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graph Quad(n,q),q even.
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1. Introduction

The quadratic forms graph Quad(n, g) was introduced by Egawa [2]. It has
as vertices all quadratic forms on an n-dimensional vector space over GF(q).
Two forms f and g are adjacent in Quad(n, q) whenever rank (f — g) = 1 or
2. If n = 1 or 2, then Quad(n, q) is a complete graph; the graph Quad(3,
2) is isomorphic to the distance-transitive graph Alt(4, 2) [2]. If n > 3 and
(n, q) = (3, 2) then Quad(n, q) is distance-regular, but not distance-transitive.
In this paper we investigate the properties of the graph Quad(n, q) when q is
even. We determine its automorphism group and describe all its convex (i.e.,
geodetically closed) subgraphs. In the case of odd q both problems have been
solved earlier. The group Aut Quad(n, q), q odd, was determined in [4]. The
convex subgraphs of Quad(n, q), q odd, were determined in [5].

1A part of this research was completed during this author's visit at the Institute for System Analysis,
Moscow, as a Heizaemon Honda fellow of the Japan Association for Mathematical Sciences.

2 A part of this research was completed when this author held a position at the Institute for System
Analysis, Moscow.

3A part of this research was completed during this author's visit at the University of Technology,
Eindhoven.
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Over a field of odd characteristic, the quadratic forms graph is the {l,2}-distance
graph of the corresponding symmetric bilinear forms graph. In characteristic 2
this construction fails, and maybe it is the reason why AutQuad(n, g), q even,
was not determined earlier. It is quite clear that the mappings f -> f + g (g e
Quad(n, q)) and f -» 0-1o fog (g e FLn(q), 9 is the field automorphism associated
with g) are automorphisms of Quad(n, q). Together they generate a group Aut°
Quad(n, q) = gn(n+1)/2: FLn(q), which was thought to be the full automorphism
group of Quad(n, q). It is a little bit of a surprise that this natural conjecture
fails, and Quad(n, q), q even, has more automorphisms.

THEOREM 1.1. Assume n > 3 and (n, q) = (3, 2). If q is a power of 2, then
AutQuad(n, q) is the product of Aut° Quad(n, q) and the group of order qn consti-
tuted by the following automorphisms:

here B/ is the alternating form associated with f, and V the basic n-dimensional
vector space over GF(q).

It is easy to check that the permutations given in the theorem are indeed
automorphisms of Quad(n, q) and that they form an elementary abelian group E
of order qn. Also, a nonidentity automorphism e e E preserves the rank of every
form, but maps some (even rank) forms of plus type to forms of minus type,
and vice versa. In particular, E has trivial intersection with Aut° Quad(n, q).

For a subspace U < V and a form f e Quad(n, q) let Q(f, U) denote the
subgraph in Quad(n, q) induced by the set of forms {f + g+|Rad (g) > U}. Then
Q(f, U) is naturally isomorphic to Quad(n - dim U, q). Since the parameters ct

of Quad(n, q) do not depend on n, the subgraphs Q(f, U) are convex.

THEOREM 1.2. If E is a noncomplete convex subgraph of Quad(n, g), q even, then
E = Q(f, U) for some f e Quad(n, q) and a subspace U <V, dim U < n - 3.

The maximal cliques of Quad(n, q) were determined in [3].

2. Preliminaries

Throughout the paper F denotes the graph Quad(n, g) and V denotes the n-
dimensional vector space over GF(q) on which the quadratic forms from F (and
associated alternating forms) are defined, g is a power of 2. Here and below we
use the same letter to denote a graph and its set of vertices.

For a given f e F, we denote by R(f) the set {f + h|rank (h) = 1}. Clearly,
R(f) is a clique of size qn; after [1, section 9.6], we call such cliques R^-
cliques. If B/ denotes the alternating form associated with f (i.e., Bf(x, y) =
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f(x + y) - f(x) - f(y) then Bf = Bg if and only if R(f) = R(g). It will be
convenient to identify R1-cliques and corresponding alternating form. Under this
identification we will use notation like Rad (X - Y), rank (X), where X and Y
are R1 -cliques. Two R1 -cliques R(f) and R(g) are at distance 1 from each other
whenever rank (Bf - Bg) = 2. It means that the identification of R(f) and Bf
reveals the structure of the alternating forms graph Alt(n, q) on the set A of
R1 -cliques.

Every flj-clique X naturally carries the structure of an n-dimensional affine
space (denote it by Aff X). The i-dimensional subspaces of Aff X are all sets
of the form S(f, U) = {f+ h\h 6 R(0), Rad (h) > U}, where / 6 X and U is
an (n - i)-dimensional subspace of V. When U is fixed and / runs through X,
the sets S(f, U) form a parallel class of i-spaces in Aff X. Notice also that the
intersection of subspaces S(f, U1) and S(f, U2) is the subspace S(f, (U1,U2)).

LEMMA 2.1. Suppose R1-diques X and Y are at distance s from each other. Then
for every f e X one has that F,(f) n Y = S(g, Rad (X - Y)) for some geY, i.e.,
F,(f) n Y is a subspace of Aff Y of dimension 2s.

For an alternating form B e Alt(n, q) and a subspace U < V let A(B, U) =
{B + B'| Rad (B') > U}. The subgraph A(B, U) of Alt(n, q) is naturally
isomorphic to Alt(n- dim U, q). The following result was proved in [5, Propo-
sition (5.26)].

LEMMA 2.2. Every noncomplete convex subgraph of A = Alt(n, q) coincides with
A(B, U) for some B and U < V, dimU < n - 4.

LEMMA 2.3. If n > 3 and (n, q) = (3, 2) then F does not contain a subgraph
I! = Alt(n, q) such that E intersects every R1-clique of F in exactly one vertex.

Proof. Suppose that there exists such a subgraph E. Without loss of generality
we may assume that 0 is a vertex of E. First consider the case q > 2 and n > 3.

It is known [1, proof of 9.5.6] that the singular lines of Alt(n, q), containing
the zero alternating form, are the sets L(B) = {aB\a e GF(q}}, where B is a
rank 2 alternating form (in case n = 3 Alt(3, q) is complete and still L(B) is
a part of the (trivial) singular line). Let L = {0, /, 5, ...} be the preimage of
L(B) in E. Then, clearly, Rad (f) = Rad (g). Let h e {0, f}x (in T) and let
t e R(h) n E. Then t is adjacent to 0, f and g. Since h also is adjacent to f,
Rad (h -t) > Rad (f). Therefore, the equality Rad (f) = Rad (g) implies that
h is adjacent to g. It means that L is contained in a singular line of F. On the
other hand, it is known [2, Lemma 3.6] that, for an f of rank 2, the singular
line {0, f}J-L of F has size 2. Since \L\ = q > 2, we obtain a contradiction.

Now let q = 2 and n > 4. By [7, Proposition 3.1], the local graph T(0) is
isomorphic to the Grassmann graph [W] for an (n + l)-dimensional vector space
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W over GF(2). Let us identify T(0) with [W
2].

Choose f € £2(0). Then by Lemma 2.2 the convex closure of 0 and f
(in S) is a subgraph 0 = Alt(4, 2). The local subgraph O(0) is isomorphic
to the Grassmann graph [U] for a 4-dimensional vector space U over GF(2).
By [5, Proposition (5.14)], the isomorphism between 0(0) and [U

2] can be
established by choosing as U certain 4-dimensional subspace of W (i.e., 0(0) = [U]
for that subspace V). On the other hand, f must be rank 4 as a quadratic form
(otherwise, F(f) contains a rank 1 form). It was proved in [7, Lemma 5.7 and the
remark after it] that, for a rank 4 form f, T(0)nr(f) is not contained in [U

2] for any
4-dimensional subspace U < W; a contradiction since r(Q)r\F(f) = 0(0) n0(f).

D

3. The automorphism group

In this section we prove Theorem 1.1. Throughout the section we assume that
n > 3. If (n, q) = (3, 2), it was shown in [2] that G = AutQuad(n, q)does not
mix the edges (f, g) with rank (f - g) = 1 and the edges with rank (f - g) = 2. It
implies that, under the above restriction, G leaves the set of R1-cliques invariant.
It defines a homomorphism of G into the group AutAlt(n, q). The proof of
Theorem 1.1 will be given in two steps. First we show that G and the group
GO = E • Aut° Quad(n, q) from the introduction have the same kernel under
this homomorphism. The second step is to show that G and GO have the same
image in AutAlt(n, q).

Let K be the subgroup of G, consisting of all the automorphisms of F,
stabilizing every R1-clique. Notice that until Proposition 3.2 we do not exclude
the case (n, q) = (3, 2).

LEMMA 3.1. For every Rrclique X, K induces on X the group of translations of
AS X.

Proof. It suffices to prove that every a e K induces a translation of Aff X. It
follows from Lemma 2.1 that a preserves every parallel class of subspaces in Aff
X, and hence a is either a translation or a collineation. Suppose a is a nontrivial
collineation with a center x e X (in particular, q > 2). Take an R1-clique Y
at distance 1 from X. By Lemma 2.1, S = F(x) n Y is a plane of Aff Y, and
T = F(y) n X (y is an arbitrary element of S) is a plane in Aff X. Clearly, o
stabilizes T and does not stabilize every plane parallel to T. By Lemma 2.1,
adjacency relation establishes a bijection between the parallel classes of 5 and
T (in Aff Y and Aff X, respectively). Consequently, a stabilizes S and does not
stabilize every plane of Aff Y, parallel to 5. It follows that a cannot induce a
translation of Aff Y, hence it induces a nontrivial collineation.

By connectivity, a induces a nontrivial collineation on every R1-clique Y. In
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particular, a fixes exactly one form ty in every Y. Moreover, the above argument
shows that ty1 and ty2 are neighbors whenever Y1 and Y2 are such. It means that
the subgraph E induced by all tY's is naturally isomorphic to Alt(n, q). This
contradicts Lemma 2.3. D

LEMMA 3.2. Let A < K and let E be the subgraph induced by all the vertices of F,
fixed by A Then

(1) for every f e E, one has R(f) C E;
(2) the image of E in A = Alt(n, q) is a convex subgraph.

Proof. The part (1) follows from Lemma 3.1. For (2), let X, Y C E be two
R1 -cliques at distances s > 1 from each other. Suppose that an R1 -clique
T lies on a shortest path from X to Y, say, rank (X - Y) = 2i and rank
(T - Y) = 2j = rank(X -Y)- rank(X - T) = 2s - 2i. By Lemma 2.1, for
x € X and y e Y, S1 = Fi(x) n T, is a 2i-dimensional subspace of Aff T, and
S2 = Jj(y)nT is a 2j-dimensional subspace of Aff T. Clearly, we may choose x
and y in such a way that S1 n S2 = 0. According to the remark before Lemma
2.1, S1 n S2 = S(f, (Rad (X - T), Rad (T - Y))) for an f e St n S2. But the
equality rank (X - Y) = rank (X - T) + rank (T - Y) implies that {Rad (X - T),
Rad (T - y)) = V [1, Lemma 9.5.5 (i)]. It means that St n S2 consists of a
unique form, and hence A fixes T elementwise by Lemma 3.1. D

PROPOSITION 3.1. K is contained in G0 .

Proof. It is easy to see that \K n G0| = q2n. Hence it suffices to prove that
\K\ < q2n.

First we consider the case of even n (recall that n > 3). Let / be a form of
rank n. By Lemma 2.2, the geodetic closure of {R(0), R(f)} coincides with the
whole of A. Hence Lemma 3.2 implies that the stabilizer in K of both 0 and /
is trivial. Therefore, \K\ < \R(0)\ \R(f)\ = q2n.

Now let us separately consider the case n = 3. Choose a rank 2 form /
and let X = R(f). Let Y be an R1clique such that Rad (Y) = Rad (X). This
condition and Lemma 2.1 imply that T(0) n Y and F(f) n Y are nonparallel
planes of Aff Y. Hence L = T(0) n F(f) n y is a line of Aff Y. Pick a
form g € L. If T is an R1-clique such that Rad (T) < (Rad (X) Rad (Y)),
then the line P(0) n P(f) n T is not parallel to the plane F(g) n T and hence
r(0) n f(f) n F(g) n T has cardinality 1. It means that an element of K fixes
T whenever it fixes 0, f and g. Let T' be an arbitrary R1 -clique different from
X, Y and T. Then Rad (T') is not contained in at least one of (Rad (X),
Rad (y)), {Rad (X), Rad (T)), and {Rad (Y), Rad (T)}. We can repeat the
above argument for appropriate R1 -cliques to obtain that an element K fixes T'
whenever it fixes 0, f, and g. Thus we have shown that the subgroup of K fixing
0, f and g is trivial.
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Now we can estimate the order of K. The stabilizer of 0 moves / within the
plane T(0) n X. The stabilizer of 0 and f moves g within the line L. Therefore,
\K\ < q3+2+1 = q6.

Finally, let us consider the case n > 3 is odd. Choose a form / of the maximal
even rank 2s = n - 1. Let g be a rank 2 form such that Rad (f) < Rad (g).
Then Lemma 2.2 implies that the geodetic closure in A of R(0), R(f), and
R(g) coincides with the whole of A. By Lemma 3.2, the stabilizer in K of
0, f and g is trivial. By Lemma 2.1, H = rs(0) n R(f) is a hyperplane
of Aff R(f). Furthermore, S1 = ra(f) n R(g) is a hyperplane of Aff R(g),
S2 = P(0) n R(g) is a plane of Aff R(g) and S2 is not parallel to S\. Hence
\K\ < |R(0)| • \H\ • \S1 n S2| = qn+(n-1)+1 = q2n. n

In case (n, q) = (3, 2), /f coincides with the kernel of G acting on A. Hence,
in order to prove Theorem 1.1 it remains to establish the following.

PROPOSITION 3.2. Assume (n, q) = (3, 2). Then the images of G and G0 in
Aut A coincide.

Proof. In what follows, a bar over an element, or a subgroup of G means taking
image in the action on A.

If n > 5, then AutA is known to be GO [6], so the assertion is trivial. In
case n = 4 the automorphism group of A is twice larger (i.e., Aut A = Go.2),
since it contains an element interchanging the two classes Q1 and Qi of maximal
cliques in A. These two classes are represented, respectively, by the cliques

and

where Ui and U2 are fixed subspaces of V of dimensions 3 and 1, respectively.
Let / e F be a rank 1 form, such that Rad / = U\. Then 0 and / have the same
set of neighbors in the preimage of Q\. On the other hand, the preimage of Qi,
naturally isomorphic to Quad(3, q), does not contain a pair of vertices with this
property. It follows that G leaves Q1 and Q2 invariant and, hence, G = G0 .

It remains to consider the case n = 3, q > 2. In this case A is a complete
graph with g3 vertices. For f € T and a subspace U < V, dim U = n - 2,
the subgraph Q(f, U) = Quad(2, q) (see Introduction) is a clique of size q3.
Such cliques will be called cubic. Consider the plane S = S(x, U) of Aff R(x).
Then 5X coincides with the union of R(x) and the cubic clique Q = Q(x, U).
Moreover, no element from Q\ S is adjacent to an element from R(x)\ S. Since
the set of planes of Aff X, where X runs through all R1 -cliques, is invariant
under G, this implies that the set of cubic cliques is also invariant under the
action of G. Now the vertices of A and the images of the cubic cliques (each
image consists of q elements) form a 3-dimensional affine space over GF(q).
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Since Gp is isomorphic to the full automorphism group of that affine space, we
obtain G = G0. D

4. Convex subgraphs

In this section we prove Theorem 1.2. Clearly, it suffices to consider the case
n > 3; we start with n = 3.

PROPOSITION 4.1. Let n = 3 and let f e T be a form of rank 3. Then the convex
closure of 0 and f coincides with the whole of F.

Proof. Let C denote the convex closure of 0 and f. Let X be an R1 -clique such
that Rad (X) = Rad (R(f)). Then the line L1 = T(0) n T(f) n X of Aff X is
contained in C. Choose now an R1 -clique Y, such that Rad (F) < (Rad (R(f)),
Rad (X)). Then the line L2 = T(0) n r(f)nY of Aff Y also is contained in C.
Moreover, for x e L1 and y € L>2, one has that L1 is not parallel to the plane
F(y) n X and LI is not parallel to the plane F(x) n Y. Now every a e X is
adjacent to every x on L1 and to some y on L2. Clearly, we can choose x to
be nonadjacent to that y. Therefore, a belongs to C. It follows that X (and,
symmetrically, Y) is contained in C. Notice now that the sets of lines A(X, U),
where X e A and U < V has dimension 1, makes A an affine 3-space. In terms
of this affine space the above conclusion can be rephrased as follows: if P, Q,
Re A are noncollinear and P n C = O = Q n C, then R c C. Now for every
.Ri-clique T we can choose two out of three R1cliques R(f), X and R(0) to
form together with T a noncollinear triple. It means that T C C and hence
C = T. Q

Recall that A = Alt(n, q) is the graph of RI -cliques.

LEMMA 4.1. If E is a convex subgraph of F then the image of £ in A is convex.

Proof. Let X and Y be two R1-cliques at distance a > 1 from each other, such
that X n E = 0 ^ Y n E. Let T be an R1-clique such that T is at distance i
from X and at distance j from Y with a = i + j. It suffices to prove that T n S
is nonempty.

Let x e X n Z and y € y n T. If rank (x - y) = 2s + 1 then Fs(y) n X is a.
nonempty set contained in S. Replacing x by any element from Fa(y) n X, we
may assume without loss of generality that rank (x - y) = 2s. By Lemma 2.1,
both x and y belong to the subgraph T0 = Q(x, Rad (X - y)) = Quad(2s, q).
Since Rad (X-Y) - Rad (X-T) n Rad (T-Y) [1, Lemma 9.5.5 (i)], we have
that T n TO = 0. Also TO is a convex subgraph and hence So = FO n £ is convex.
It means that we can substitute TO and S0 in place of F and £. In other words
we may assume that n = 2s.
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Finally, V = (Rad (X - T), Rad (T - Y)) implies that the 2i-dimensional
subspace r,(x) n T and the 2j-dimensional subspace Fj(y) n T of Aff T must
intersect each other in exactly one point. D

According to this lemma and Lemma 2.2, the image of S must be a clique,
or a natural subgraph Alt(fc, q), k < n.

PROPOSITION 4.2. Suppose S C F is convex and its image in A is a clique. Then
either E is a clique, or £ = Q(f, U) = Quad(3, q)for an f e S and some subspace
U < V, dim U = n - 3.

Proof. Suppose Z is not a clique. Then there exist f,g£Z such that rank
(f - g) = 3. By Proposition 4.1, the closure SQ of f and g coincides with Q(f,
Rad (f - g)) = Quad(3, q). Notice that the image of S0 in A is a maximal
clique. It follows that the images of S and So coincide. Suppose S ^ So
and x € S\E0. Let X = R(x) and let Y = X be another R1-clique such that
YnS = 0. Then also T n S0 = 0. Choose y e Y n S0 . Then the plane F (y )n X
is contained in So and hence rank (x - y) = 3. Moreover, Rad (x - y) = Rad
(/ - g). One more application of Proposition 4.1 gives that the image of S is
bigger than the image of E0; a contradiction. D

PROPOSITION 4.3. Suppose that S is a convex subgraph of F such that the image of
S in A coincides with A(B, U) for some alternating form B and subspace U <V,
dim U < n - 4. Then S = Q(f, U) for an f e S.

Proof. Let f eS and S0 = Q(f, U). We first prove that S C S0 . Indeed, let an
RI-clique Y e A(B, U) be a neighbor of R(f). Suppose there is g e Yn S such
that g & Q(f, U). Then rank (g - f) = 3 and Rad (g - f) £ U. By Proposition
4.1 it follows that Q(f, Rad (g - f)) C S. But A(B} Rad (g - f)) g A(B, U) =
A(Bf, U), a contradiction. Hence Y n S C SQ. By connectivity of A(B, U), we
obtain that S C SQ. It means that without loss of generality we may assume
that S covers the whole of A (i.e., U = 0).

Now we claim that there is an R1-clique X such that \X n S\ > 1. Indeed,
suppose l-X n-E| = 1 for every RI -clique X. Let {tx} = X n S. If two .fy-cliques
X and Y are adjacent then tx and ty are adjacent, otherwise Proposition 4.1
forces a contradiction. Therefore, S is isomorphic to A; a contradiction with
Lemma 2.3, since n > 4.

Let X be an R1-clique such that zj = x2 e X n S. Let L be the line of Aff
X containing x1 and £2- Let Y be an R1 -clique at distance 1 from X, such that
for y e Y the plane T(y) n X is not parallel to L. Notice that T(x1) n F n S
is nonempty. Indeed, if y e Y n £ is not adjacent to x1 then the whole plane
F(x1) n y is contained in S. Let us choose y e T(o;i) n Y n £. Since L is not
parallel to F(y) n X, y is not adjacent to x2. By convexity of 17, T(y) n X C E.
It follows that all planes of Aff X, which contain x1 and do not contain x2,

418
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are contained in E. Substituting now other elements of X in place of x2 we
establish that X C E.

Finally, for an fy-clique Y at distance 1 from X, and for y e Y n £ we
can find an x e X which is not adjacent to y. Therefore, Y n E D F(x) n Y
has cardinality at least q2. Applying the argument from the previous paragraph
to the R1 -clique Y, we obtain Y C S. Repeating this argument and using the
connectivity of A we eventually establish that r = E. D
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