ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

The crystal commutor and Drinfeld's unitarized R -matrix

Joel Kamnitzer1 and Peter Tingley2
1American Institute of Mathematics Palo Alto CA USA
2UC Berkeley Department of Mathematics Berkeley CA USA

DOI: 10.1007/s10801-008-0137-0

Abstract

Drinfeld defined a unitarized R-matrix for any quantum group U q(\mathfrak g) U_{q}(\mathfrak {g}) . This gives a commutor for the category of U q(\mathfrak g) U_{q}(\mathfrak {g}) representations, making it into a coboundary category. Henriques and Kamnitzer defined another commutor which also gives U q(\mathfrak g) U_{q}(\mathfrak {g}) representations the structure of a coboundary category. We show that a particular case of Henriques and Kamnitzer's construction agrees with Drinfeld's commutor. We then describe the action of Drinfeld's commutor on a tensor product of two crystal bases, and explain the relation to the crystal commutor.

Pages: 315–335

Keywords: keywords coboundary category; quantum group; R-matrix; crystal basis

Full Text: PDF

References

1. Bakalov, B., Kirillov, A.: Lectures on Tensor Categories and Modular Functors. American Mathematical Society, Providence (2001)
2. Berenstein, A., Zwicknagl, S.: Braided symmetric and exterior algebras. To appear in Trans. Am. Math. Soc.
3. Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1994)
4. Drinfeld, V.G.: Quasi-Hopf algebras. Leningrad Math. J. 1(6), 1419-1457 (1990)
5. Henriques, A., Kamnitzer, J.: Crystals and coboundary categories. Duke Math. J. 132(2), 191-216 (2006).
6. Kashiwara, M.: On crystal bases of the q-analogue of the universal enveloping algebras. Duke Math. J. 63(2), 465-516 (1991)
7. Kirillov, A.N., Reshetikhin, N.: q-Weyl group and a multiplicative formula for universal R-matrices.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition