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Abstract. We introduce the concept of fusion algebras at algebraic level, as a purely algebraic concept
for the fusion algebras which appear in conformal field theory in mathematical physics. We first
discuss the connection between fusion algebras at algebraic level and character algebras, a purely
algebraic concept for Bose-Mesner algebras of association schemes. Through this correspondence,
we establish the condition when the matrix 5 of a fusion algebra at algebraic level is unitary or
symmetric. We construct integral fusion algebras at algebraic level, from association schemes, in
particular from group association schemes, whose matrix 5 is unitary and symmetric. Finally, we
consider whether the modular invariance property is satisfied or not, namely whether there exists a
diagonal matrix T satisfying the condition (ST)3 = S2. We prove that this property does not hold
for some integral fusion algebras at algebraic level coming from the group association scheme of
certain groups of order 64, and we also prove that the (nonintegral) fusion algebra at algebraic level
obtained from the Hamming association scheme H(d, q) has the modular invariance property.

Keywords: association scheme, fusion algebra, character algebra, Bose-Mesner algebra, modular
invariance property

Introduction

This paper is based on my talk at the Workshop on Algebraic Combinatorics in
Vladimir, USSR, August 7-16, 1991. This paper was originally prepared for the
proceedings, but I missed the deadline for the submission. As was the intention
of my talk at the workshop, the emphasis is on giving an overview of our current
research, rather than giving the full technical details of the results. Some of the
works presented here are based on some joint works of the author with Akihiro
Munemasa and Etsuko Bannai. In this paper, I will present an introductory
overview of these works, with my own viewpoint and responsibility. Further
detailed discussions will be given in the subsequent papers.

The main purpose of this paper is to start with the study of fusion algebras
from a purely algebraic viewpoint, by noticing and using the connection with as-
sociation schemes. Here, fusion algebras are finite dimensional commutative and
associative algebras (over the complex number field) which appear in conformal

*This paper is dedicated to Professor Katsumi Shiratani on the occasion of his 60th birthday.
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field theory in mathematical physics. We consider a purely algebraic object, which
we call fusion algebra at algebraic level, and find its connection with another
purely algebraic object, called character algebra, which is closely connected with
Bose-Mesner algebras (Hecke algebras) of an association scheme. There is the
matrix 5 in fusion algebra which plays an important role in conformal field
theory. We show, contrary to the theory of fusion algebras in conformal field
theory, that the matrix S of a fusion algebra at algebraic level is not necessarily
unitary nor symmetric. We give exact characterizations of when the matrix 5 is
unitary or symmetric in terms of the corresponding character algebra.

By fully utilizing this connection between fusion algebras and character algebras,
we try to find integral fusion algebras at algebraic level, in particular those whose
matrix S is unitary and symmetric. We particularly discuss such examples coming
from the group association schemes of certain groups of order 64.

Finally, we discuss the modular invariance of a fusion algebra. This property
is very important in conformal field theory, because the fusion algebras of nice
known conformal theories have this property; that is to say, there exists a
diagonal matrix T satisfying (ST)3 = S2. We are interested in finding integral
fusion algebras at algebraic level that satisfy the modular invariance property,
as the chance of the existence of conformal field theory attached to them will
increase if they satisfy the modular invariance property. We conclude this paper
by mentioning that the (nonintegral) fusion algebra at algebraic level obtained
from the Hamming association scheme H(d, q) has the modular invariance,
together with some conjectures on how this result will be generalized for other
association schemes.

1. Fusion algebras at algebraic level

Fusion algebras appear in conformal field theory in mathematical physics. They
are related to the representations of so-called Virasoro algebras or chiral algebras,
and are finite dimensional commutative and associative algebras over the complex
number field C. The reader is referred to [6, 7, 10, 12, 13, etc.] for a general
understanding of fusion algebras which appear in conformal field theory.

When we look at the properties of fusion algebras, and when we forget (or
ignore) the meanings about physics, they have very distinctive algebraic properties.
By postulating only the algebraic properties of fusion algebras, we define the
concept of "fusion algebras at algebraic level" as follows. The following set of
axioms is just one attempt for this, and there will be room for further discussions
of what is the best definition of fusion algebras at algebraic level. Also, I
think that similar attempts should have been considered by many other authors
independently, as this is a very natural thing to do.

Definition 1.1. (Fusion algebras at algebraic level). Let 21 = (X0, X1, ..., xd) be
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an algebra over C with basis x0,x1, ..., xd and with multiplication defined by

Let us consider the following conditions.

(0) The algebra 21 is associative and commutative,
(i) Nij e R,

[we also consider the following conditions which are stricter than (i):
(i') Nij e R and Nij > 0,
(i") Nij € N = {0,1,2,...}],

(ii) There exists a bijection A : i -> t from {0, 1, ..., d] to {0, 1, ..., d} satisfying
(a j t= i ,
(b) Nl = N^
and

"£(c) if we define Nijk = N^, then Nijk is symmetric in i, j, k,
(iii) Noj = 6jk (i.e., XQ is the identity element of 21),
(iv) There exists a linear representation of 2t = (X0, x1, ..., xd) with xi -> Rki

with ki > 0 for all i(0 < i < d).

We call 21 a fusion algebra at algebraic level if 21 satisfies the conditions (0), (i),
(ii), (iii), and (iv). If (i') is satisfied in addition, we call 21 a fusion algebra at
algebraic level of nonnegative type. If 21 satisfies the condition (i") furthermore,
we call 21 an integral fusion algebra at algebraic level.

Remark. In fusion algebras appearing in mathematical physics, the condition
(i") Nij e N is very fundamental. For those who are already familiar with
the concept of fusion algebras in mathematical physics, we remark that the last
condition (iv) is equivalent to the condition S0 > 0 for all i, and this is a very
natural condition.

Here we give a well-known example of fusion algebras at algebraic level.

Example 1.1. Let G be any finite group, and let xo, X1,..., Xd be the (distinct)
irreducible characters of G with xo = 1G being the identity character. Then we
have the decomposition of the tensor product
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Now, let Xj correspond to Xi and let us consider the algebra defined by

Then the algebra 21 = ( X 0 , x1, ..., xd) is an integral fusion algebra at algebraic
level. Note that here the map A is defined by the complex conjugation, i.e.,
Xi = Xi- Also note that Nijk is symmetric in i, j, k because

Also note that Rki = Xi(1) (the degree of the irreducible character xi).
Of course, many other examples of integral fusion algebras at algebraic level

are obtained from the fusion algebras of (known) conformal field theories in
mathematical physics. Among them, very interesting examples are obtained from
any finite group G with a basis, in which each element of the basis consists
of a pair of a conjugacy class C of G and an irreducible representation of the
centralizer CG(X) of an element x in the conjugacy class C, and by defining
appropriate multiplications of these elements of the basis, (cf. Lusztig [11] and
[7]. They are examples of integral fusion algebras (at algebraic level). We note
that the Fourier transformations of these integral fusion algebras at algebraic level
for certain finite groups are crucially used in the last step of the determination
of irreducible characters of finite Chevalley groups, in the work of Lusztig, Asai,
Kawanaka, and others. Also, we remark that the concept of based ring in Lusztig
[11] is a proper setting to consider a noncommutative version of fusion algebras
at algebraic level.

2. Association schemes, Bose-Mesner algebras, and character algebras

First we recall the definition of association schemes. The reader is referred to
[3, 4, 5] for further information on association schemes.

Definition 2.1. (Association schemes). Let X be a finite set, and let Ri(i =
0, 1,..., d) be nonempty relations on X (i.e., subset of X x X). Let the
following conditions (1), (2), (3), and (4) be satisfied, then the pair X =
(X, {Ri}o<i<d) consisting of a set X and a set of relations {Ri}o<i<d is called
an association scheme.

(1) Ro = {(x, x ) | x E X},
(2) X x X = Ro U RI U . . . U Rd, with Ri n Rj = 0 if i + j,
(3) For i € {0, 1, ..., d}, let tRi be defined by
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Then tfl, = Rj for some j e {0, 1, ..., d}. (We write tRi = R1).
(4) For i,j,k e{0, l , . . . ,d},

depends only on i, j, k and not on the choice of (x, y) e Rk. (We write this
number pij.)

Remark. We say that an association scheme X is commutative if pij = pji for all
i, j, k.

In this paper, we use the term association scheme to mean commutative
association schemes, unless otherwise stated.

Definition 2.2. (Adjacency matrices and Bose-Mesner algebras). Let X = (X,
{Ri}o<i<d) be an association scheme. Let Ai be the adjacency matrix with
respect to the relation Ri. Namely, let

Let 21 = (Ao, A1,... , Ad) be the subalgebra (in the complete matrix algebra of
size \X\ over C ) generated by A0, A1, ..., Ad. The algebra 21 is of dimension
d +1 (by Definition 2.1), and is called the Bose-Mesner algebra of the association
scheme X.

Remark. It is known that the Bose-Mesner algebra 21 of X is a semisimple
algebra over C (even if X is noncommutative), and that the association scheme
X is commutative if and only the Bose-Mesner algebra X is commutative.

We now give two well-known examples of association schemes which are
obtained from finite groups.

Example 2.1. Let G be a group acting on a finite set X transitively. Then G
acts on the set X x X naturally. Let Q0 = {(x, x) \ x £ X}, Q1, Q2,..., Qd be
all the orbits of the action on G on X x X. For x, y e X by defining

we have an association scheme X = (X, {Ri}o<i<d) (which is not necessarily
commutative). The association scheme X is commutative if and only if the
permutation representation p of G on X is multiplicity-free, i.e., T is decomposed
into a direct sum of nonequivalent irreducible representations of G.

Example 2.2. [Group association scheme X(G)]. Let G be any finite group. Let
C0 = {1}, C1, C2 ,..., Cd be all the conjugacy classes of G. For x,y & G, define
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then £(G) = (G, {Ri}o<i<d) becomes a commutative association scheme.

Remark. Example 2.2 is regarded as a special case of Example 2.1, by letting
the group G x G act on G by (x, y) e G x G act on z e G by z -> x - 1 z y . Note
that the Bose-Mesner algebra of 21 of Example 2.2 is isomorphic to Z(CG), the
center of the group algebra of G over C.

In what follows, we always assume that x = (X, {Ri}o<i<d) is a commutative
association scheme. It is well known that the Bose-Mesner algebra 21 of £ is not
only closed by ordinary matrix multiplication but also by Hadamard product o (i.e.,
the entrywise product of matrices). Also it is known that 21 = (A0, A1, ..., Ad) is
commutative and semisimple, and that 21 has a unique set of primitive idempotents
E0,E1,..., Ed. Now, let

Then it is known (as Krein condition) that the qij- are nonnegative real num-
bers. The matrices P and Q which give transformations between two bases
A0, A1, ..., Ad and E0, E1, ..., Ed of 21 with the following normalizations are
called the first and the second eigenmatrices of X respectively:

and

(hence PQ = QP = |X | I ) . The matrix P is also called the character table of
X. The reader is referred to [1] for a survey of recent research on commutative
association schemes and their character tables.

The Bose-Mesner algebra was defined under the existence of a combinatorial
object, namely association scheme. Here we define a purely algebraic concept
which was obtained by extracting only the algebraic properties of the Bose-
Mesner algebra.

Definition 2.3. (Character algebras, or Bose-Mesner algebras at algebraic level).
Let 21 = (x0,x1,..., xd) be an algebra over C with basis #0, x1, ..., Xd and with
multiplication defined by

Let us consider the following conditions.

(0) The algebra 21 is associative and commutative,
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(i) Pij € R,
[we also consider the following condition which is stricter than (i):
(i') p*. e R and p* > 0],

(ii) There exists a bijection A : i -> l from {0, 1, ..., d} to {0, 1, ..., d] satisfying

(a) i = i, and
(b) pij = pij,

(iii) P0j = 6jk (i.e., XQ is the identity element of 21),
(iv) pij = 6ij with ki > 0 for all i, and the map xi -> ki(i = 0, 1, ..., d) gives a

linear representation of 21 = (X0, x1, ..., xd).

Then we call an algebra 21 a character algebra, if the above conditions (0), (i),
(ii), (iii), and (iv) are satisfied. Furthermore, if 21 satisfies the condition (i') in
addition, then it is called a character algebra of nonnegative type (or Bose-Mesner
algebra at algebraic level).

Remark. The concept of character algebra was defined by Y. Kawada [9] in
1942 (50 years ago!). The reader is referred to [3, §2.5] for further details of
character algebras.

Now we mention that character algebras (of nonnegative type) are obtained
from a (commutative) association scheme in two different ways.

Example 2.3. Let 3E = (X, {Ri}o<i<d) be a (commutative) association scheme,
and let Ai(i = 0, 1, ..., d) be the adjacency matrices and Ei(i = 0, 1, ..., d) be
the primitive idempotents. Suppose that

and

Then we have the following assertions,

(a) Defining

the algebra 21 = (x0, x 1 . . . , xd) becomes a character algebra of nonnega-
tive type.
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(b) Defining

the algebra 21 = ( X 0 , x1, ..., xd) becomes a character algebra of nonnegative
type. (In this example, mi(:= rank Ei) corresponds to the ki in the definition
of character algebra (cf. Definition 2.3).

3. Connection between fusion algebras at algebraic level and character algebras

In this section we show that there is a natural one-to-one correspondence
between fusion algebras at algebraic level and character algebras. Namely, we
prove the following.

THEOREM 3.1. There exists a natural one-to-one correspondence between fusion
algebras at algebraic level and character algebras. Moreover this gives a one-to-one
correspondence between fusion algebras at algebraic level of nonnegative type and
character algebras of nonnegative type.

Proof. Let § = (y0,, y 1 , . . . , yd) be a character algebra with basis y0, y1,..., yd
and multiplication

Let us define

and let 21 = ( X 0 , x1, ..., xd) be the algebra with basis X0, x1, ..., Xd and multi-
plication

Then 21 = (X0, x1,..., xd) becomes a fusion algebra at algebraic level. (The
details of the proof are left to the reader. For example, the fact that Nijk
is symmetric in i, j, k comes from the relation in character algebra such that
kyPaB = kBpBy, cf. [3, §2.5, Proposition 5.1].)

Conversely, starting from a fusion algebra at algebraic level with structure
constant Nij, by defining
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we get a character algebra. This establishes the one-to-one correspondence
between fusion algebras at algebraic level and character algebras. Also, it is clear
that nonnegative type corresponds to nonnegative type in this correspondence.
[Note that the ki in Definition 1.1 (fusion algebra at algebraic level) corresponds
to the ki in Definition 2.3 (character algebra).] D

Remark. By this correspondence integral fusion algebras at algebraic level do
not necessarily correspond to integral (i.e., pij e N) character algebras. It is
an interesting question to know when integral fusion algebras at algebraic level
come from integral character algebras or association schemes.

We conclude this section by giving an example of this correspondence.

Example 3.1. Let X(G) be the group association scheme (see Example 2.2) for a
finite group G. As mentioned in Example 2.3 (b), we get the character algebra
of nonnegative type defined by

where qij are the Krein parameters of the association scheme x(G). By Theorem
3.1, there exists a fusion algebra at algebraic level corresponding to this character
algebra. This fusion algebra at algebraic level is in fact the fusion algebra given in
Definition 1.1. Here note that in £(G), the primitive idempotent Ei corresponds
to the irreducible character xi and that mi = rank Ei = Xi(l)2.

4. The symmetry of the matrix S and Verlinde's formula

The following result is well known for fusion algebras appearing in mathemati-
cal physics.

THEOREM (Verlinde [6, 13]). Let 21 = (x0, x1, . . . , xd) be the fusion algebra (at
algebraic level) which appears in mathematical physics. Let us set

Then there exists a matrix S = (S i )o<i<d ,o<j<d satisfying
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with

for all i(0<i< d).

Also the following formula is known as Verlinde's formula:

The following result is well known in the theory of association schemes, and
in the theory of character algebras:

THEOREM (Kawada [9], see also Bannai [3, §2.5]). Let 21 = (x0, x1, ...,xd) be a
character algebra. Let us set

and let P = (Pij)o<i<d, a<j<d be the matrix defined by

where e0, e1, ..., ed are the primitive idempotents of the character algebra 21 (Note
that P is the character table (the first eigenmatrix) of the association scheme when
21 comes from an association scheme as in Example 2.3(a). Also note that Pij is
written as P j ( i ) in [3, §2.5]. Then we have

for all i (0 < i < d). Moreover, the following formula is well known.

where \X\ = ko + k1 + • • • + kd and the mus are certain numbers defined for any
character algebra (see [3, §2.57).

We prove the following
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THEOREM 4.1. (i) Let 21 = (x0, x1,..., xd) be any fusion algebra at algebraic level.
Let us set

Then there exists a matrix S = (Si)0<i<d, o < j < d > satisfying

with

for all i(0 < i < d).
(ii) Let P be the matrix P = (Pij)o<i<d, o<j<d (mentioned in the preceding

theorem) for the character algebra 21 = (y0, y1, ..., yd) which corresponds to %, the
fusion algebra at algebraic level (by Theorem 3.1). Then the matrix S and the matrix
P are related by the following relation.

where \X\ = k0 + k1 + • • • + Ay by definition.

Proof, (i) Straightforward from the correspondence in Theorem 3.1 and from the
fact that there are exactly d + 1 linear representations in the character algebra
(cf. [9] or [3, §2.5]). (ii) This is proved by a straightforward calculation. The
details are left to the reader. Here we note that

Remark. By Theorem 4.1(ii), we have the explicit connection between the two
matrices 5 and P. Since the Nij and the p^ are related by (III), starting from



338 BANNAI

(II), we can get a formula for expressing Nij in terms of Si for any fusion
algebra at algebraic level. It will be natural to expect that that is the formula
(I). However, this is not the case. The formula we get is

Note that the formula (I') is considerably different from Verlinde's formula
(I) for the fusion algebras which appear in mathematical physics. [Verlinde's
formula (I) does not hold for general fusion algebras at algebraic level.]

For the fusion algebras which appear in conformal field theory in mathematical
physics, it is shown that the matrix S is always unitary and symmetric. However,
it is shown that this is not always true for fusion algebras at algebraic level. To be
more precise, we can characterize when the matrix 5 is unitary or is symmetric.

THEOREM 4.2. Let 21 = ( X 0 , x1, ..., xd) be a fusion algebra at algebraic level,
and let S be the matrix defined in Theorem 4.1, (i). Then we have the following
two assertions.

(i) The matrix S is unitary (i.e., tSS = S • tS = I) if and only if ki = mi(i =
0, 1, ..., d) for the corresponding (by Theorem 3.1) character algebra,

(ii) The matrix S is symmetric (i.e., t5 = S) if and only if P = Q for the corresponding
character algebra.

(Note that Q is the matrix defined by PQ = QP = \X\I, where \X\ =
k0 + k1 + • • • + kd by definition. For the definition of mi, see [3, §2.5].)

Proof. For a character algebra, it is shown from the second orthogonality relation
(cf. [3, p96, (5.12)]), that the matrix

is a unitary matrix. Since the kis and the m^s are all real numbers, we have that
5 is unitary if and only if ki = mt for all i(0 < i < d). The second assertion



ASSOCIATION SCHEMES AND FUSION ALGEBRAS 339

follows from the relation

(cf. [3, §2.5, (5.13)] or PQ = QP = \X\I) and the second orthogonality relation
(cf. [3, §2.5, (5.12)]). D

Remark. Note that S is unitary if 5 is symmetric.

Remark. It seems that the proof of unitarity and the symmetry of the matrix 5
of a fusion algebra (which appears in mathematical physics) is a "physical" proof
and is not a "mathematical" proof. Furthermore, it is difficult to see the validity
of Verlinde's formula (I) at a mathematical level. Actually, there are plenty of
counterexamples with the matrix S not unitary (and not symmetric) for fusion
algebras at algebraic level.

Remark. If the matrix S is symmetric, then Verlinde's formula (I) is identical to
the formula (I'). The fusion algebras studied in the original Verlinde's papers
[6, 13] are self-dual, i.e., P = Q, hence Verlinde's formula (I) for the original
fusion algebras is true. Association schemes (or character algebras) with P = Q
are called self-dual. (For examples of many self-dual and nonself-dual association
schemes, cf. [3, Chapter III] or [4].) The condition P = Q implies that pij = qij
for all i, j, k. Hence in a self-dual association scheme, two fusion algebras
described in Example 2.3(a) and (b) are identical. It is an open question whether
pij = qij implies P = Q for suitable arrangements of rows and columns. (This
last question was first raised by Akihiro Munemasa.)

5. Construction of integral fusion algebras at algebraic level
from association schemes

In Section 3, we have seen that a fusion algebra at algebraic level is constructed
from a character algebra, and that two character algebras are attached to an
association scheme. So, in this section, we consider the problem of constructing
integral fusion algebras at algebraic level, from association schemes. We are
particularly interested in such fusion algebras at algebraic level satisfying the
condition that the matrix 5 is unitary and symmetric. (Here note that the
symmetry of 5 implies the unitarity of S.)

First we consider this problem for the group association scheme X(G) (cf.
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Example 2.2(a)). If G is finite abelian group, it is easy to see that

and that S is unitary and symmetric (with respect to a suitable ordering of
irreducible characters, namely of primitive idempotents). It was not obvious at
the beginning whether there exists at all any group association scheme X(G)
for a nonabelian group G such that the matrix S is unitary and symmetric.
Since fcj = \Ci\ (the size of the conjugacy class Ci), and since mi = Xi(1)2

(where Xi(1) is the degree of the irreducible character xi), in order that the
matrix S is unitary, the set of numbers k0, k1, ..., kd must coincide with the set
m0, m1, ... , md including the repetition. Using this condition, first I was able to
see that nonabelian such G do not exist for small orders, say for |G| < 64. Then,
I tried to find such G of order 64, by looking at the complete list of groups of
order 64 = 26 in Hall-Senior [8]. (It is known that there are 257 nonisomorphic
groups of order 64, including abelian groups.) By checking the list of Hall-Senior
[8], we can easily see that such G are exactly those in the class 3 B in [8], namely
G must be the 10 groups numbered from 144 to 153 in [8]. It is known (cf. [3,
§2.7] that the matrix P of X(G) is calculated from the character table T of the
group G by the formula

and that the matrix 5 is calculated from P by Theorem 4.1(ii). So, at this stage,
I asked Akihiro Munemasa to calculate the character tables of these 10 groups
by using "Cayley," and to show that these 10 fusion algebras at algebraic level
are all integral (i.e., Nij € N = {0, 1, ...} for all i, j, k) and that the matrix S
are all symmetric (with respect to suitable orderings of primitive idempotents).
Actually, all the calculations were carried out by Munemasa rather quickly using
a computer. Thus we get:

THEOREM 5.1. Let G be one of the groups from 144 to 153 in the list of [8] of
order 64. Then the fusion algebra at algebraic level corresponding to the Bose-Mesner
algebra of 3£(G) are all integral, and the matrix S of the fusion algebra at algebraic
level becomes symmetric (with respect to a suitable ordering of primitive idempotents).

Proof. Here we give a description of the matrix 5 for the group 153. This group
is a Sylow 2-subgroup of Suzuki simple group Sz(8) of order 64.63.7 = 29,120.
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with J8 being the matrix of size 8 by 8 whose entries are all 1,

(size 8 by 14), and

(size 14 by 14), where a = 4i and b = —4i. We also note that the character
tables of other groups are similar to the above matrix. That is, change some
of blocks

There are many other constructions of integral fusion algebras at algebraic level.
Many such examples with 5 being symmetric were constructed from association
schemes by Akihiro Munemasa. Also, there are some other constructions without
using association schemes, though it is not generally easy to find those with 5
symmetric. This topic will be discussed in subsequent papers.

It would be interesting to know whether more such examples are constructed
from group association schemes C(G). Recently, Masao Kiyota proved (by using
the classification of finite simple groups) that the condition k = mi (for all i)
cannot hold for X(G) for a nonabelian finite simple group G. He conjectures that
G must be nilpotent if the condition is satisfied. Also, we remark that Hironobu
Okuyama (a student of S. Koshitani at Chiba University) in his master's degree

and change some signs in the entries 2 or —2. We also note that the character
table of the group (hence the character table P of 3£(G)) and hence the matrix
5 of the corresponding fusion algebra at algebraic level is the same for the
following groups.
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thesis checked when this condition is satisfied for groups of order 27 by using
"Cayley." (We do not know at present whether these examples obtained by
Okuyama actually give integral fusion algebras at algebraic level with the matrix
S being symmetric.)

6. Modular invariance property

For fusion algebras attached to known conformal field theory, the matrix 5
satisfies the condition that there exists a diagonal matrix T with

(cf. [6, 7, 10, 12, 13] etc.) We say that the matrix S (or the fusion algebra) has
the modular invariance property if this condition is satisfied. The name modular
invariance comes from the fact that 5 and T correspond to the elements.

and

(respectively) of the modular group SL(2, Z).
It is generally an open difficult question to know, for a given fusion algebra

at algebraic level, whether there is attached a conformal theory on it. Since the
fusion algebra attached to a conformal field theory is likely to have the modular
invariance property for 5, we are interested in finding fusion algebras at algebraic
level with the modular invariance property. As mentioned in §5, there are many
known integral fusion algebras at algebraic level. However, not many of them
satisfy the modular invariance property. The following result was obtained by
Etsuko Bannai.

PROPOSITION 6.1. The integral fusion algebra at algebraic level obtained from the
group association scheme £(G) for G one of the groups 144-153 of order 64 does
not have any diagonal matrix T satisfying

Proof. Straightforward but very involved calculation shows the assertion of Propo-
sition 6.1. Here, there are several possibilities to make the matrix 5 for each
case (by rearranging rows and columns), but the nonexistence of the desired
matrix T is proved for each of the possible matrix S. D



ASSOCIATION SCHEMES AND FUSION ALGEBRAS 343

On the other hand, Akihiro Munemasa has shown that there are integral
fusion algebras at algebraic level obtained from certain Schur rings attached to
the elementary abelian group of order 64 (and of order 22m, m > 3), in which the
matrix S is symmetric and moreover satisfies the modular invariance property:
(ST)3 = S2. In these examples, we have (ST)3 = S2 = T2 = /, hence the group
(5, T) is isomorphic to the symmetric group of degree 3. Further details of these
and related topics will be discussed by A. Munemasa elsewhere.

Now, we are interested in the following question. Let 5 be the matrix of
(a not necessarily integral) fusion algebra at algebraic level. Then whether
5 satisfies the modular invariance property or not. We are interested in this
problem for a particularly important class of association schemes, namely, for
P-and Q-polynomial association schemes with P = Q(= Q), i.e., self-dual P- and
Q-polynomial association schemes. (See [3] for the definition and the examples
of P-and Q-polynomial association schemes.)

THEOREM 6.2. (Bannai [2]) Let P be the character table of the Hamming association
scheme H(d, q). Then we have

for the matrix

where a and a0 are the numbers defined by the following relations:

(So, there are 6 choices for T.)
Here we note that P = (Pj(i))o<i<d,o<j<d = ( K j ( i ) ) 0 < i < d , 0 < j < d where Kj(0) is
the Krawtchouk polynomial defined by

COROLLARY 6.1. (Bannai [2]) Let S be the matrix of the fusion algebra at algebraic
level obtained from the Hamming association scheme H(d, q). (This fusion algebra
is not integral in general.) Then S satisfies the modular invariance property, namely
(ST)3 = S2 = I for each of the six diagonal matrices T given in Theorem 6.2.
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We conjecture that similar results may be obtained for any self-dual P- and
Q- polynomial (symmetric) association scheme.

For nonself-dual P- and Q-polynomial association schemes, say for Johnson
association schemes, J(v, d), we cannot expect the relation S4 = I, hence we
cannot expect the modular invariance property in the original sense. Then is
there any natural diagonal matrix T where 5 and T satisfy some nice relation?
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