Compositions inside a rectangle and unimodality
Bruce E. Sagan
Michigan State University Department of Mathematics East Lansing MI 48824-1027 USA
DOI: 10.1007/s10801-008-0140-5
Abstract
Let c k, l ( n) be the number of compositions (ordered partitions) of the integer n whose Ferrers diagram fits inside a k\times l rectangle. The purpose of this note is to give a simple, algebraic proof of a conjecture of Vatter that the sequence c k, l (0), c k, l (1),\cdots , c k, l ( kl) is unimodal. The problem of giving a combinatorial proof of this fact is discussed, but is still open.
Pages: 405–411
Keywords: keywords composition; integer partition; unimodal
Full Text: PDF
References
1. Andrews, G.E.: A theorem on reciprocal polynomials with applications to permutations and compositions. Amer. Math. Monthly 82(8), 830-833 (1975)
2. Andrews, G.E.: The theory of partitions. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1998). Reprint of the 1976 original
3. Björner, A., Sagan, B.E.: Rationality of the Möbius function of a composition poset. Theoret. Comput. Sci. 359(1-3), 282-298 (2006)
4. Brenti, F.: Log-concave and unimodal sequences in algebra, combinatorics, and geometry: an update. In: Jerusalem combinatorics '93. Contemp. Math., vol. 178, pp. 71-89. Amer. Math. Soc., Providence (1994)
5. Ehrenborg, R.: On posets and Hopf algebras. Adv. Math. 119(1), 1-25 (1996)
6. Gessel, I.M.: Multipartite P -partitions and inner products of skew Schur functions. In: Combinatorics and algebra, Boulder, Colo.,
1983. Contemp. Math., vol. 34, pp. 289-317. Amer. Math. Soc., Providence (1984)
7. Heubach, S., Mansour, T.: Avoiding patterns of length three in compositions and multiset permutations. Adv. Appl. Math. 36(2), 156-174 (2006)
8. Keilson, J., Gerber, H.: Some results for discrete unimodality. J. Amer. Statist. Assoc. 66, 386-389 (1971)
9. Kitaev, S., Liese, J., Remmel, J., Sagan, B.E.: Rationality, irrationality, and Wilf equivalence in generalized factor order (2008, in preparation)
10. O'Hara, K.M.: Unimodality of Gaussian coefficients: a constructive proof. J. Combin. Theory Ser. A 53(1), 29-52 (1990)
11. Proctor, R.A.: Solution of two difficult combinatorial problems with linear algebra. Amer. Math. Monthly 89(10), 721-734 (1982)
12. Sagan, B.E.: The symmetric group: Representations, combinatorial algorithms, and symmetric functions, 2nd edn. Graduate Texts in Mathematics, vol.
49. Springer, New York (2001).
13. Sagan, B.E., Vatter, V.: The Möbius function of a composition poset. J. Algebraic Combin. 24(2), 117-136 (2006)
14. Savage, C.D., Wilf, H.S.: Pattern avoidance in compositions and multiset permutations. Adv. in Appl. Math. 36(2), 194-201 (2006)
15. Stanley, R.P.: Weyl groups, the hard Lefschetz theorem, and the Sperner property. SIAM J. Algebraic Discrete Methods 1(2), 168-184 (1980)
16. Stanley, R.P.: Log-concave and unimodal sequences in algebra, combinatorics, and geometry. In: Graph theory and its applications: East and West, Jinan,
1986. Ann. New York Acad. Sci., vol. 576, pp. 500-535. New York Acad. Sci., New York (1989)
17. Stanley, R.P.: Enumerative Combinatorics, vol.
1. Cambridge Studies in Advanced Mathematics, vol.
49. Cambridge University Press, Cambridge (1997). With a foreword by Gian-Carlo Rota, Corrected reprint of the 1986 original
18. Stanley, R.P.: Enumerative Combinatorics, vol.
2. Cambridge Studies in Advanced Mathematics, vol.
62. Cambridge University Press, Cambridge (1999). With a foreword by Gian-Carlo Rota and
2. Andrews, G.E.: The theory of partitions. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1998). Reprint of the 1976 original
3. Björner, A., Sagan, B.E.: Rationality of the Möbius function of a composition poset. Theoret. Comput. Sci. 359(1-3), 282-298 (2006)
4. Brenti, F.: Log-concave and unimodal sequences in algebra, combinatorics, and geometry: an update. In: Jerusalem combinatorics '93. Contemp. Math., vol. 178, pp. 71-89. Amer. Math. Soc., Providence (1994)
5. Ehrenborg, R.: On posets and Hopf algebras. Adv. Math. 119(1), 1-25 (1996)
6. Gessel, I.M.: Multipartite P -partitions and inner products of skew Schur functions. In: Combinatorics and algebra, Boulder, Colo.,
1983. Contemp. Math., vol. 34, pp. 289-317. Amer. Math. Soc., Providence (1984)
7. Heubach, S., Mansour, T.: Avoiding patterns of length three in compositions and multiset permutations. Adv. Appl. Math. 36(2), 156-174 (2006)
8. Keilson, J., Gerber, H.: Some results for discrete unimodality. J. Amer. Statist. Assoc. 66, 386-389 (1971)
9. Kitaev, S., Liese, J., Remmel, J., Sagan, B.E.: Rationality, irrationality, and Wilf equivalence in generalized factor order (2008, in preparation)
10. O'Hara, K.M.: Unimodality of Gaussian coefficients: a constructive proof. J. Combin. Theory Ser. A 53(1), 29-52 (1990)
11. Proctor, R.A.: Solution of two difficult combinatorial problems with linear algebra. Amer. Math. Monthly 89(10), 721-734 (1982)
12. Sagan, B.E.: The symmetric group: Representations, combinatorial algorithms, and symmetric functions, 2nd edn. Graduate Texts in Mathematics, vol.
49. Springer, New York (2001).
13. Sagan, B.E., Vatter, V.: The Möbius function of a composition poset. J. Algebraic Combin. 24(2), 117-136 (2006)
14. Savage, C.D., Wilf, H.S.: Pattern avoidance in compositions and multiset permutations. Adv. in Appl. Math. 36(2), 194-201 (2006)
15. Stanley, R.P.: Weyl groups, the hard Lefschetz theorem, and the Sperner property. SIAM J. Algebraic Discrete Methods 1(2), 168-184 (1980)
16. Stanley, R.P.: Log-concave and unimodal sequences in algebra, combinatorics, and geometry. In: Graph theory and its applications: East and West, Jinan,
1986. Ann. New York Acad. Sci., vol. 576, pp. 500-535. New York Acad. Sci., New York (1989)
17. Stanley, R.P.: Enumerative Combinatorics, vol.
1. Cambridge Studies in Advanced Mathematics, vol.
49. Cambridge University Press, Cambridge (1997). With a foreword by Gian-Carlo Rota, Corrected reprint of the 1986 original
18. Stanley, R.P.: Enumerative Combinatorics, vol.
2. Cambridge Studies in Advanced Mathematics, vol.
62. Cambridge University Press, Cambridge (1999). With a foreword by Gian-Carlo Rota and