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Abstract Kerov’s polynomials give irreducible character values in terms of the free
cumulants of the associated Young diagram. We prove in this article a positivity result
on their coefficients, which extends a conjecture of S. Kerov. Our method, through
decomposition of maps, gives a description of the coefficients of the k-th Kerov’s
polynomial using permutations in S(k). We also obtain explicit formulas or combi-
natorial interpretations for some coefficients. In particular, we are able to compute
the subdominant term for character values on any fixed permutation (it was known
for cycles).
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1 Introduction

1.1 Background

1.1.1 Representations of the symmetric group

Representation theory of the symmetric group S(n) is an old research field in math-
ematics. Irreducible representations of S(n) are indexed by partitions1 λ of n, or
equivalently by Young diagrams of size n. The associated character can be computed
thanks to a combinatorial algorithm, but unfortunately it becomes quickly cumber-
some when the size of the diagram is large and does not help to study asymptotic
behaviors.

1Non-increasing sequences of non-negative integers of sum n.
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1.1.2 Free cumulants

To solve asymptotic problems in representation theory of the symmetric groups,
P. Biane introduced in [2] the free cumulants Ri(λ) (of the transition measure) of
a Young diagram.2 Asymptotically, the character value and the results of the classical
operations on representations can be easily described with the free cumulants:

• Up to a good normalization, the l + 1-th free cumulant is the leading term of the
character value on the cycle (1 . . . l).

• Typical large Young diagrams (according to the Plancherel distribution) have, after
rescaling, all free cumulants, except for the second one, very close to zero.

• Almost all diagrams appearing in a result of an elementary operation on irreducible
representations (like restriction, tensor product) have free cumulants very close
to specific values, which can be easily computed from the free cumulants of the
original diagram(s).

So the free cumulants form a good way to encode the information contained in a
Young diagram.

1.1.3 Kerov’s polynomials

It is natural to wonder if there are exact expressions of the character value in terms of
the free cumulants. Kerov’s polynomials give a positive answer to this question for
character values on cycles (they appeared first in a paper of P. Biane [3, Theorem 1.1]
in 2003). Unfortunately, their coefficients remain very mysterious. A lot of work
has been done to understand them: a general, but exploding in complexity, explicit
formula [4, 8] and a combinatorial interpretation for linear terms in free cumulants [3]
have been found. We also refer to [10, 13, 15] for a complete outline of the literature
on the subject.

The positivity of the coefficients of Kerov’s polynomial has been observed by
numerical computations [3, 8] and was conjectured by S. Kerov. The main result of
this paper is a positive answer to this conjecture.

1.1.4 Multirectangular Young diagrams

We use in this paper a new way to look at Young diagrams, initiated by R. Stanley
in [16]. In this paper, he proved a nice combinatorial formula for character values, but
only for Young diagrams of rectangular shape. To generalize it, we have to look at
any Young diagram as a superposition of rectangles as in Fig. 1. With this description,
Stanley’s formula has been recently generalized (see [5, 17]).

The complexity of this general formula depends only on the size of the support
of the permutation (and not of the size of the permutation!). As remarked in [6], it
is useful to reformulate it with the notion of a bipartite graph associated to a pair of

2The transition measure of a Young diagram is a measure on the real line introduced by S. Kerov in [9]. Its
free cumulants are a sequence of real numbers associated to this measure. The denomination comes from
free probability theory, see [2] for more details.
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Fig. 1 Young diagram
associated to sequences p and q
(French convention)

permutations. This bipartite graph has in fact a canonical map structure,3 which plays
a key role here.

In this paper, we link these two recent developments. This gives a new combina-
torial interpretation of the coefficients, proving Kerov’s conjecture.

1.2 Normalized character

If σ is a permutation in S(k), let C(σ) be the partition of the set [k] := {1, . . . , k}
into orbits under the action of σ . The type of σ is, by definition, the partition μ of
the integer k whose parts are the lengths of the cycles of σ . The conjugacy classes of
S(k) are exactly the sets of partitions of a given type.

By definition, for μ � k and λ � n with k ≤ n, the normalized character value is
given by equation:

�μ(λ) := n(n − 1) . . . (n − k + 1)χλ(σ )

χλ(Idn)
, (1)

where σ is a permutation in S(k) of type μ and χλ is the character value of the
irreducible representation associated to λ (see [11]). Note that we have to identify σ

with its image by the natural embedding of S(k) in S(n) to compute χλ(σ ).

1.3 Minimal factorizations and non-crossing partitions

Non-crossing partitions and, in particular, their link with minimal factorizations of a
cycle, are central in this work. This paragraph is devoted to definitions and known
results in this domain. For more details, see P. Biane’s paper [1].

Definition 1.3.1 A crossing of a partition π of the set [j ] is a quadruple (a, b, c, d) ∈
[j ]4 with a < b < c < d such that

• a and c are in the same part of π ;
• b and d are in the same part of π , different from the one containing a and c.

3For some pairs of permutations, this structure was introduced by I.P. Goulden and D.M. Jackson in [7].
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A partition without crossings is called a non-crossing partition. The set of non-
crossing partitions of [j ] is denoted NC(j) and can be endowed with a partial order
structure (by definition, π ≤ π ′ if every part of π is included in some part of π ′).

The partially ordered set (poset) NC(j) appears in many domains: we will use its
connection with the symmetric group.

Let us consider the following length on the symmetric group S(j): denote by l(σ )

the minimal number h of factors needed to write σ as a product of transpositions
σ = τ1 . . . τh. One has:

l(Idj ) = 0,

l(σ−1) = l(σ ),

l(σ · σ ′) ≤ l(σ ) + l(σ ′).

We consider the associated partial order on S(j): by definition, σ ≤ σ ′ if l(σ ′) =
l(σ ) + l(σ−1σ ′). It is easy to prove that

• Idj is the smallest element;
• for any σ , one has l(σ ) = j − |C(σ)|.
So, if we denote by (1 . . . j ) the cycle sending 1 onto 2, 2 onto 3, etc. . . , one has

σ ≤ (1 . . . j ) ⇐⇒ |C(σ)| + |C(σ−1(1 . . . j ))| = j + 1.

If σ ≤ σ ′, let us consider the interval [σ ;σ ′] which is by definition the set
{
τ ∈

S(k) s.t. σ ≤ τ ≤ σ ′}. In his paper [1, Sect. 1.3], P. Biane gives a combinatorial
description of these intervals:

Proposition 1.3.1 (Isomorphism with minimal factorizations) The map

[Idj ; (1 . . . j )] −→ NC(j)

σ 	→ C(σ)

is a poset isomorphism.

Here is the inverse bijection: to a non-crossing partition τ of [j ], we associate the
permutation σπ ∈ S(j), where σπ(i) is the next element in the same part of π as i for
the cyclic order (1,2, . . . , j).

Since the order is invariant under conjugacy, every interval [Idj ; c], where c is a
full cycle, is isomorphic as poset to a non-crossing partition set. More generally, if σ

is a permutation in S(j),

[Idj ;σ ] 

|C(σ)|∏

i=1

NC(ji),

where the ji ’s are the numbers of elements of the cycles of σ . This result gives a
description of all intervals of the symmetric group since, if σ ≤ σ ′, we have [σ ;σ ′] 

[Id;σ−1σ ′].
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1.4 Kerov’s polynomials

We look for an expression of the normalized character value in terms of free cumu-
lants. In the case when μ has only one part (μ = (k), σ = (1 . . . k)), P. Biane shows4

in [3] that:

Definition-Theorem 1.4.1 For any k ≥ 1, there exists a polynomial Kk , called k-th
Kerov’s polynomial, with integer coefficients, such that, for every Young diagram λ

of size bigger than k, one has:

�k(λ) = Kk(R2
(
λ), . . . ,Rk+1(λ)

)
. (2)

Examples :
�1 = R2;
�2 = R3;
�3 = R4 + R2;

�4 = R5 + 3R3;
�5 = R6 + 15R4 + 5R2

2 + 8R2;
�6 = R7 + 35R5 + 35R3 · R2 + 84R3.

Our main result is the positivity of the coefficients of Kerov’s polynomials. This
result was conjectured by S. Kerov (according to P. Biane, see [3]).

Theorem 1.4.2 (Kerov’s conjecture) For any integer k ≥ 1, the polynomial Kk has
non-negative coefficients.

Our proof gives a (complicated) combinatorial interpretation of the coefficients
and allows us to compute some of them.

1.4.1 High graded degree terms

Theorem 1.4.3 Let j1, . . . , jt be non negative integers such that
∑

i ji = k − 1. The
coefficient of

∏
i Rji

in Kk is

(k − 1)k(k + 1)

24
|Perm(j)|

∏

i

(ji − 1), (3)

where Perm(j) is the set of sequences equal to j up to a permutation (|Perm(j)| =
t !

m2!...mk−1! is the multinomial coefficient of the ml’s, where ml is the number of ji

equal to l).

This theorem gives an explicit formula for the term of graded degree k − 1 in Kk ,
which is the subdominant term for character values on a cycle. It has already been
proved in two different ways by I.P. Goulden and A. Rattan in [8] and by P. Śniady
in [15]. The proof in this article is a new one and a consequence of our general
combinatorial interpretation.

4P. Biane attributes this result to S. Kerov.
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1.4.2 Low degree terms

Theorem 1.4.4 The coefficient of the linear monomial Rd in Kk is the number of
cycles τ ∈ S(k) such that τ−1(12 . . . k) has d − 1 cycles.

Let k, j, l be positive integers. Then the coefficient of RjRl in Kk is the number
(respectively half the number is j = l) of pairs (τ,ϕ) which fulfill the following con-
ditions.

• The first element τ is a permutation in S(k) such that |C(τ)| = 2. The second
element ϕ is a bijection C(τ)

∼→ {1;2}. So we count some permutations with num-
bered cycles.

• C(τ−1σ) is a partition of [k] in j + l − 2 sets.
• Among these sets, at least j have an element in common with ϕ−1(1) and at least

l with ϕ−1(2).

The first part of this theorem was proved by R. Stanley and P. Biane [3]. The
second part is a new result. As in our general combinatorial interpretation, these co-
efficients can be computed by counting permutations in S(k). So, when the support
of the permutations is quite small, we can compute quickly character values from free
cumulants.

1.5 A combinatorial formula for character values

The main tool in this article is the following formula,5 conjectured by R. Stanley
in [17] and proved by the author in [5]. As noticed in paragraph 1.1, if we have two
sequences p and q of non-negative integers with only finitely many non-zero terms,
we consider the partition drawn in Fig. 1:

λ(p,q) :=
∑

i≥1

qi, . . . ,
∑

i≥1

qi

︸ ︷︷ ︸
p1times

,
∑

i≥2

qi, . . . ,
∑

i≥2

qi

︸ ︷︷ ︸
p2times

, . . .

With this notation, the Ri(λ(p,q)) are homogeneous polynomials of degree i in p
and q.

Theorem 1.5.1 Let p and q be two finite sequences, λ(p,q) � n the associated Young
diagram and μ � k(k ≤ n). If σ ∈ S(k) is a permutation of type μ, the character value
is given by the formula:

�μ

(
λ(p,q)

)=
∑

τ,τ∈S(k)
ττ=σ

(−1)|C(τ)|+l(μ)Nτ,τ (p,q), (4)

where l(μ) is the number of parts of μ and Nτ,τ a homogeneous power series of
degree |C(τ)| in p and |C(τ)| in q that will be defined in Sect. 2.

5The notations in this article are slightly different from the ones in the original papers.
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This theorem gives a combinatorial interpretation of the coefficients of �μ, ex-
pressed as a polynomial in variables p and q. It is natural to wonder whether there
exists such an expression for free cumulants. Since Rl+1 is the term of graded degree
l + 1 of �l (see [3, Theorem 1.3]), we have:6

Rl+1(λ(p,q)) =
∑

τ,τ∈S(l)
ττ=(1...l)

|C(τ)|+|C(τ)|=l+1

(−1)|C(τ)|+1Nτ,τ (p,q)

=
∑

π∈NC(l)

(−1)|π |+1Nπ(p,q). (5)

The second equality comes from the fact that factorizations τ, τ of the long cycle
(1 . . . l) such that |C(τ)| + |C(τ)| = l + 1 are canonically in bijection with non-
crossing partitions (see paragraph 1.3). Note that Nπ is simply a short notation for
Nσπ ,σ−1

π (1...l).
From now on, we consider �k and Rl as power series in two infinite sets of vari-

ables (p,q) and look at equality (2) in this algebra (equality as power series in p and
q is equivalent to equality for all Young diagram λ, whose size is bigger than a given
number). If we expand Kk(R2, . . . ,Rk+1), we obtain an algebraic sum of products of
power series associated to minimal factorizations. In this article, we write each term
of the right side of (4) as such a sum.

1.6 Generalized Kerov’s polynomials

The theorems of paragraph 1.4 correspond to the case where μ has only one part.
But, in fact, they have generalizations for any μ � k.

Firstly, there exist universal polynomials Kμ, called generalized Kerov’s polyno-
mials, such that:

�μ(λ) = Kμ(R2(λ), . . . ,Rk+1(λ)). (6)

Examples: �2,2 = R2
3 − 4R4 − 2R2

2 − 2R2;
�3,2 = R3 · R4 − 5R2 · R3 − 6R5 − 18R3;

�2,2,2 = R3
3 − 12R3 · R4 − 6R3 · R2

2 + 58R3 · R2 + 40R5 + 80R3.

Secondly, although these polynomials do not have non-negative coefficients, the
following generalization of Theorem 1.4.2 holds:

Theorem 1.6.1 Let σ ∈ S(k) be a permutation of type μ � k. Let us define

�′
μ :=

∑

τ,τ∈S(k)
ττ=σ〈τ,τ 〉trans.

(−1)|C(τ)|+1Nτ,τ , (7)

6A. Rattan has also given a direct proof of this result in [12].
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where 〈τ, τ 〉 trans. means that the subgroup 〈τ, τ 〉 of S(k) generated by τ and τ

acts transitively on the set [k]. Then there exists a polynomial K ′
μ with non-negative

integer coefficients such that, as power series:

�′
μ = K ′

μ(R2, . . . ,Rk+1). (8)

Examples: �′
2,2 = 4R4 + 2R2

2 + 2R2;
�′

3,2 = 6R2 · R3 + 6R5 + 18R3;
�′

2,2,2 = 64R3 · R2 + 40R5 + 80R3.

Sections 2, 3 and 4 are devoted to the proof of this theorem.
The quantities �′ are not only practical for the statement of this theorem, they

also appear as disjoint cumulants [6, Proposition 22] in the study of asymptotics of
character values in [14]. It is also easy to recover � from �′ by looking, for each
decomposition, at the set partition of [k] into orbits under the action of 〈τ, τ 〉 (one
has to be careful about the signs):

�μ =
∑

	 partition of [l(μ)]

(
∏

{i1,...,il} part of 	

(−1)l−1�′
μi1 ,...,μil

)

. (9)

If we invert this formula with (usual) cumulants, then our positivity result on gen-
eralized Kerov’s polynomials is exactly the one conjectured by A. Rattan and P. Śni-
ady in [13].

1.6.1 Subdominant term for general μ

We can also compute some particular coefficients in this general context:
For low degree terms, the first part of Theorem 1.4.4 is still true (it has been proved

in [13] in this general context) and the second is true with K ′
μ instead of Kμ and with

an additional condition in the second part that < τ, τ−1σ > acts transitively on [k].
The highest graded degree in K ′

μ is |μ|+ 2 − l(μ). In the case of l(μ) = 2, we can
explicitly compute the corresponding term.

Theorem 1.6.2 Let N(l1, . . . , lt ;L) be the number of solutions of the equation
x1 + . . . + xt = L, fulfilling the condition that, for each i, xi is an integer between 0
and li . Then, the coefficient of a monomial

∏t
i=1 Rji

of graded degree r + s in K ′
r,s

is:
r · s
t

|Perm(j)| N(j1 − 2, . . . , jt − 2; r − t). (10)

This result gives the subdominant term for character values on any fixed permuta-
tion.
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Corollary 1.6.3 For any μ = (k1, . . . , kr ) � k, one has:

�μ =
r∏

i=1

Rki+1

+
r∑

i=1

[(
∏

h�=i

Rh

)(
∑

|j|=i−1

(k − 1)k(k + 1)

24
|Perm(j)|

l(j)∏

i

(ji − 1)Rji

)]

+
∑

1≤i1<i2≤r

[(
∏

h�=i1,i2

Rh

)

×
(

∑

|j|=i1+i2

i1 · i2
l(j)

|Perm(j)| N(j1 − 2, . . . , jt − 2; i1 − t)

l(j)∏

i=1

Rji

)]

+ lower degree terms.

Proof In equation (9), the only summands which contain terms of degree |μ| + r − 2
are the one indexed by the partition of [l(μ)] in singletons and those indexed by
partitions in one pair and singletons. �

1.7 Organization of the article

In Sect. 2, we will associate a map to each pair of permutations. This will help us to
define the associated power series N . In Sect. 3, for any map M , we write N(M) as
an algebraic sum of power series associated to minimal factorizations. The Sect. 4
is the end of the proof of Theorem 1.6.1. Then, in Sect. 5, we will compute some
particular coefficients (proofs of Theorems 1.4.3, 1.4.4 and 1.6.2).

2 Maps and polynomials

In this section, we define the power series Nτ,τ as the composition of three functions:

S(k) × S(k)
§ 2.1−→ bicolored labeled map

Forget−→ bicolored graph
§ 2.2−→ C[[p,q]].

2.1 From permutations to maps

Let us give some definitions concerning graphs and maps.

Definition 2.1.1 (Graphs)

• A graph is given by:
– a finite set of vertices V ;
– a set of half-edges H with a map ext from H to V (the image of a half-edge is

called its extremity);
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– a partition of H into pairs (called edges, whose set is denoted E) and singletons
(the external half-edges).

• A bicolored graph is a graph with a partition of V in two sets (the set of white
vertices Vw and the set of black vertices Vb) such that, for each edge, among the
extremities of its two half-edges, one is black and one is white.

• A labeled graph is a graph with a map ι from E in N
�. Moreover, we say that it is

well labeled if ι is an injection with image {1, . . . , |E|}.
• An oriented edge e is an edge e with an order of its two half-edges.
• An oriented loop is a sequence of oriented edges e1, . . . , el such that:

– For each i, the extremity vi of the first half-edge of ei+1 is the same as the
extremity of the second of ei (with the convention el+1 = e1);

– All the vi ’s and the ei ’s are different (an edge does not appear twice, even with
different orientations).
We identify sequences that differ only by a cyclic permutation of their oriented

edges.
• The free abelian group on graphs has a natural ring structure: the product of two

graphs is by definition their disjoint union.

Definition 2.1.2 (Maps)

• A map is a graph supplied with, for each vertex v, a cyclic order on the set of all
half-edges (including the external ones) with extremity v (i.e. ext−1(v)).

• Consider a half-edge h of a map M . Thanks to the map structure, there is a cyclic
order on the set of half-edges having the same extremity as h. We call the element
right after h in this order, the successor of h.

• Since a map is a graph with additional information, we have the notion of bicolored
and/or (well-)labeled map.

• A face of a map is a sequence of oriented edges e1, . . . , ek such that, for each i, the
first half-edge of ei+1 (el+1 = e1) is the successor of the second half-edge of ei . As
for loops, we identify the sequences which differ by cyclic permutations of their
oriented edges. Then each oriented edge is in exactly one face.

• If a face F of a map is labeled and bicolored, we denote by E(F) the set of edges
appearing in F with the white to black orientation. The word associated to a face
is the word w(F) of the labels of the elements of E(F) (it is defined up to a cyclic
permutation).

• A face that is also a loop (all vertices and edges of the face are distinct) and that
does not contain an external half-edge, is called a polygon.

Remark 1 A map, whose underlying graph is a tree, is a planar tree. It has exactly
one face.

2.1.1 Map associated with a pair of permutations

The following construction is classical (it generalizes the work of I.P. Goulden and
D.M. Jackson in [7]) but we recall it for completeness.
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Fig. 2 Example of a bicolored
labeled map, with exactly one
face whose associated word is
12345678

Definition 2.1.3 To a well-labeled bicolored map M with k edges and no external
half-edges, we associate the pair of permutations (τ, τ ) ∈ S(k)2 defined as follows:
if i is an integer in [k], e the edge of M with label i and h its half-edge with a white
(resp. black) extremity, then τ(i) (resp. τ(i)) is the label of the edge containing the
successor of h.

It is easy to see that this defines a bijection between well-labeled bicolored maps
and pairs of permutations in S(k). Its inverse associates to a pair of permutations
(τ, τ ) the following bicolored labeled map Mτ,τ : the set of white vertices is C(τ),
the one of black vertices is C(τ), the set of half-edges {1w,1b, . . . , kw, kb} is parti-
tioned into edges {iw, ib} and the cycle (i1, . . . , il) of τ (resp. (j1, . . . , jl) of τ ) is the
extremity of the half-edges iw1 , . . . , iwl (resp. jb

1 , . . . , jb
l ) in this cyclic order.

The following property follows directly from the definition:

Proposition 2.1.1 The words associated to the faces of Mτ,τ are exactly the cycles
of the product ττ .

Example 1 The map drawn in Fig. 2 is associated to the pair of permutations(
(15)(27)(3)(486), (174)(236)(58)

)
with product (12345678). The word associated

to its unique face is 12345678 as predicted by Proposition 2.1.1.

Note that the connected components of Mτ,τ are in bijection with the orbits of
[k] under the action of 〈τ, τ 〉. So, a factorization is transitive if and only if its map
is connected. In particular, maps of minimal factorizations of the full cycle (12 . . . k)

are exactly the connected maps with k + 1 vertices and k edges, that is to say the
planar trees.

2.2 From graphs to polynomials

Definition 2.2.1 Let G be a bicolored graph and V its set of vertices, disjoint union
of Vb and Vw . An evaluation ψ : V → N

� is said to be admissible if, for any edge
between a white vertex w and a black one b, it satisfies ψ(b) ≥ ψ(w). The power
series N(G) in indeterminates p and q is defined by the formula:

N(G) =
∑

ψ :V →N

admissible

∏

w∈Vw

pψ(w)

∏

b∈Vb

qψ(b). (11)
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Fig. 3 Illustration of definition of transformation TL

Note that N is extended to the ring Abg of bicolored graphs by Z-linearity. It is in
fact a morphism of rings (the power series associated to a disjoint union of graphs is
simply the product of the power series associated to these graphs).

If τ and τ are two permutations in S(k), we put:

Nτ,τ := N(Mτ,τ ).

This definition is the one that appears in Theorem 1.5.1. The main step of our
proof of Kerov’s conjecture is to write the power series associated to any pair of
permutations as an algebraic sum of power series associated to forests (i.e. products
of power series associated to minimal factorizations).

Let G be a bicolored graph and L an oriented loop of G. We denote by E(L) the
set of edges that appear in the sequence L oriented from their white extremity to their
black one. Let us define the following element of the Z-module Abg :

TL(G) =
∑

E′⊂E(L)

E′ �=∅

(−1)|E′|−1G\E′, (12)

where G\E′ denotes the graph obtained from G by erasing its edges belonging to E′
(it is a subgraph of G with the same set of vertices). These elementary transformations
are drawn in Fig. 3, where we have only drawn vertices and edges belonging to the
loop L (so these schemes can be understood as local transformations).

An example of such a transformation is drawn in Fig. 4. G is the map of Fig. 2
(we forget the labels and the map structure) and L is the loop 7,2,6,4.

We have the following conservation property:

Proposition 2.2.1 If G is a bicolored graph and L an oriented loop of G, then

N
(
TL(G)

)= N(G). (13)
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Fig. 4 Example of an elementary transformation

Proof Let G be a bicolored graph and Vw , Vb , E as in Definition 2.1.1. We write the
series N(G) as the following sum:

N(G) =
∑

ψw :Vw→N�

[
∑

ψ :V →N� admissible
ψ/Vw

=ψw

∏

w∈Vw

pψ(w)

∏

b∈Vb

qψ(b)

]

=
∑

ψw :Vw→N�

Nψw(G). (14)

Since all the graphs in the equality (13) have the same set of white vertices Vw , it
is enough to prove that, for every ψw : Vw → N

�, one has:

Nψw

(
TL(G)

)= Nψw(G). (15)

Let us fix a partial evaluation ψw : Vw → N
�. If we choose a numbering

w1, . . . ,wl (with respect to the loop order) of the white vertices of L, then there
exists an index i such that ψw(wi+1) ≥ ψw(wi) (with the convention wl+1 = w1).
Denote by e the edge right after wi in the loop L. It is an erasable edge. So we have
a bijection:

{
E′ ⊂ E(L), e /∈ E′} ∼→ {

E′′ ⊂ E(L), e ∈ E′′}

E′ 	→ E′′ = E′ ∪ {e}.

But this bijection has the following property:

Nψw(G\E′) = Nψw(G\(E′ ∪ {e}).

Indeed the admissible evaluations whose restriction to white vertices is ψw are the
same for G\E′ and G\(E′ ∪ {e}). The only thing to prove is that, if such a ψ is
admissible for G\(E′ ∪ {e}), it also satisfies: ψ(be) ≥ ψ(wi), where be is the black
extremity of e. This is true because

ψ(be) ≥ ψ(wi+1) = ψw(wi+1) ≥ ψw(wi) = ψ(wi).

To conclude the proof, note that E′ and E′ ∪ {e} appear with different signs in
G − TL(G). Their contributions to (15) cancel each other and the proof follows. �
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Recall that N is a morphism of rings, so (Abg)/KerN is a ring.

Corollary 2.2.2 The ring (Abg)/KerN is generated by trees.

Proof It is enough to iterate the proposition by choosing any oriented loop until there
is no loop left (if a graph is not a disjoint union of trees, there is always one). �

Remark 2 The idea of the proof of the main theorem is to write any series Nτ,τ as an
algebraic sum of series associated to forests so that, one can write �′

μ in the form:

�′
μ =

∑
±N(F).

But free cumulants can be written in a similar form, so Kerov’s polynomials give
another formula for �′

μ as an algebraic sum of N(F)’s. If forests were linearly inde-
pendent in (Abg)/KerN , we would know immediately that these two formulas are the
same (up to a reordering of the terms).

Unfortunately, forests are not linearely independent in (Abg)/KerN . So we will
have to prove that our two formulas are indeed the same (this is the purpose of
Sect. 4). This is not true for every decomposition of the Nτ,τ ’s as an algebraic sum
of N(F)’s, so we will also have to construct a good one in Sect. 3.

3 Map decomposition

Given a graph G, by iterating Proposition 2.2.1 until there are only forests left, we ob-
tain an algebraic sum of forests whose associated power series is N(G). But there are
many possible choices of oriented loops and they can give different sums of forests.
In this section, we explain how, by restricting the choices, do we choose a particular
one, which depends on the map structure and the labeling.

3.1 Elementary decomposition

To do coherent choices, it is convenient to add an external half-edge to our map. So,
in this section, we deal with bicolored maps with exactly one external half-edge h.
They generate a free Z-module denoted Abm,1.

If M is such a map, let � be the extremity of its external half-edge. An (oriented)
loop L is called admissible if:

• The vertex � is a vertex of the loop, that is to say that � is the extremity of the
second half-edge hi,2 of ei and of the first half-edge hi+1,1 of ei+1 for some i;

• The cyclic order at � restricted to the set
{
h,hi,2, hi+1,1

}
is the cyclic order(

h,hi+1,1, hi,2
)
.

For example, the oriented loop L from Fig. 4 is admissible. If L satisfies the first
condition, exactly one among the oriented loops L and L′ is admissible (where L′ is
L with the opposite orientation).
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Definition-Theorem 3.1.1 There exists a unique linear operator

D1 : Abm,1 → Abm,1

such that:

• The image of a given map M belongs to the vector space spanned by its submaps
with the same set of vertices;

• If L is an admissible loop of M , then

D1(M) = D1
(
TL(M)

)
. (16)

Note that this equality is meant as an equality between submaps of M , not just as
abstract isomorphic maps;

• If there is no admissible loops in M , then D1(M) = M .

Proof If M is a bicolored map, all graphs appearing in TL(M) have strictly fewer
edges than M . So the uniqueness of D1 is obvious.

The existence of D1 will be proved by induction. Denote, for every N , by A
N
bm,1

the submodule of Abm,1 generated by graphs with at most N edges. We will prove
that there exists, for every N , an operator DN

1 : A
N
bm,1 → A

N
bm,1, extending DN−1

1
if N ≥ 1, and satisfying the conditions asked for D1. The case N = 0 is very easy
because A

0
bm,1 is generated by graphs without admissible loops, so D0

1 = Id. If our
statement is proved for any N , it implies the existence of D1: it is the inductive limit
of the DN

1 .
Let us fix N ≥ 1 and suppose that DN−1

1 has been constructed. To prove the exis-
tence of DN

1 , we have to prove that, if M has admissible loops, then DN−1
1

(
TL(M)

)

does not depend on the chosen admissible loop L.
To do this, let us denote by M� the submap of M containing exactly all the edges

of M which belong to some admissible loop of M . The maps M and M� have exactly
the same admissible loops. We define H = |E(M�)| − |V (M�)| + 1 (which might be
understood as the number of independent loops in M� since M� is connected).

If H = 0,1, the map M has at most one admissible loop, so there is nothing to
prove:

• If M has exactly no admissible loop, then DN
1 (M) = M .

• If M has exactly one admissible loop L, then DN
1 (M) = TL(M).

If H = 2 and if there is a vertex of valence 4 in M� different from �, then there is at
most one admissible loop. If H = 2 and if � is a vertex of valence 4, then there are two
admissible loops L1 and L2 without any edges in common, so the transformations
with respect to these loops commute, so

DN−1(TL1(M)
)= TL2

(
TL1(M)

)= TL1

(
TL2(M)

)= DN−1(TL2(M)
)
.

If H = 2 and if � and some other vertex v have valence 3, there are three ad-
missible loops. In M�, there are three different paths c0, c1, c2 going (without any
repetition of vertices or edges) from � to v. We number them such that, if hi is the
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first half-edge of the path ci , the cyclic order at � is (h,h0, h1, h2). Let us denote
by Ei (0 ≤ i ≤ 2) (resp. by Eī ) the set of edges appearing in ci oriented from their
black vertex to their white one (resp. from their white vertex to their black one). If
I = {i1, . . . , il} ⊂ {0,1,2, 0̄, 1̄, 2̄}, we consider the following element of Abg,1:

MI =
∑

∅�=E′
1⊂Ei1 ,...,∅�=E′

l⊂Eil

(−1)|E′
1|−1 . . . (−1)|E′

l |−1 [M\(E′
1 ∪ . . . ∪ E′

l

)]
.

Let L1 = c0 · c1, L2 = c1 · c2 and L3 = c0 · c2 be the three admissible loops of M .
Their respective sets of erasable edges are E0̄ ∪ E1, E0̄ ∪ E2 and E1̄ ∪ E2. So we
have (the Fig. 5 shows this computation on an example, where all sets Ei are of
cardinality 1):

TL1(M) =
∑

E′⊂E1
E′ �=∅

(−1)|E′|−1M\E′ +
∑

E′⊂E0̄
E′ �=∅

(−1)|E′|−1M\E′

+
∑

E′⊂(E1∪E0̄)

(E′∩E1) �=∅,(E′∩E0̄) �=∅

(−1)|E′|−1M\E′;

= M0̄ + M1 − M1,0̄.

For each graph appearing in M0̄, M1 there is only one admissible loop so DN−1
1 is

given by the corresponding elementary transform:

DN−1
1 (TL1(M)) = M0̄,1̄ + M2,0̄ − M2,0̄,1̄ + M1,0̄ + M1,2 − M1,2,0̄ − M1,0̄,

= M0̄,1̄ + M2,0̄ − M2,0̄,1̄ + M1,2 − M1,2,0̄.

For the other admissible loops, we obtain:

DN−1
1 (TL2(M)) = DN−1

1 (M1̄ + M2 − M2,1̄),

= M0̄,1̄ + M2,1̄ − M2,0̄,1̄ + M2,0̄ + M1,2 − M1,2,0̄ − M2,1̄,

= M0̄,1̄ − M2,0̄,1̄ + M2,0̄ + M1,2 − M1,2,0̄;
DN−1

1 (TL3(M)) = DN−1
1 (M0̄ + M2 − M2,0̄),

= M0̄,1̄ + M2,0̄ − M2,0̄,1̄ + M2,0̄ + M1,2 − M1,2,0̄ − M2,0̄,

= M0̄,1̄ − M2,0̄,1̄ + M2,0̄ + M1,2 − M1,2,0̄.

We observe, in our computation, that DN−1
1 (TL(M)) does not depend on the admis-

sible loop L.
If H = 2 and if there are two vertices v and v′ of valence 3 distinct from �, the

proof is similar. We use the same notation, except that:

• The paths c0, c1 and c2 go from v to v′.
• The vertex � is on c0. The two others paths can eventually be switched.
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Fig. 5 One particular case of Definition-Theorem 3.1.1

• If the half-edge before (resp. after) � in c0 is denoted by h1 (resp. h2), the cyclic
order at � induces the order (h1, h,h2).
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In this case, there are only two admissible loops L1 and L3 in M and a little compu-
tation proves the theorem:

DN−1
1 (TL1(M)) = DN−1

1 (M0̄ + M1 − M1,0̄),

= M0̄ + M1,0̄ + M1,2 − M1,2,0̄ − M1,0̄,

= M0̄ + M1,2 − M1,2,0̄;
DN−1

1 (TL0̄
(M)) = DN−1

1 (M0̄ + M2 − M2,0̄),

= M0̄ + M2,0̄ + M1,2 − M1,2,0̄ − M2,0̄,

= M0̄ + M1,2 − M1,2,0̄.

The proof is finished in the case H = 2.
The case H ≥ 3 needs the following two lemmas:

Lemma 3.1.2 Let L be an admissible loop of M and e an edge of M\L. Then,

DN−1
1

(
TL(M)

)= DN−1
1

[
DN−1

1 (M\{e}) ∪ {e}],
where, for a submap M ′ ⊂ M with the same set of vertices which does not contain e,
M ′ ∪ {e} is the map obtained by adding the edge e to M ′.

Proof The key point of the proof is the following: if M ′ is a submap of M which does
not contain e and K an admissible loop of M ′, then K is also an admissible loop of
M ′ ∪ {e} and

TK(M ′ ∪ {e}) = TK(M ′) ∪ {e}.
As DN−1

1 (M\{e}) = DN−1
1

(
TL(M\{e})) can be obtained from TL(M\{e}) by it-

erating elementary transformations with respect to admissible loops, the formal ex-
pression DN−1

1 (M\{e}) ∪ {e} can be obtained from TL(M\{e}) ∪ {e} = TL(M) the
same way. Therefore, they have the same image under DN−1

1 . �

Lemma 3.1.3 If H ≥ 3 and if L1 and L2 are two admissible loops with L1 ∪L2 = M ,
then there exists a third one L such that L ∪ L1 �= M and L ∪ L2 �= M .

Proof We choose a numbering of the oriented edges of the loops so that the first half-
edge of e1 has � for extremity. We suppose (by switching L1 and L2 if necessary) that
the first half-edge of L1 is between h0 and the first half-edge of L2 in the cyclic order
of � (it might happen that they are equal, in which case we do not do anything). As
L1 ∪L2 = M , the loops L1 and L2 have a vertex in common other than � (otherwise,
M is a wedge of two cycles and H = 2). Let v be the first vertex of L1 that is also
in L2 but such that the paths from � to v given by the beginnings of L1 and L2 are
different. Let us consider the sequence L equal to the concatenation of the beginning
of L1 (from � to v) and the end of L2 (from v to �). With this definition:

• All vertices and edges appearing in L are distinct. Moreover, L is an admissible
loop;
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Fig. 6 General form of the
connected component
containing � of a map appearing
in D1(M)

• The edge before v in L2 belongs neither to L1 nor to L;
• As H > 2, the ends of L1 and L2 (from v to �) are different. So there is an edge at

the end of L1 which belongs neither to L2 nor to L. �

Lemma 3.1.2 implies that if L1 and L2 are admissible loops such that L1 ∪ L2 �=
M , then we have:

D1
(
TL1(M)

)= D1
(
TL2(M)

)
.

Using Lemma 3.1.3, the equation above is still true without the assumption that L1 ∪
L2 �= M . So D1

(
TL(M)

)
does not depend on the admissible loop L, which is exactly

what we wanted to prove. �

Remark 3 (useful in paragraph 4.2) The definition of this operator does not really
need the maps to be bicolored. It is enough to suppose that each edge has a privileged
orientation. In this context, the erasable edges of an oriented loop are the ones which
appear in the loop in their privileged orientation and we can define the operator TL.
A bicolored map can be seen this way if we choose as orientation of each edge the
one from the white vertex to the black one.

3.2 Complete decomposition

It is immediate from the definition that every map M ′ appearing with a non-zero
coefficient in D1(M) has no admissible loops. Thus they are of the following form
(drawn in Fig. 6):

The vertex � is the extremity of half-edges hi (0 ≤ i ≤ l), including the external
one h0, numbered with respect to the cyclic order. For i ≥ 1, hi belongs to an edge
ei , whose other extremity is vi . Each vi is in a different connected component Mi

(called leg) of M\{h1, . . . , hl}. Note that we have only erased the half-edge hi and
not the whole edge ei so that each Mi keeps an external half-edge.

If we have a family of submaps M ′
i = Mi\{E′

i} of the Mi we consider the map
φM(M ′

1, . . . ,M
′
l ) = M\⋃{E′

i} obtained by replacing in M each Mi by M ′
i .

The outcome of operator D1 is an algebraic sums of maps that are much more
complicated than planar forests. So, in order to write N(M) as an algebraic sum of
series associated to minimal factorizations, we have to iterate such operations.

We want to define decompositions of maps associated to pairs of permutations,
that is, of well-labeled bicolored maps without external edges. But it is convenient to
work in a bigger module: the ring Ablm,≤1 of bicolored labeled maps with at most
one external half-edge per connected component.
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Fig. 7 Map M

Definition-Proposition 3.2.1 There exists a unique linear operator

D : Ablm,≤1 → Ablm,≤1

such that:

(1) If M has only one vertex, then D(M) = M ;
(2) If M has more than one connected component M =∏

Mi , then one has D(M) =∏
D(Mi);

(3) If M has only one connected component and no external half-edge, consider its
edge e of smallest label. Let h be the half-edge of e with black extremity. We
denote by M the map obtained by adding one external half-edge between h and
its successor. Then D(M) = D(M);

(4) If M has only one connected component with one half-edge but no admissible
loops, we use the notation of the previous paragraph. As the Mi ’s are connected
maps with an external half-edge, we can compute D(Mi) (third or fifth case).
Then D(M) is given by the formula:

D(M) = φM

(
D(M1), . . . ,D(Ml)

)
,

where φM is extended by multilinearity to algebraic sums of submaps of the Mi ’s.
(5) Else, D(M) = D(D1(M)).

Existence and uniqueness of D are obvious. The image of a map M by D is in the
subspace generated by its submaps with the same set of vertices, no isolated vertices
and no loops, i.e. its covering forests without trivial trees. Note also that forests are
fixed points for D (immediate induction).

Example 2 We will compute D(M) where M is the map from Fig. 7 (without the
external half-edge).

The map M belongs to the third kind, so we have to add an external half-edge as
in the figure. Now, M is a map of the fifth type and we have to compute D1(M): this
is very easy because the two transformations associated with admissible loops lead
to the same sum of submaps that do not contain any admissible loop.

D1(M) = M\{1} + M\{2} − M\{1,2}.
So D(M) = D(M\{1}) + D(M\{2}) − D(M\{1,2}).

The map M\{1} is a map of the fourth type with only one leg M1, which is drawn in
Fig. 8.
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Fig. 8 Maps involved in the computation of the example

This map M1 is again of the fourth type (with one leg: the map M2 from Fig. 8)
so we have to compute D(M2), which is simply D1(M2) = M2\{5}. This implies
immediately that D(M1) = M1\{5} and:

D(M\{1}) = M\{1,5}.
Similarly, D(M\{2}) = M\{2,3}.

Now we look at the map M\{1,2}. It has two connected components (we have to
apply rule 2): one is a tree and has a trivial image by D, the other one M3, has no
external half-edge. We have to add one external half-edge to M3 with the third rule
and obtain M4. Now, it is clear that D1(M4) = M4\{3}, so one has D(M\{1,2}) =
M\{1,2,3}.

Finally

D(M) = M\{1,5} + M\{2,3} − M\{1,2,3}.

As we can see from this example, when we replace Mi by its image under several
elementary transformations in M , we obtain the image of M by the same transfor-
mations. So, by immediate induction, the operator D consists of applying to M an
elementary transformation TL (with restricted choices), then one to each map of the
result that is not a forest, etc. until there are only forests left. An immediate conse-
quence is the D-invariance of N .

Remark 4 Note that transformations indexed by loops which are in different con-
nected components and/or in different legs of the map (fourth case) commute.

3.3 Signs

In this section, we study the signs of the coefficients in the expression D(M). This
is crucial in the proof of Theorem 1.6.1 because we will show that the coefficients of
K ′

μ can be written as sums of coefficients of D(M), for some particular maps M .

Proposition 3.3.1 Let M ′ ⊂ M be two maps with the same set of vertices and re-
spectively tM ′ and tM connected components. The sign of the coefficient of M ′ in
(−1)tM D(M) is (−1)tM ′ .

Proof Due to the inductive definition of D using D1, it is enough to prove the result
for operator D1 in the case where M is a connected (tM = 1) bicolored map with one
external half-edge. We proceed by induction on the number of edges in M\M ′. If
M ′ = M , the result is obvious. Note that if M ′ has a non-zero coefficient in D1(M),
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we have necessarily M\M ′ = {e1, . . . , el} where each ei belongs at least to one ad-
missible loop.

First case: There exists an edge e ∈ M\M ′ such that M\{e} has at least one ad-
missible loop. Let us define M1 = M\{e} and apply the Lemma 3.1.2: D1(M) =
D1
(
D1(M1) ∪ {e}). The submaps M ′′ of M1 containing M ′ can be divided in two

classes:

• Either M ′′ ∪ {e} has the same number t of connected components as M ′′. By in-
duction hypothesis, the sign of the coefficient of M ′′ ∪ {e} in D1(M1) ∪ {e} is
(−1)t−1;

• Or M ′′ ∪ {e} has strictly less connected components than M ′′. In this case {e} does
not belong to any loops of M ′′ ∪ {e}, so every graph appearing in D1(M

′′ ∪ {e})
does contain {e}. In particular, the coefficient of M ′ in D1(M

′′ ∪ {e}) is zero.

Finally, the coefficient of M ′ in D1(M) is the same as in the sum of D1(M
′′ ∪ {e})

for M ′′ of the first class. So the result follows from the induction hypothesis applied
to M ′ ⊂ M ′′ ∪ {e} (which can be done because M ′′ ∪ {e} has strictly fewer edges than
M).

Second case: Else, up to a new numbering of edges of M\M ′, the map M ′ has l

connected components M ′
1, . . . ,M

′
l and, for each i, the two extremities of ei belong

to M ′
i and M ′

i+1 (convention: M ′
l+1 = M ′

1).
Choose any admissible loop L, it contains all the edges ei . If we look at a map

of the kind M ′′ = M\E′, with E′
� {e1, . . . , el}, all edges of {e1, . . . , el}\E′ do not

belong to any loop of M ′′ and are never erased in the computation of D1(M
′′). So the

only term in TL(M) which can contribute to the coefficient of M ′ is (−1)l−1M ′. �

4 Decompositions and cumulants

In Sect. 3, we have built an operator D on bicolored labeled maps which leaves
N invariant and takes value in the ring spanned by forests. If we replace Nτ,τ by
N(D(Mτ,τ )) in the right hand side of equation (7), we obtain a decomposition of �′

μ

as an algebraic sum of products of power series associated to minimal factorizations.
In order to have something that looks like (8), we regroup some terms and make
free cumulants appear via formula (5). To do this, it will be useful to encode these
associations of terms in combinatorial objects that we will call cumulant maps.

4.1 Cumulant maps

Definition 4.1.1 A cumulant map M of size k is a triple (MM,F, ι) where MM is a
bicolored map with |E|− |V | = k, F = (F1, . . . ,Ft ) is a family of faces of MM such
that

• the faces F1, . . . ,Ft are polygons (see Definition 2.1.2),
• every vertex of MM belongs to exactly one face among F1, . . . ,Ft ,

and ι is a function from E\⋃i (E(Fi)) (the set E(F) was introduced in Defini-
tion 2.1.2) to N

� (see Fig. 9 for an example). As in the case of classical maps, if ι

is a bijection with image [k], the cumulant map is called well-labeled.
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Fig. 9 Example of a
well-labeled cumulant map of
resultant (1 . . . 17)

By definition, the number of connected components of M is the one of MM, and
its resultant σM is the product of the cycles associated to the faces of MM different
from F1, . . . ,Ft .

4.1.1 Non-crossing partitions as compressions of a polygon

Consider a polygon with 2j vertices, colored alternatively black and white. We
choose an orientation: begin at a black vertex and label the edges 1′,1,2′,2, . . . , j ′, j .
Given a non-crossing partition π ∈ NC(j), we glue, for each i, the edge i with the
edge σπ(i)′ (σπ is the permutation of [Idj ; (1 . . . j )] canonically associated to π by
Proposition 1.3.1) so that their black extremities are glued together and also their
white ones. In each of these gluings we only keep the label without prime. The result
is the labeled bicolored planar tree associated to the pair

(
σπ ,σ−1

π (1 . . . j )
)
.

This construction defines a bijection between NC(j) and the different ways to
compress a polygon with 2j vertices (with labeled edges) in a bicolored labeled pla-
nar tree with j edges. So we reformulate (5):

Rj+1 =
∑

tree T obtained by compression
of a polygon with 2j vertices

(−1)|Vw(T )|+1N(T ), (17)

as power series in p and q (where |Vw(T )| is the number of white vertices of T ). If we
consider a polygon without the labels 1′,1, . . . , j ′, j , the bijection between NC(j)

and the different ways to compress it as a tree is only defined up to a rotation of the
polygon but this formula still holds.

4.1.2 Compressions of a cumulant map

Given a cumulant map M, consider all maps M obtained from MM by compressing
each Fi into a tree (we do not touch the edges—dotted in our example—that do not
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Fig. 10 Example of a map
obtained by compressing the
polygons of the cumulant map
from Figure 9

belong to any face Fi ). Such maps M have the same number of connected compo-
nents as M and are maps of pairs of permutations whose product is the resultant of
M. The disjoint union of the trees obtained by compression of the face Fi is a cover-
ing forest of M with no trivial trees (i.e. with only one vertex), which is denoted FM .

Example 3 The map M from Fig. 10 can be obtained from the cumulant map from
Fig. 9 by compressing each polygon into a tree in a certain way. The corresponding
forest FM can be seen in the figure by erasing the dotted edges.

Let M be a cumulant map of resultant σ . Consider the function

NM : {(τ, τ ) ∈ S(k) × S(k) s.t. ττ = σ
}→ C[[p,q]],

defined by:

• If the map Mτ,τ is obtained from MM by compressing in a certain way (necessar-
ily unique) the faces F1, . . . ,Ft , we put:

NM(τ, τ ) = N
(
FMτ,τ

)
.

• Else NM(τ, τ ) = 0.

This function satisfies:

∑

τ,τ∈S(k)
ττ=σM

(−1)|C(τ)|+tM NM(τ, τ ) =
tM∏

i=1

Rji+1. (18)

To see that, it is enough to use formula (17) on the right hand side and to expand it:
the non-zero terms of the two sides of equality are exactly the same (with same signs
because and M and FM always have the same number of white vertices).
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Thanks to this property, functions of this type are a good tool to put series associ-
ated to forests together in order to make the product of free cumulants appear.

Remark 5 Let M be a cumulant map of resultant σ . The sets
{
τ ∈ S(k) such that NM(τ, τ−1σ) �= 0

}

and
{
τ ∈ S(k) such that NM(στ−1, τ ) �= 0

}

are intervals IM and IM of the symmetric group. So they are isomorphic as posets
to products of non-crossing partition sets (for the order described in paragraph 1.3).
The power series NM(τ, τ−1σ) is simply the one associated to the image of τ by
this isomorphism (this image is defined up to the action of the full cycle on non-
crossing partitions, so the associated power series is well-defined) and equation (5) is
a consequence of this fact.

4.2 Multiplicities

As for classical maps in paragraph 3.2, we define a decomposition operator for cumu-
lant maps. Denote by Acm,≤1 the ring generated as Z-module by the cumulant maps
with at most one external half-edge per connected component. If M is a cumulant
map, denote by M ′

M the map obtained by replacing, for each i, the face Fi by a ver-
tex (this map is not bicolored but each edge has a privileged orientation: the former
white to black orientation).

Definition-Proposition 4.2.1 There exists a unique linear operator

D : Acm,≤1 → Acm,≤1

such that:

• If M ′
M has only one vertex, then D(M) = M;

• If M has more than one connected component (M = ∏
i Mi ), then one has

D(M) =∏
D(Mi );

• If M has only one connected component and no external half-edge, let h be the
half-edge of black extremity of its edge with the smallest label. We denote by M
the cumulant map obtained by adding one external half-edge between h and its
successor (as some edges have no labels, the half-edge is never in one of the faces
Fi ). Then D(M) = D(M).

• If M ′
M has only one connected component with one half-edge but no admissible

loops, denote by e1, . . . , el the edges leaving the same face Fi0 as the external half-
edge. The map MM\Fi0 has l connected components M1, . . . ,Ml , each with an
external half-edge (at the place where ei leaves Mi ). These maps have a cumulant
map structure Mi = MMi

. Then D(M) is given by the formula:

D(M) = φM
(

D(M1), . . . , D(Ml )
)
,

where φM is the multilinear operator on algebraic sums of sub-cumulant maps of
the Mi ’s defined as φM in Sect. 3.2.
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• Else, consider D1(M
′

M) thanks to Remark 3. In each map of the result, replace
the vertices by faces Fi and denote the resulting sum of the cumulant map by
CM(D1(M

′
M)). Then,

D(M) = D
[
CM

(
D1(M

′
M)

)]
.

Definition 4.2.2 The multiplicity c(M) of a cumulant map M is the coefficient
of the disjoint union of the faces Fi in the decomposition D(M) multiplied by
(−1)tM−1 (it can be zero!).

Proposition 3.3.1 also holds for cumulant maps and D. So c(M) is non-negative
if M is connected.

If M is a map and FM is a covering forest without trivial trees of M , denote by
MM,FM

the cumulant map obtained by replacing in M each tree of FM by a polygon.
The corresponding map M ′

M,FM
is obtained from M by replacing all trees of FM by

a vertex. So the edges of M\FM are in bijection with those of M ′
M,FM

.

Lemma 4.2.1 For any bicolored labeled map M , one has

D(M) =
∑

FM⊂M

(−1)tFM
−1c(MM,FM

)FM,

where the sum runs over covering forests of M with no trivial trees.

Proof Let FM ⊂ M be a covering forest with no trivial trees of a bicolored labeled
map. The operator D applied to M consists of making transformations of type TL

with restricted choices until there are only forests left. Thanks to Remark 4, we
choose loops containing a vertex of T� (the tree of FM containing the external half-
edge) as long as possible. As we are interested in the coefficient of FM , we can forget
at each step all maps that do not contain FM . Now we notice that doing an elementary
transformation with respect to L and keeping only maps containing FM is equivalent
to applying formula (12) with E(L) ∩ (M\FM) instead of E(L).

As edges of M\FM are in bijection with edges of M ′
M,FM

, this new set of erasable
edges is a set of edges of M ′

M,FM
. With our choice of order of loops, this set of edges

of M ′
M,FM

is always the set of erasable edges of an admissible transformation. So,
computing D(FM) and keeping only the submap containing FM is the same thing
as computing D(MM,FM

), except that we have trees instead of the polygonal faces.
This shows that the coefficient of FM in D(M) is the same as the one of the union
of the faces Fi in D(MM,FM

). The lemma is now obvious from the definition of the
multiplicity of cumulant maps. �

With the notation of the previous paragraph, the lemma implies:

N(D(Mτ,τ )) =
∑

M−cumulant map
of resultant σ

(−1)tM−1c(M)NM(τ, τ ). (19)
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Remark 6 By Remark 5 and Lemma 4.2.1, for every σ ∈ S(k), the family of intervals
IM, where M describes the set of cumulant maps of resultant σ with multiplicities
(−1)tM−1c(M), is a signed covering (the sum of multiplicities of intervals contain-
ing a given permutation is 1) of the symmetric group by intervals [π,π ′] such that

• the quantity |C(τ)| + |C(τ−1σ)| is constant on these intervals;
• the intervals are centered: |C(π−1σ)| = |C(π ′)|.
Note that the power series N does not appear in this result but is central to our cons-
truction. This interpretation of Kerov’s polynomials’ coefficients was conjecturally
suggested by P. Biane in [3].

4.3 End of the proof of the main theorem

We use the D-invariance of N to write �′
μ as an algebraic sum of power series asso-

ciated to minimal factorizations:

�′
μ =

∑

τ,τ∈S(k)
ττ=σ〈τ,τ 〉 trans.

(−1)|C(τ)|+1N(D(Mτ,τ ))

=
∑

τ,τ∈S(k)
ττ=σ〈τ,τ 〉 trans.

(−1)|C(τ)|+1

[
∑

M−cumulant map
of resultant σ

(−1)tM−1c(M)NM(τ, τ )

]

.

The second equality is just equation (19). Now, we change the order of summation
(note that transitive factorizations have connected maps, so they appear only as com-
pressions of connected cumulant maps) and use (18):

�′
μ =

∑

M−connected
cumulant map of

resultant σ

c(M)

[
∑

τ,τ∈S(k)
ττ=σ

(−1)|C(τ)|+tM NM(τ, τ )

]

=
∑

M−connected
cumulant map of

resultant σ

c(M)

[
tM∏

i=1

Rji(M)+1

]

. (20)

This finishes the proof of Theorem 1.6.1 because:

• the multiplicity of a connected cumulant map is non negative;
• the monomials in the Ri ’s are linearly independent as power series in p and q.

5 Computation of some particular coefficients

5.1 How to compute coefficients?

In the proof of the main theorem, we have observed that the coefficient of the mono-
mial

∏t
i=1 Rji+1 in K ′

μ is the sum of c(M) over all connected cumulant maps M of
resultant σ , with t polygons of respective sizes 2j1, . . . ,2jt .
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But it is easier to look, instead of the connected cumulant map M, at the map
M0 obtained from MM by compressing each polygon in a tree with only one black
vertex. Recall that, in this context, FM is the disjoint union of these trees. Thanks to
Lemma 4.2.1, the coefficient of FM in D(M) is, up to a sign, equal to c(M). Note
that each pair (M,FM), where M is the map of a transitive decomposition of σ , and
FM is a covering forest whose trees have exactly one black vertex and at least a white
one, can be obtained in this way from one cumulant map M.

This remark leads to the following proposition, which will be used for explicit
computations in the next paragraphs:

Proposition 5.1.1 The coefficient of monomial
∏t

i=1 Rji+1 in K ′
μ is the coefficient

of the disjoint union of t trees, each with one black and respectively j1, . . . , jt white
vertices in

(−1)t−1
∑

τ,τ∈S(k)
ττ=σ,〈τ,τ 〉 trans.

|C(τ)|=t

D(Mτ,τ ).

As remarked before, for coefficients of monomials of low degree, all the coeffi-
cients can be computed by counting some statistics on permutations in S(k) (which
can be much smaller than the symmetric group whose character values we are looking
for).

5.2 Low degrees in R

5.2.1 Linear coefficients

A direct consequence of Proposition 5.1.1 is the (well-known) combinatorial inter-
pretation of coefficients of linear monomials in the free cumulants: the coefficient of
Rl+1 in K ′

μ (or equivalently in Kμ) is the number of permutations τ ∈ S(k) with l

cycles whose complementary permutation τ = τ−1σ is a full cycle, that is exactly the
number of factorizations of σ , whose map has exactly one black vertex and l whites.
Indeed, if M is a map with one black vertex, it is connected and has only loops of
length 2. So transformations with respect to these loops only consist of erasing an
edge, and D(M) is a tree with one black vertex and as many white vertices as in M .

5.2.2 Quadratic coefficients

We have to compute D(M), where M is a connected map with two black vertices.
Denote by w0, . . . ,wu the white vertices of M linked to both black vertices. The first
step is the computation of D1(M̃), where M̃ is M with an external half-edge h (see
Definition 3.2.1).

We begin by transformations with respect to all loops of length 2 going through
the extremity � of h. So we suppose that every wi is linked by only one edge ei to �,
but there can be more than one edge between wi and the other black vertex v, so we
denote by fi the family of these edges. Let hi, h

′
i be the two half-edges of ei , where
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Fig. 11 Elementary decomposition of a map with two black vertices

the extremity of hi is �. With a good choice of numbering for the wi , the cyclic order
at � induces the order h,h0, . . . , hu.

Lemma 5.2.1 With these notations, we have:

D1(M̃) =
u∑

i=0

M̃\{f0, . . . , fi−1, ei+1, . . . , eu} −
u∑

i=1

M̃\{f0, . . . , fi−1, ei, . . . , eu}.
(21)

An example for u = 3 is drawn in Fig. 11.

Proof If u = 0, there is no admissible loop and this result is D1(M̃) = M̃ . The
case u = 1 is left to the reader (it is an easy induction on the number of edges in f0,
the case where f0 has two elements is contained in the case H = 2 in the proof of
Definition-Theorem 3.1.1). Then we proceed by induction on u by using the for-
mula:

D1(M̃) = D1
(
D1(M̃\{eu}) ∪ {eu}

)
.

Suppose that the lemma holds for u − 1:

D1(M̃\{eu}) ∪ {eu} =
u−1∑

i=0

M̃\{f0, . . . , fi−1, ei+1, . . . , eu−1}

−
u−1∑

i=1

M̃\{f0, . . . , fi−1, ei, . . . , eu−1}. (22)

The graphs of the first line still have admissible loops. To compute their image
under D1, we have to compute the image of the submaps whose set of edges is
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{ei, fi, eu, fu}, since all other edges do not belong to any admissible loops. This is
an application of the case u = 1:

D1(M̃\{f0, . . . , fi−1, ei+1, . . . , eu−1}) = M̃\{f0, . . . , fi−1, fi, ei+1, . . . , eu−1}
+ M̃\{f0, . . . , fi−1, ei+1, . . . , eu−1, eu}
− M̃\{f0, . . . , fi−1, fi, ei+1, . . . , eu−1, eu}.

Using this formula for each i, the first summand balances with the negative term
in (22) (except for i = u − 1) and the two other summands are exactly the ones
in (21). So the lemma is proved by induction. �

Now, in all maps appearing in D1(M̃), there are only loops of length 2, so the end
of the decomposition algorithm consists of erasing some edges without changing the
number of connected components.

As explained in Proposition 5.1.1, we have to look at the sizes of trees in the two-
tree forests (these forests come from the second sum of the right member of (21)).
If, in M , there are h1

M white vertices linked to � (including the wi ) and h2
M to v, we

obtain pairs of trees with h1 and h2 vertices, where h1 and h2 attain all integer values
satisfying the conditions:

⎧
⎪⎨

⎪⎩

h1 − 1 < h1
M ;

h2 − 1 < h2
M ;

h1 + h2 = |Vw(M)|.
So any permutation with two black vertices contributes to coefficients of Rh1Rh2 ,
where h1 and h2 satisfy the condition above. If j �= l, a permutation may contribute
twice to the coefficient of RjRl if the conditions above are satisfied for j = h1, l = h2

and for l = h1, j = h2. Finally, one has:

[RjRl]Kk =
{

1 if j �= l

1/2 if j = l

}
.

∑

τ,τ∈S(k)
ττ=σ,〈τ,τ 〉trans.

|C(τ)|=2

δj≤h1
Mτ,τ

δl≤h2
Mτ,τ

+ δl≤h1
Mτ,τ

δj≤h2
Mτ,τ

,

which is exactly the second part of Theorem 1.4.4 (the second δ in the equation above
disappears if we consider permutations with numbered cycles).

5.3 High degrees in p, q

If the graded degree in p and q is high, the maps we are dealing with have few loops.
Therefore, it is easier to compute their image under D and to count them.

Proof of Theorem 1.6.2 Let r, s, t, j1, . . . , jt be integers such that
∑

ji = r + s. As
in the whole paper σ ∈ S(k) is a permutation of type μ (here r, s). We can suppose
that 1 is in the support of the cycle c1 of σ of size s.
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Fig. 12 Maps contributing to
terms of graded degree r + s in
K ′

r,s

We have to count connected maps with r + s edges and r + s vertices, that is to
say, up to a change of orientation, one loop L. So, eventually by replacing L by L′ (if
1 is in the word associated to the external face, L must be going counterclockwise),
D(M) = TL(M). Only maps M such that, in D(M), there is (at least) a forest with
one black vertex per tree, contribute to coefficients of Kerov’s polynomials. In such
maps, all vertices of M\L are white and only the forest M\E(L) (see formula (12))
satisfies the condition above.

Let us consider such a map M . We can choose arbitrarily a first black vertex b1

of M (M will be called marked) and number all its black vertices b1, . . . , bt in the
order of L. Suppose that there are wi white vertices of M\L linked to bi . Then M

contributes only to the coefficient of
∏

Rwi+2 in K ′
f1,f2

(where 2f1 and 2f2 are the
lengths of the two faces of M) with coefficient 1.

We count the number of marked labeled maps M contributing to the coefficient of∏t
i=1 Rji

in K ′
r,s . They are of the form from Fig. 12 with:

• the word (r1 +s1, r2 +s2, . . . , rt +st ) equal up to a permutation to (j1 −2, . . . , jt −
2), and

• the length r1 + r2 + . . . + rt of the face Fr that is on the left side of L, is equal to
r .

Such a map can be labeled in r · s different ways such that its faces are the cycles
of σ . Indeed, if we fix one element in the support of each cycle of σ , such a labeling
is determined by the edges labeled by these elements. We have r (resp. s) choices
for the first (resp. second) one: the r (resp. s) edges whose labels are in the word
associated to the face Fr (resp. Fs ). As we deal for the moment with maps with a
marked black vertex, all the numberings give a different map.

If we choose a permutation j′ − 2 of the word (j1 − 2, . . . , jt − 2), non-negative
integers r1, s1, . . . , rt , st such that

∑
i ri = r − t,

∑
i si = s − t and r + s = j′ − 2,

and labels on the corresponding map, we obtain a marked map M contributing to the
coefficient of

∏t
i=1 Rji

in K ′
r,s . To obtain the number of such non-marked maps, we

have to divide by t (thanks to the labels, there is no problem of symmetry).
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Fig. 13 Maps contributing to terms of degree k − 1 in Kk

So the coefficient of
∏t

i=1 Rji
in K ′

r,s is

r · s
t

Perm(j)
∣∣{(r1, s1, . . . , rt , st )

}∣∣,

where r1, s1, . . . , rt , st describe the set of non-negative integers satisfying the equa-
tions

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r1 + s1 = j1 − 2;
...

rt + st = jt − 2;
r1 + . . . + rt = r − t.

But, in the system of equations satisfied by the ri ’s and the si ’s, we can forget
the si ’s and only keep an inequality on each ri (ri ≤ ji − 2), which corresponds
to the positivity of si . So the cardinality of the set in the formula above is exactly
N(j1 − 2, . . . , jt − 2; r − t). �

We use the same ideas for subdominant term in the case l(μ) = 1.

Proof of Theorem 1.4.3 To compute the coefficients of a monomial of degree k − 1
in Kk , we have to count the contributions of labeled maps with k edges, k −1 vertices
and one face. As in the previous proof, if a map has a non-zero contribution, all
vertices which do not belong to any loop are white. Such maps can be sorted in five
classes: see Fig. 13 for types a and b, type c (resp. d) is type b with one black and
one white (resp. two white) vertices at the extremities, and type e is type a with a
white central vertex of valence 4 instead of a black one.

Thanks to the case H = 2 in the proof of Definition-Theorem 3.1.1, the decompo-
sition of these maps is easy to compute:

Types a and e: the two loops have no edges in common and their associated trans-
formations commute;

Types b, c and d : we obtain a result close to the one from Fig. 5.
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Here is the description of the forests with t trees for each type (it is quite surprising
that it does not depend on the labels).

Type a: in D(M), there is one forest F with one black star per tree: in addition to
those which do not belong to loops, there are two white vertices linked to the central
black vertex and one to each other black vertex.

Type b: in D(M), there are two forests F1 and F2 with one black star per tree: in F1

(resp. in F2), in addition to those which do not belong to loops, there are two white
vertices linked to the vertex at the left (resp. right) extremity and one to each other
black vertex (including the right (resp. left) extremity).

Type c: in D(M), there is one forest F with one black vertex per tree: in addition to
those which do not belong to loops, there is one white vertex linked to each black
vertex.

Types d and e: in D(M), there is no forest F with one black vertex per tree.

Now we compute the coefficient of
∏t

i=1 Rji
in Kk . We give all the details only

for the contributions of maps of type a.
Let us count the number of maps of type a (contributing to this monomial) with a

marked half-edge of extremity v0, the central black vertex of the map (we will have
to divide this number by 4 at the end to find the number of maps of type a). We
number the black vertices of such a map M in the following order: those of the loop
containing the marked half-edge, the central one and those of the other loop. Such
maps are entirely determined by:

• A permutation j′ of the word (j1, . . . , jt ) (j ′
i is the number of vertices of the tree

of F of black vertex bi ).
• The length of the first loop, i.e. the label p ∈ [t] of the central black vertex.
• For each black vertex different from the central one, we have to link j ′

i − 2 white
vertices that do not belong to loops. We have to fix the number of these vertices
which are on a given side of the loop: there are j ′

i − 1 possibilities.

• For the central black vertex, we have j ′
p − 3 white vertices to place on 4 sides,

so
(j ′

p

3

)
possibilities.

• The labels of such a map are determined by the choice of one edge which has
label 1, so k possibilities.

Finally the contribution of type a maps to the coefficient of
∏t

i=1 Rji
in Kk is

Ca = k

4

∑

j′

⎡

⎣
t∑

p=1

j ′
p(j ′

p − 2)

6

t∏

i=1

(j ′
i − 1)

⎤

⎦ .

The expression in the bracket is symmetric in j′, so equal to its value for j:

Ca = k

4
|Perm(j)|

t∏

i=1

(ji − 1)

t∑

p=1

jp(jp − 2)

6
.
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We can find similar arguments for types b and c:

• In type b, p1 and p2 are the labels of the black vertices at the extremities if we
numbered by following the face beginning right after an extremity (6 possibilities
to choose where to begin);

• In type c, p1 is the label of the black extremity and p2 of the black vertex preceding
the white extremity if we begin just after the white extremity (3 possibilities to
choose where to begin), note also that in this type we have to symmetrize our
expression in j′.

We obtain:

Cb = k

6
|Perm(j)|

t∏

i=1

(ji − 1)
∑

1≤p1<p2≤t

jp1(jp2 − 2)

4
+ jp2(jp1 − 2)

4
;

Cc = k

3
|Perm(j)|

t∏

i=1

(ji − 1)
∑

1≤p1≤p2≤t

1

2

(
jp1

2
+ jp2

2

)
.

Finally, if we note that

A = k

24
|Perm(j)|

t∏

i=1

(ji − 1),

and split the summation in Cc into the cases jp1 < jp2 and jp1 = jp2 , the coefficient
we are looking for is:

Ca + Cb + Cc = A

(
t∑

p=1

jp(jp − 2) +
∑

1≤p1≤t

4jp1

+
∑

1≤p1<p2≤t

(
jp1(jp2 − 2) + jp2(jp1 − 2) + 2jp1 + 2jp2

)
)

;

= A

(

2
t∑

p=1

jp +
t∑

p=1

j2
p +

∑

1≤p1<p2≤t

(
jp1jp2 + jp2jp1

)
)

;

= A

[(
t∑

p=1

jp

)2

+ 2
t∑

p=1

jp

]

;

= A
(
(k − 1)2 + 2(k − 1)

)= A(k − 1)(k + 1),

which is exactly the expression claimed in Theorem 1.4.3. �
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13. Rattan, A., Śniady, P.: Upper bounds on the characters of the symmetric group for balanced Young

diagram and a generalized Frobenius formula. math/0610540 (2006)
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