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Abstract. Two questions are considered, namely (i) How many colors are needed for a coloring of
the n-cube without monochromatic quadrangles or hexagons? We show that four colors suffice and
thereby settle a problem of Erdos. (ii) Which vertex-transitive induced subgraphs does a hypercube
have? An interesting graph has come up in this context: If we delete a Hamming code from the
7-cube, the resulting graph is 6-regular, vertex-transitive and its edges can be two-colored such that
the two monochromatic subgraphs are isomorphic, cubic, edge-transitive, nonvertex-transitive graphs
of girth 10.
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1. The 7-cube minus a Hamming code

If I is a set, we denote by 2I its power set. If x, y e 2I, we denote their
symmetric difference by x + y, and consider 2I as a vector space over F2. The
set 2I carries a natural graph structure: x and y are neighbors (which we write
x ~ y) if and only if \x + y\ = 1. For |I| = n this graph is called the n-cube, and
for unspecified n a hypercube.

Now let I = Zy (the integers modulo 7) and let H C 21 consist of 0, the
seven sets {1 + i, 2 + i, 4 + i}(i € I), and the complements of these eight sets.
Then H is a subspace of 2I. In fact, H is a perfect 1-error-correcting code
in the 7-cube: The vertices of H are pairwise nonadjacent, and each vertex
outside H has precisely one neighbor in H. (Since H is also a subspace, this
means that H is a Hamming code.) It follows that the subgraph F of the 7-cube
induced by X = 2I\H has 112 vertices and is regular of valency 6. Since H is
a subspace and is invariant under a cyclic permutation of I, it is clear that F is
vertex-transitive. Our aim is to color the edges of F red and white in such a
way that the two monochromatic graphs thus obtained (both with vertex set X)
are isomorphic cubic graphs of girth 10. (Then it follows that the edges of 2I

can be colored with three colors such that there are no monochromatic g-gons
for g < 10.) Consider an edge xy of F, where x has odd weight (cardinality).
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Define i, j € I by x + {i} € H and y = x + {j}. Now color the edge xy red if
j - i € {1, 2, 4} and white otherwise. Denote the red subgraph of F by FR and
the white subgraph by FW.

(1) rR = FW.
Indeed, if u € H has odd weight, then x i-» x + u is an isomorphism.

(2) Aut(FR) = Aut(FW) is solvable of order 168, acts (sharply) transitively on the
edges of both FR and FW, and has two orbits on their vertex set X.

Indeed, Let H0 be the even-weight subcode of H. The group of order 168
generated by the translations over members of H0, the cyclic shifts of the set
I of coordinates, and the permutation i i-> 2i of I is sharply edge-transitive
and has two orbits on X (because it preserves the parity of the weight). We
shall see below that this group really is the full automorphism group of our
two graphs.

(3) FR has diameter 8; for any vertex x of odd weight there is a unique antipode
x + {i, i + 3, i + 5, i + 6} at distance 8, where i is determined by x + {i} e H;
no two vertices of even weight have distance 8.

In order to verify this it is sufficient to grow the distance classes from
x = {1} and x = {0, 1}. It follows that AutFR has two orbits on X, and
then it is easily seen that AutFR is no larger than the group found under (2).

Let us mention some other interesting properties of F and FR.

(4) Any quadrangle in F has three edges of one color and one edge with the other
color. If xy is a white edge, then x and y have distance 3 in FR, and there is a
unique path x~u~v~y in FR joining them.

(5) FR has girth 10.
(6) FR is an 8-cover of the Heawood graph, the point-line incidence graph of the

Fano plane.
Indeed, if we identify two vertices of FR when they differ by an element of

H0, we obtain a graph A isomorphic to the Heawood graph (namely, defined
on the vertex set I U I' by i - j' iff i - j e {1, 2, 4}).

The graph discussed in this section was constructed in Dejter and Guan [7]; it
may well be the same graph as the one constructed by R.M. Foster according to
Bouwer [2],

2. Vertex-transitive subgraphs of the n-cube

The graph F of Section 1 is a vertex-transitive induced subgraph of the 7-cube.
Which other graphs are vertex-transitive induced subgraphs of some n-cube?
Unfortunately there seem to be too many to classify. An example of a nice
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Figure 1. Vertex-transitive cubic graph on 64 vertices.

vertex-transitive cubic graph on 64 vertices that is an induced subgraph of the
8-cube is given in Figure 1.

The graph is drawn on a torus, i.e., left and right sides are identified, and
so are top and bottom. Label i on an edge means that it joins vertices of the
form x and x + {i}. (If we change labels 7, 8 to 1 ,2 , respectively, we see that
the graph is also a subgraph of the 6-cube.) Without proof we mention that
changing the size of this picture yields cubic graphs on 16m1m2 vertices (with
m1, m2 > 2), and also changes in dimension are possible. Similarly, one has,
e.g., a quotient on 32 vertices of the hexagonal tiling of the plane that is an
induced subgraph of the 6-cube —indeed, this graph occurs as the subgraph of
the points at maximal distance from a given point in one of the two generalized
hexagons of order (2, 2). Again many variations are possible. (For pictures, cf.
e.g., Cohen and Tits [4] and Coxeter, Frucht and Powers [6, p. 130].)

Now the above graphs were vertex-transitive, but not necessarily for the group
induced by the automorphism group of the hypercube. Examples of the latter are
sub m-cubes of an n-cube, the 'doubled Odd' or 'revolving-door' graphs induced
by the m-sets and the (m + l)-sets in a (2m + l)-cube, and the complement of a
Hamming code in a (2m — l)-cube. (It is easy to see that the latter can be chosen
so as to be invariant under a cyclic permutation of I, cf. [10, Chapter 9, §3].)
Generalizing the first example, one may remark that the collection of vertex-
transitive induced subgraphs of hypercubes is closed under taking Cartesian
products. Generalizing the second example, one may remark that if G is an
arbitrary permutation group on the set I of n = 2m + 1 coordinate positions such
that G moves some m-set_M to a set disjoint fromj it then the G-orbit MG of M
together with the orbit MG of its complement M = I\M induces a not totally
disconnected vertex-transitive graph. Generalizing the second and third example,
one may remark that the set of all vectors at maximal distance from a perfect
binary linear code induces a connected vertex-transitive graph. (Thus, starting
with the binary Golay code (see [10]), we find a graph on (3

3).212 vertices, regular
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of valency 20.) Generalizing all previous examples, one may remark that if G is
an arbitrary permutation group on the set I of n coordinate positions, and C is
any binary linear code of word length n, and u is any binary vector of length n,
then the union X of the G-orbits of the vectors c + u (for c e C) induces a vertex-
transitive graph. Other types of examples exist. For example, a 2m-gon is found
as an induced subgraph of an m-cube by taking the orbit of the origin 0 under the
cyclic group generated by g : (u1, ..., um) i-> (u2, ..., um, u1 + 1). Thus, even with
the more strict requirement that the group must be induced by the automorphism
group of the hypercube, there seem to be too many examples to classify.

3. Coloring the edges of a hypercube

It is easy to color the edges of the n-cube in two colors such that there is
no monochromatic quadrangle. Just give the edge xy color i(i = ±1) if \x\ is
even and \y\ = \x\ + i. Moreover, the edges of an n-cube can be colored in 4
colors such that there is no monochromatic quadrangle or hexagon. Indeed, we
can color the edges of the subgraph induced by the m-sets and the (m + 1)-
sets in two colors such that there is no monochromatic hexagon: Fix a total
order on the set I of coordinate positions, and color the edge xy (where
y = x U {j}) white whenever \{i E x\i > j}\ is even, and red otherwise. (For
n > 5 this yields color classes with girth 8; a monochromatic 8-gon is given by
13 ~ 134 ~ 34 ~ 234 ~ 23 ~ 235 ~ 35 ~ 135 ~ 13.)

Clearly, the n-cube has n2n-1 edges. ERDOS [8] conjectured that, for each
e > 0 and n sufficiently large, every subgraph of the n-cube with sn2n-1 edges
contains a hexagon. The above 4-coloring shows that this is false for e < 1.

In Section 1 we saw that it is possible to find a 3-coloring of the edges of the
n-cube without monochromatic quadrangle or hexagon, when n < 7. We don't
know whether this can be done for larger n.

Remarks added in proof. In the meantime, Fan Chung wrote [3], where she also
solves Erdos' conjecture. Marston Conder answered our question above in [5] by
constructing a three-coloring of the edges of the n-cube without monochromatic
quadrangle or hexagon, somewhat similar to the construction above. The graph
constructed in Section 1 is different from the unique trivalent graph on 112
vertices with girth 10 in Foster's census ([1, 9]) since ours is not vertex-transitive.
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