf
algebra.

Let Mat be the subspace spanned by all [X] where X is a matroid. Then Mat is
sub-Hopf algebra of PolyMat.

7.2 The Hopf algebra NSym

Let NSym Q〈p1,p2,p3, . . . 〉 be the ring of noncommutative polynomials in the inde-
terminates p1,p2,p3, . . . . We define a Hopf algebra structure on NSym as follows.
The comultiplication � : NSym → NSym⊗NSym by

�(pi) = pi ⊗ 1 + 1 ⊗ pi

for all i. The counit ε : NSym → Q is defined by

ε(pi) = 0

for all i. The antipode is defined by

pi �→ −pi
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for all i. A basis of NSym is given by all noncommutative monomials in p1,p2, . . . .
It is also convenient to have a different basis. We define h1, h2, . . . by the following
equality of generating functions in NSym[[t]]. Define

H(t) = h1t + h2t
2 + h3t

3 + · · ·

and

P(t) = p1t + p2t
2 + p3t

3 + · · · .

Then h1, h2, h3, . . . are defined by

1 + H(t) = exp(P (t)).

Here exp(t) denotes the power series of the exponential function

exp(t) = 1 + t + t2

2! + t3

3! + · · · .

So we have

hk =
k∑

r=1

1

r!
( ∑

i1,...,ir
i1+···+ir=k

pi1pi2 · · ·pir

)
. (35)

If α = (i1, . . . , ir ) is a sequence of positive integers, then we will write pα instead
of pi1pi2 · · ·pir and hα instead of hi1hi2 · · ·hir . The length of α is 
(α) := r , and we
define |α| = i1 + i2 + · · · + ir . We can rewrite (35) as

hk =
∑

α
|α|=k

pα


(α)! . (36)

Inverting gives

P(t) = log(1 + H(t)),

where

log(1 + t) = t − t2

2
+ t3

3
− · · · ,

so

pk =
k∑

r=1

(−1)r−1

r

∑

i1,...,ir
i1+···+ir=k

hi1hi2 · · ·hir .

Again, we can rewrite this as

pk =
∑

α

(−1)
(α)−1hα


(α)
. (37)
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From

�(P (t)) = P(t) ⊗ 1 + 1 ⊗ P(t)

it follows that

�(1 + H(t)) = �(exp(P (t)) = �(exp(P (t) ⊗ 1 + 1 ⊗ P(t)))

= exp(P (t) ⊗ 1) exp(1 ⊗ P(t)) = ((1 + H(t)) ⊗ 1) · (1 ⊗ (1 + H(t)))

= (1 + H(t)) ⊗ (1 + H(t))

inside the ring

NSym⊗NSym[[t]] = NSym[[t]] ⊗Q[[t]] NSym[[t]].
If we use the convention h0 = 1, then we have

�(hk) =
k∑

i=0

hi ⊗ hk−i .

The Hopf algebra NSym is not commutative, but it is cocommutative.

7.3 The Hopf algebra QSym

Let QSym be the Hopf algebra of quasi-symmetric functions (see [15, 16, 18, 19]).
For a sequence α = (α1, . . . , αr) of positive integers we define an element Mα ∈
Q[x1, x2, . . . ] by

Mα :=
∑

0<i1<i2<···<ir

x
α1
1 x

α2
2 · · ·xαr

r .

The ring QSym is the subring of Q[x1, x2, x3, . . . ] spanned by all Mα . The Q-vector
space QSym is closed under multiplication. We will view QSym as the graded dual
vector space of NSym where the {Mα} form a dual basis of the {hα}. As such, QSym
is a Hopf algebra in a natural way. Also, let {Pα} be a dual basis of {pα}. We have
that

PαPβ =
∑

γ

Pγ ,

where γ runs over all
(


(α) + 
(β)


(α)

)

shuffles of α and β . If α = (α1, . . . , αr), then

�(Pα) =
∑

β,γ ;βγ=α

Pβ ⊗ Pγ .

The antipode on QSym is given by

Pα �→ (−1)
(α)Pα.
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From (36) it follows that

hα = hi1 · · ·hir =
∑

β1,...,βr
|β1|=i1,...,|βr |=ir

pβ1β2···βr


(β1)! · · ·
(βr)! , (38)

where α = (i1, . . . , ir ). Dualizing (38) gives

Pβ =
∑

r

∑

β1 ···βr
β=β1 ···βr

M|β1|,...,|βr |

(β1)!
(β2)! · · ·
(βr)! .

From (37) it follows that

pα = pi1 · · ·pir =
∑

β1,...,βr
|β1|=i1,...,|βr |=ir

(−1)
(β1)+···+
(βr )−rhβ1β2···βr


(β1) · · ·
(βr)
. (39)

Dualizing (39) yields

Mβ =
∑

r

∑

β1 ···βr
β=β1 ···βr

(−1)
(β)−r P|β1|,...,|βr |

(β1) · · ·
(βr)

. (40)

7.4 Combinatorial Hopf algebras and the invariant F [X]

Billera, Jia and Reiner defined a homomorphism of Hopf algebras

F : Mat → QSym

(see [3, 26]). One way to define this map is using a universal property of QSym.
A combinatorial Hopf algebra (over Q) is a pair (H, ζ ) where H = ⊕

d≥0 Hd

is a graded Hopf algebra with H0 = Q and Hd is finite dimensional for all d , and
ζ : H → Q is a character (i.e., an algebra homorphism). A morphism ϕ : (H′, ζ ′) →
(H, ζ ) is a Hopf-algebra morphism ϕ : H′ → H such that ζ ◦ ϕ = ζ ′.

Aguiar, Bergeron and Sottile proved that there exists a terminal object in the cate-
gory of combinatorial Hopf algebras over Q, namely (QSym, ζ ) where ζ = ζQSym is
defined by

ζ(Mα) =
{

1 if 
(α) ≤ 1;
0 otherwise.

We can define a character ζ = ζMat on Mat by

ζ([X]) =
{

1 if X completely splits into loop and coloop matroids;
0 otherwise.

Since (QSym, ζQSym) is terminal, there is a unique homomorphism

F : (Mat, ζM) → (QSym, ζQSym)
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of combinatorial Hopf algebras.
Although F is a powerful invariant for matroids, it cannot distinguish between a

loop and an isthmus.

7.5 The new quasi-symmetric function invariant G[X]

It sometimes is convention to shift the indices by 1, so for a vector a = (a1, a2, . . . , ad)

of nonnegative integers, we define

U(a1,a2,...,ad ) := Pa1+1,a2+1,...,ad+1.

Definition 7.1 We define a Q-linear map

G : PolyMat → QSym

defined by

G[X] =
∑

X

Ur(X),

where X runs over all maximal chains

X : ∅ = X0 ⊂ X1 ⊂ · · · ⊂ Xd = X

and

r(X) := (rk(X1) − rk(X0), rk(X2) − rk(X1), . . . , rk(Xd) − rk(Xd−1)).

We call r(X) the rank sequence for X. The multiset of all r(X) where X runs over
all maximal chains in X, we will call the rank sequences for X. If X = (X, rk) then
there are exactly |X|! rank sequences.

Lemma 7.2 The linear map G is a homomorphism of Hopf algebras.

Proof If X has a rank sequence γ = r(X) and γ = αβ , then α is a rank sequence for
X |A and β is a rank sequence for X/A, where A = Xi and i = 
(α) is the length of
α. So we have

G ⊗ G ◦ �([X]) =
∑

A⊆X

G[X |A] ⊗ G[X/A]

=
∑

A⊆X

∑

α

∑

β

Uα ⊗ Uβ = �(
∑

γ

Uγ ) = �(G[X]), (41)

where α runs over all rank sequences for X |A, β runs over all rank sequences of X/A

and γ runs over all rank sequences for X.
To see that G commutes with the product, note that the rank sequences for X ⊕ Y

are exactly all shuffles of rank sequences for X and Y.
It is easy to verify that G is compatible with the unit and counit. �
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For a vector α = (α1, α2, . . . , αd), define

α∨ = (1 − αd,1 − αd−1, . . . ,1 − α1).

Lemma 7.3 For a matroid X = (X, rk) we have

G[X∨] =
∑

X

Ur(X)∨ .

Proof For a maximal chain X, define a chain X∨ by X∨
i := X \ Xd−i . Note that

rk∨(Xi) = |X| − rk(X) + rk(Xd−i )

and

rk∨(X∨
i ) − rk∨(X∨

i−1) = 1 − (rk(Xd−i+1) − rk(Xd−i )).

If α runs over all rank sequence for X, then α∨ runs over all rank sequences for X∨. �

7.6 G specializes to F

Let us define another character γ : QSym → Q by

γ (Pα) = 0

if α is not weakly increasing. Otherwise, write α = (α
k1
1 , α

k2
2 , · · · , α

ks
s ) with

α1 < α2 < · · · < αs,

and define

γ (Pα) = 1

k1!k2! · · ·ks ! .

Suppose that α′ = (α
l1
1 , · · · , α

ls
s ). Then

PαPα′ =
(

l1 + k1

k1

)(
l2 + k2

k2

)

· · ·
(

ls + ks

ks

)

Pδ + P ′,

where δ = (α
k1+l1
1 , . . . , α

ks+ls
s ) and P ′ is a linear combination of Pδ’s where δ is

not weakly increasing. The binomials appear from the fact there are
(
li+ki

ki

)
ways to

shuffle α
ki

i and α
li
i . If we apply γ we get

γ (PαPα′) = γ (Pδ) =
(
l1+k1

k1

) · · · (ls+ks

ks

)

(l1 + k1)! · · · (ls + ks)! = 1

k1! · · ·ks ! ·
1

l1! · · · ls ! = γ (Pα)γ (Pα′).

This shows that γ is multiplicative. Since (QSym, ζ ) is the terminal object for the
combinatorial Hopf algebras, there is a unique morphism of combinatorial Hopf al-
gebras

θ : (QSym, γ ) → (QSym, ζ ).
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Theorem 7.4 We have

θ ◦ G |Mat= F ,

where G |Mat is the restriction of G to Mat.

Proof We claim that

ζ = γ ◦ G |Mat .

Suppose that X = (X, rk) is a matroid with d := |X| and n := rk(X) ≤ d . Then
γ (G[X]) is equal to N

n!(d−n)! , where N counts the number of maximal chains

X0 = ∅ ⊂ X1 ⊂ · · · ⊂ Xd = X

with

0 = rk(X0) = · · · = rk(Xd−n) = 0 (42)

and

rk(Xd−n+i ) = i (43)

for i = 1,2, . . . , n. Let Y = Xd−n and Z = X \ Y . For a subset A ⊆ X, we have

rk(A) ≥ rk(X) − rk(X \ A)

and

rk(X \ A) ≤ rk(Y \ A) + rk(Z \ A) = rk(Z \ A) ≤ |Z| − |Z ∩ A| = n − |Z ∩ A|.
It follows that

rk(A) ≥ rk(X) − rk(X \ A) = n − (n − |Z ∩ A|) = |Z ∩ A|.
We also have

rk(A) ≤ rk(A ∪ Y) ≤ rk(Y ) + |A ∪ Y | − |Y | = |A ∩ Z|.
We conclude that

rk(A) = |A ∩ Z|
for all A ⊆ X. This implies that

(X, rk) = 0 · 0 · · ·0︸ ︷︷ ︸
d−n

·1 · 1 · · ·1︸ ︷︷ ︸
n

, (44)

where 0 is the loop matroid, and 1 is the isthmus matroid. In particular, if (X, rk)

does not split completely, then γ (G[X]) = 0.
Suppose that X = (X, rk) splits completely as in (44). Without loss of generality,

we may assume that X = {1,2, . . . , d}, and rk(A) = |A∩Z| where Y = {1,2, . . . , d −
n} and Z = X \ Y .
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A flag

X0 = ∅ ⊂ X1 ⊂ · · · ⊂ Xd = X

satisfies (42) and (43) if and only if Xd−n = Y . There are (d − n)! flags

∅ = X0 ⊂ · · · ⊂ Xd−n = Y

and n! flags

Y = Xd−n ⊂ Xd−n+1 ⊂ · · ·Xd = X.

It follows that N = n!(d − n)!, and

γ (G[X]) = N

n!(d − n)! = 1.

It follows that γ ◦ G |Mat= ζ = ζ([X]). By the uniqueness, we get θ ◦ G |Mat= F . �

Note that

G(Mat) ⊆ QSym2,

where QSym2 is the sub-Hopf algebra of QSym spanned by all Qα’s where α is a
sequence of 0’s and 1’s. The algebra QSym2 is the graded dual of the Hopf algebra
Q〈p1,p2〉. Now θ restricts to a homomorphism

θ2 : QSym2 → QSym .

Proposition 7.5 The homomorphism θ2 is surjective, and the kernel of θ2 is the prin-
cipal ideal generated by P(2) − P(1) = U(1) − U(0).

Proof The surjectivity follows from the fact that F is surjective. We choose the grad-
ing on QSym2 where Pα has degree 
(α). There are 2d basis elements Pα of degree
d . So the Hilbert series of the QSym2 is

1 + 2t + 22t2 + · · · = 1

1 − 2t
.

Note that QSym2 is not finitely generated as a commutative algebra.
On QSym, we choose the grading where Pα has degree |α|. There is one basis

element of degree 0, namely P() and for d > 0 there are 2d−1 basis elements of
degree d , because there are 2d−1 decompositions of d . So the Hilbert series of QSym
with this grading is

1 + t + 2t2 + 22t3 + · · ·1 + t

1 − 2t
= 1 − t

1 − 2t
.

Therefore, the Hilbert series of the kernel of θ2 is

1

1 − 2t
− 1 − t

1 − 2t
= t

1 − 2t
.
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The kernel contains the principal ideal (P(2) − P(1)). It is not hard to see that P(2) −
P(1) is not a zero divisor, so the Hilbert series of the principal ideal is t

1−2t
. Since this

is equal to the Hilbert series of the kernel of θ2 we must have

ker θ2 = (P(2) − P(1)). �

7.7 G specializes to H

Theorem 7.6 There exists a homomorphism τ : QSym → Sym[q, t] of commutative
algebras such that τ(G[X]) = H[X] for every polymatroid X.

Proof We will inductively define a symmetric function P (α) for any vector
α = (α1, . . . , αd) of nonnegative integers as follows. We define P () = 1. Then
P (α1, . . . , αd) is the unique symmetric function of degree < d such that

d∑

i=0

(
d

i

)

P (α1, . . . , αi)(−1)iσ−α1−···−αi (45)

vanishes in degree < d . For a vector α = (α1, . . . , αd) and i < d , let α[i] =
(α1, . . . , αi) be the truncated vector. So (45) becomes

d∑

i=0

(
d

i

)

P (α[i])(−1)iσ−|α[i]|. (46)

Define

P̃ [X] = 1

d!
∑

X

P (r(X)) (47)

for every polymatroid X = (X, rk) such that d = |X|. Here X runs over all maximal
chains in X.

We claim that P [X] = P̃[X]. The claim is clearly true when |X| = 0 or |X| = 1.
Note that P̃ [X] is a symmetric polynomial of degree < d = |X|. To prove the claim
it suffices to show that

∑

A⊆X

P̃[X |A](−1)|A|σ− rk(A) (48)

vanishes in degree < d . The symmetric polynomial (47) is equal to

d∑

i=0

∑

A⊆X
|A|=i

1

i!
∑

A

P (r(A))(−1)iσ− rk(A), (49)

where A runs over all maximal chains in A. Every such chain A can be extended to
(d − i)! maximal chains in X. Therefore, (49) is equal to

d∑

i=0

1

i!(d − i)!
∑

X

P (r(X)[i])(−1)iσ−|r(X)[i]|
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= 1

d!
∑

X

d∑

i=0

(
d

i

)

P (r(X)[i])(−1)iσ−|r(X)[i]| (50)

which vanishes in degree < d .
For a vector α = (α1, . . . , αd), define

τ(Uα) =
d∑

i=0

1

i!(d − i)! P (α[i])q |α[i]|t i .

If X = (X, rk) is a polymatroid with |X| = d , then we have

τ(G[X]) = τ(
∑

X

Ur(X)) =
∑

X

τ(Ur(X)) =
∑

X

d∑

i=0

1

i!(d − i)! P (r(X)[i])q |r(X)[i]|t i .

(51)
For every subset A ⊆ X with |A| = i, and every maximal chain A in A there are
exactly (d − i)! maximal chains X in X extending A. Therefore, (51) is equal to

d∑

i=0

∑

A⊆X;|A|=i

1

i!
∑

A

P (r(A))qrk(A)t |A| =
∑

A⊆X

P [X |A]qrk(A)t |A| = H[X](q, t).
�

Corollary 7.7 The quasi-symmetric function F [X] specializes to P [X] for matroids
X.

Proof We define ξ : QSym2 → Sym by

ξ(Qα) = t
(α)τ (Qα)(1, t−1) |t=0 .

One easily verifies that ξ is a homomorphism of algebras, and

ξ(G[X]) = H[X](1, t−1)t |X| |t=0 = P [X]

for every matroid X = (X, rk). Since Q(1) − Q(0) lies in the kernel of ξ , ξ factors
through θ : QSym2 → QSym ∼= QSym2 /(Q(1) − Q(0)), say ξ = η ◦ θ . Then we have

P [X] = ξ(G[X]) = η(θ(G[X)])) = η(F [X]). �

7.8 Speyer’s invariant

For a matroid X David Speyer defined an interesting polynomial gX(t). It has the mul-
tiplicative property (gX1⊕X2(t) = gX1(t)gX2(t)), it is invariant under matroid-duality
and has various other nice properties.

Conjecture 7.8 The invariant G specializes to Speyer’s invariant.
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8 Polymatroid base polytopes

8.1 The valuative property of G

We will denote {1,2, . . . , n} by n. For a polymatroid X = (n, rk) we define its base
polytope Q(rk) = QX(rk) ⊂ R

n by

Q(rk) = {v ∈ R
n | ∑n

i=1 vi = rk(n) and ∀A ⊆ n,
∑

i∈A vi ≤ rk(A)}.
The i-th basis vector is denoted by ei .

Theorem 8.1 ([20]) A compact convex polytope in R
n is the base polytope of a poly-

matroid if and only if every vertex of the polytope has nonnegative integer coordi-
nates, and every edge is parallel to ej − ek for some j �= k.

For a compact convex polytope � ⊂ R
n, its characteristic function [�] : R

n → R

is defined by

[�](x) =
{

1 if x ∈ �;
0 if x �∈ �.

Let K(Rn) be the R-vector space spanned by all [�] where � is a compact con-
vex polytope. The Euler characteristic is a linear function χ : K(Rn) → R such that
χ([�]) = 1 for every compact convex polytope � (see [2, Theorem 7.4] where χ is
defined for the slightly larger algebra of closed convex sets).

Definition 8.2 Suppose that V is a Q-vector space. A Q-linear map f : PolyMat →
V is called valuative if it has the following property. For a finite set X and polyma-
troids X = (X, rki ), i = 1,2, . . . , r and rational numbers a1, . . . , ar ∈ Q such that

r∑

i=1

ai[Q(rki )] = 0

we have that
r∑

i=1

aif [Xi] = 0.

Moreover, let us call f additive if it is valuative and f ([X]) = 0 whenever the poly-
matroid base polytope Q(rk) of X = (X, rk) has dimension < n − 1.

Theorem 8.3

G : PolyMat → QSym

is valuative.

The proof of the theorem is in the next subsection.

Corollary 8.4 Since G specializes to H and P , these invariants are valuative as well.
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A polymatroid base decomposition is a decomposition

Q(rk) =
r⋃

i=1

Q(rki ) (52)

such that

Q(rki ) ∩ Q(rkj )

is a common face of Q(rki ) and Q(rkj ) for i �= j . Let us call such a decomposition
proper if r > 1 and Q(rki ) �⊆ Q(rkj ) for all i �= j . The polytope Q(rk) is called
indecomposable if it does not have a proper decomposition. For a fixed base field
K , a polymatroid is called rigid if it has only finitely many realizations over K as
a subspace arrangement up to isomorphism. The work of Lafforgue implies that a
realizable matroid is rigid if and only if its matroid base polytope is indecomposable
(see [24, 25]). It is therefore of interest to know whether a given matroid polytope is
indecomposable. Valuative and additive invariants can be useful to determine whether
a matroid polytope is decomposable. For a valuative invariant f , we have, by the
inclusion-exclusion principle

f (rk) =
r∑

k=1

(−1)k−1
∑

i1<i2<···<ik

f (rki1,i2,...,ik ),

where rki1,...,ik is the rank function whose polymatroid polytope is

Q(rki1) ∩ · · · ∩ Q(rkik ).

If f is additive, then we have

f (rk) =
r∑

i=1

f (rki ).

Additive invariants can also be constructed from the Billera-Jia-Reiner quasi-
symmetric function (see [3]).

Conjecture 8.5 Is G universal with respect to the valuative property? I.e., is it true
that for every Q-linear valuative map f : PolyMat → V there exists a Q-linear map
ψ : QSym → V such that ψ ◦ G = f ?

8.2 The proof of Theorem 8.3

The basis vectors of R
n are denoted by e1, . . . , en. Let � be the (n − 2)-dimensional

simplex spanned by e1 − e2, e2 − e3, . . . , en−1 − en.

Lemma 8.6 Choose ε such that 0 < ε < 1. For v ∈ Z
n, and a rank function rk :

Pow(X) → R, the following statements are equivalent.

1.
∑s

i=1 vi = rk(s) for s = 1,2, . . . , n;
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2. v ∈ Q(rk), and v + ε(ej − ek) �∈ Q(rk) for all j < k;
3. (v + ε�) ∩ Q(rk) = ∅ and v ∈ Q(rk).

Proof (1) ⇒ (2): Suppose that (1) holds. Suppose that A = {i1, . . . , is} with i1 <

· · · < is . Then we have

rk({i1, . . . , it })−rk({i1, i2, . . . , it−1}) ≤ rk({1,2, . . . , it })−rk({1,2, . . . , it −1}) = vit

(53)
by the submodular property of the rank function.

Summing (53) for t = 1,2, . . . , s gives

rk({i1, . . . , is}) ≤ vi1 + · · · + vis =
∑

i∈A

vi.

This implies that v ∈ Q(rk). If j < k and w = v + ε(ej − ek), then we have

j∑

i=1

wi =
j∑

i=1

vi + ε = rk(j) + ε > rk(j),

so w �∈ Q(rk). This proves that (2) holds.
(2) ⇒ (1): Conversely, assume that (2) holds. A subset S ⊆ n is called tight if∑
i∈S vi = rk(S). Clearly, n and ∅ are tight. If S,T are tight, then

rk(S ∪ T ) + rk(S ∩ T ) ≤ rk(S) + rk(T )

=
∑

i∈S

vi +
∑

i∈T

vi

=
∑

i∈S∩T

vi +
∑

i∈S∪T

vi ≤ rk(S ∩ T ) + rk(S ∪ T ), (54)

so all inequalities are equalities, and S ∪ T and S ∩ T are tight as well.
Suppose that j < k and set w = v + ε(ej − ek). Because g �∈ Q(rk), there exists a

set Aj,k such that
∑

i∈Aj,k

wi > rk(Aj,k).

Since
∑

i∈Aj,k

vi ≤ rk(Aj,k),

we must have j ∈ Aj,k and k �∈ Aj,k . We obtain

rk(Aj,k) ≥
∑

i∈Aj,k

vi =
∑

i∈Aj,k

wi − ε > rk(Aj,k) − ε.

Because v is an integer vector, the first inequality is an equality and Aj,k is tight. To
prove (1) we need to show that i is tight for i = 0,1, . . . , n. We do this by induction on



82 J Algebr Comb (2009) 30: 43–86

i, the case i = 0 being trivial. Suppose that i > 0 and i − 1 is tight. Then i − 1 ∪ Ai,k

is tight for k = i + 1, . . . , n. We have

i =
n⋂

k=i+1

(i − 1 ∪ Ai,k)

because i ⊆ i − 1 ∪ Ai,k for all i, and k �∈ i − 1 ∪ Ai,k . Hence i is tight.
(3) ⇒ (2): This implication is clear because (ej − ek) ∈ � for all j < k.
(2) ⇒ (3): Suppose v ∈ Q(rk) and v + ε(ej − ek) �∈ Q(rk) for all j < k. Suppose

that v + δ(ej − ek) ∈ Q(rk) for some j, k with j < k and δ > 0. Set z := ej − ek . If
the inequality

∑

i∈A

vi ≤ rk(A) (55)

is an equality, then

rk(A) + δ
∑

i∈A

zi =
∑

i∈A

(vi + δzi) ≤ rk(A)

because v + δz ∈ Q(rk). So we obtain

∑

i∈A

zi ≤ 0.

Therefore, we have
∑

i∈A

(vi + εzi) ≤ rk(A).

If (55) is not tight, then
∑

i∈A

vi ≤ rk(A) − 1

and
∑

i∈A

(vi + εzi) ≤ rk(A) − 1 + ε
∑

i∈A

zi ≤ rk(A) − 1 + ε ≤ rk(A).

So we conclude that
∑

i∈A

(vi + εzi) ≤ rk(A)

for all subsets A ⊆ n. So v + εz ∈ Q(rk), but this contradicts our assumptions. We
conclude that v + δ(ej − ek) �∈ Q(rk) for every j < k and every δ > 0.

Suppose that v lies in the interior of a face of positive dimension of Q(rk). This
face is parallel to ej − ek for some j < k. This means that there exists a δ > 0 such
that v+δ(ej −ek), v−δ(ej −ek) ∈ Q(rk) for some δ > 0. This gives a contradiction,
therefore v must be a vertex of the polytope Q(rk). Let v1, v2, . . . , vr be other vertices
of Q(rk) such that the edges of Q(rk) meeting at v are vv1, vv2, . . . , vvr . For every
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vi , v − vi is a positive multiple of ek − ej for some j < k. This means that Q(rk) is
contained in cone

C := v + R≥0(e2 − e1) + R≥0(e3 − e2) + · · · + R≥0(en − en−1),

where R≥0 denotes the nonnegative real numbers. We conclude that

(v + ε�) ∩ Q(rk) ⊆ (v + ε�) ∩ C = ∅.

So (3) follows. �

For v ∈ Z
n, define a valuation μv : K(R) → R by

μv(h) = h(v) − lim
ε↓0

χ([v + ε�] · h).

Let

r = (r1, r2, . . . , rn),

where ri = rk(i) − rk(i − 1) for all i.

Corollary 8.7 We have

μv([Poly(rk)]) =
{

1 if v = r

0 otherwise.

Proof Suppose that v = r . By Lemma 8.6, we have v ∈ Q(rk) and (v + ε�) ∩
Q(rk) = ∅. Therefore, we get

χ([v + ε�] · [Q(rk)]) = χ([(v + ε�) ∩ Q(rk)]) = χ([∅]) = χ(0) = 0

and [Q(rk)](v) = 1, so μv([Q(rk)]) = 1.
Suppose that v �= r . Assume that v �∈ Q(rk). Since Q(rk) is closed, there exists a

δ > 0 such that

(v + (ε�)) ∩ Q(rk)

for all ε with 0 < ε < δ. This implies that μv([Q(rk)]) = 0.
Suppose that v ∈ Q(rk). Then (v + ε�) ∩ Q(rk) is a closed nonempty convex

polytope. Hence we have

χ([v + ε�] · [Q(rk)]) = 1.

Therefore, we conclude that μv([Q(rk)]) = 1 − 1 = 0. �

Proof of Theorem 8.3 The symmetric group �n acts on R
n by permuting the coordi-

nates. Define

μσ
v (h) = μv(h ◦ σ)
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for every σ ∈ �n and every h ∈ K(R). We have that

μσ
v ([Q(rk)])
= μv([Q(rk◦σ)])

=
{

1 if vi = rk({σ(1), . . . , σ (i)}) − rk({σ(1), . . . , σ (i − 1)}) for all i;
0 otherwise.

(56)

Define

Mv =
∑

σ∈�n

μσ
v .

From the definition of G follows that

G[X] =
∑

v

Mv([Q(rk)])Uv.

From the linearity of Mv and G it follows that

∑

i

ai G[({1, . . . , n}, rki )] = 0

whenever
∑

i

ai[Q(rki )] = 0.

This completes the proof of the theorem.
�

9 Future directions

For a polymatroid X we defined symmetric functions P [X] and H[X]. In the case
where the polymatroid comes from a subspace arrangement, we gave interpretations
of the coefficients of these symmetric functions in terms of the Hilbert series and the
minimal free resolution of the associated product ideal, and in terms of the polar-
ized Schur functor. We hope for similar interpretations and nonnegativity results in
the case where the polymatroid is not realizable (Conjecture 5.7). We also defined a
quasi-symmetric function G[X]. This invariant has many interesting properties, and
it specializes to P [X], H[X] and to the Billera-Jia-Reiner quasi-symmetric function
F [X]. We would like to know whether G[X] specializes to Speyer’s invariant in [34]
(Conjecture 7.8). The invariant G behaves valuatively with respect to (poly-)matroid
base polytope decompositions. We wonder whether G is universal with this property
(Conjecture 8.5).
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