ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Descent systems for Bruhat posets

Lex E. Renner
University of Western Ontario Department of Mathematics London N6A 5B7 Canada

DOI: 10.1007/s10801-008-0141-4

Abstract

Let ( W, S) be a finite Weyl group and let w\in  W. It is widely appreciated that the descent set
D( w)={ s Ĩ S | l( ws) < l( w)} D(w)=\{s\in S\mid l(ws)

Pages: 413–435

Keywords: keywords Weyl group; Bruhat poset; descent system; augmented poset; $J$-irreducible monoid; rationally smooth

Full Text: PDF

References

1. Bialynicki-Birula, A.: Some theorems on the actions of algebraic groups. Annals of Math. 98, 480- 497 (1973)
2. Bjorner, A., Brenti, F.: Combinatorics of Coxeter Groups. Graduate Texts in Mathematics, vol.
231. Springer, New York (2005)
3. Brenti, F.: q-Eulerian poynomials arising from Coxeter groups. European Journal of Combinatorics 15, 417-441 (1994)
4. Brion, M.: Rational smoothness and fixed points of torus actions. Transformation Groups 4, 127-156 (1999)
5. Brown, K.: Semigroup and ring theoretical methods in probability. In: Representations of Finite Di- mensional Algebras and Related Topics in Lie Theory and Geometry. Fields Inst. Commun., vol. 40, pp. 3-26. Amer. Math. Soc., Providence (2004)
6. Danilov, V.I.: The geometry of toric varieties. Russian Mathematical Surveys 33, 97-154 (1978)
7. DeConcini, C., Procesi, C.: Complete Symmetric Varieties. Springer Lecture Notes in Mathematics, vol.
131. Springer, Berlin (1983), pp. 1-44
8. Dolgachev, I., Lunts, V.: A character formula for the representation of a Weyl group on the cohomology of the associated toric variety. Journal of Algebra 168, 741-772 (1994)
9. Grosshans, F.D.: The variety of points which are not semi-stable. Illinois Journal of Math. 26, 138-148 (1982)
10. Humphreys, J.E.: Introduction to Lie Algebras and Representation Theory, 3rd edn. GTM, vol.
9. Springer, Berlin (1980)
11. Putcha, M.S.: Linear Algebraic Monoids. Cambridge University Press, Cambridge (1988)
12. Putcha, M.S., Renner, L.E.: The system of idempotents and lattice of J-classes of reductive algebraic monoids. Journal of Algebra 116, 385-399 (1988)
13. Renner, L.E.: Analogue of the Bruhat decomposion for algebraic monoids. Journal of Algebra 101, 303-338 (1986)
14. Renner, L.E.: An explicit cell decomposition of the canonical compactification of an algebraic group. Can. Math. Bull. 46, 140-148 (2003)
15. Renner, L.E.: Linear Algebraic Monoids. Encyclopedia of Mathematical Sciences, vol.
134. Springer, Berlin (2005)
16. Stembridge, J.R.: Some permutation representations of Weyl groups associated with the cohomology of toric varieties. Advances in Mathematics 106, 244-301 (1994)
17. Solomon, L.: A Mackey formula in the group ring of a Coxeter group. Journal of Algebra 41, 255-264 (1976)
18. Solomon, L.: An introduction to reductive monoids. In: Fountain, J. (ed.) Semigroups, Formal Languages and Groups, pp. 295-352. Kluwer Academic, Dordrecht (1995)
19. Stanley, R.P.: Log-concave and unimodal sequences in algebra, combinatorics and geometry. Ann.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition