ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Chirality groups of maps and hypermaps

Antonio Breda D'Azevedo1 , Gareth Jones2 , Roman Nedela3 and Martin Škoviera4
1Universidade de Aveiro Departamento de Matematica 3810-193 Aveiro Portugal
2University of Southampton School of Mathematics Southampton SO17 1BJ UK
3Matej Bel University Department of Mathematics Banská Bystrica Slovakia
4Comenius University Department of Informatics 842 48 Bratislava Slovakia

DOI: 10.1007/s10801-008-0138-z

Abstract

Although the phenomenon of chirality appears in many investigations of maps and hypermaps, no detailed study of chirality seems to have been carried out. Chirality of maps and hypermaps is not merely a binary invariant but can be quantified by two new invariants-the chirality group and the chirality index, the latter being the size of the chirality group. A detailed investigation of the chirality groups of orientably regular maps and hypermaps will be the main objective of this paper. The most extreme type of chirality arises when the chirality group coincides with the monodromy group. Such hypermaps are called totally chiral. Examples of these are constructed by considering appropriate “asymmetric” pairs of generators of certain non-abelian simple groups. We also show that every finite abelian group is the chirality group of some hypermap, whereas many non-abelian groups, including symmetric and dihedral groups, cannot arise as chirality groups.

Pages: 337–355

Keywords: keywords map; hypermap; chiral; asymmetric; chirality group; chirality index

Full Text: PDF

References

1. Barron, L.D.: Fundamental symmetry aspects of molecular chirality. In: Mezey, P.G. (ed.) New De- velopments in Molecular Chirality. Kluwer Academic, Dordrecht (1991)
2. Breda, A., Breda d'Azevedo, A., Nedela, R.: Chirality index of Coxeter chiral maps. Ars Comb. 81, 147-160 (2006)
3. Breda d'Azevedo, A.J., Jones, G.A.: Double coverings and reflexible abelian hypermaps. Beiträge Algebra Geom. 41, 371-389 (2000)
4. Breda d'Azevedo, A., Nedela, R.: Chiral hypermaps with few hyperfaces. Math. Slovaca 53(2), 107- 128 (2003)
5. Brown, C. (ed.): Chirality in Drug Design and Synthesis. Academic Press, London (1990) 6.
7. Conder, M.D.E., Dobcsányi, P.: Determination of all regular maps of small genus. J. Combin. Theory Ser. B 81, 224-242 (2001)
8. Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: ATLAS of Finite Groups. Clarendon, Oxford (1985)
9. Cori, R., Machi, A.: Maps, hypermaps and their automorphisms: a survey I. Expo. Math. 10, 403-427 (1992)
10. Cori, R., Machi, A.: Maps, hypermaps and their automorphisms: a survey II. Expo. Math. 10, 429-447 (1992)
11. Cori, R., Machi, A.: Maps, hypermaps and their automorphisms: a survey III. Expo. Math. 10, 449- 467 (1992)
12. Coxeter, H.S.M., Moser, W.O.J.: Generators and Relations for Discrete Groups, 3rd edn. Springer, New York (1972)
13. Corn, D., Singerman, D.: Regular hypermaps. Eur. J. Comb. 9, 337-351 (1988)
14. Dieudonné, J.: La Géométrie des Groupes Classiques. Springer, Berlin (1955)
15. Fujita, S.: Symmetry and Combinatorial Enumeration in Chemistry. Springer, Berlin (1991)
16. Gorenstein, D.: Finite Simple Groups. Plenum, New York (1982)
17. Guralnick, R., Kantor, W., Saxl, J.: Probability of generating a classical group. Commun. Algebra 22, 1395-1402 (1994)
18. Huppert, B., Blackburn, N.: Finite Groups III. Springer, Berlin (1982)
19. Janoschek, R. (ed.): Chirality-From Weak Bosons to α-Helix. Springer, Berlin (1991)
20. Jones, G.A.: Ree groups and Riemann surfaces. J. Algebra 165, 41-62 (1994)
21. Jones, G.A., Silver, S.A.: Suzuki groups and surfaces. J. Lond. Math. Soc. 48(2), 117-125 (1993)
22. Lord Kelvin: Baltimore Lectures. C.J. Clay, London (1904)
23. Macbeath, A.M.: Generators of the linear fractional groups. In: Number Theory (Proc. Sympos. Pure Math., Vol. XII, Houston, Tex., 1967), pp. 14-32. Amer. Math. Soc., Providence (1967)
24. Mezey, P.G. (ed.): New Developments in Molecular Chirality. Kluwer Academic, Dordrecht (1991)
25. Ree, R.: A family of simple groups associated with the simple Lie algebra of type (G2). Bull. Am. Math. Soc. 66, 508-510 (1960)
26. Ree, R.: A family of simple groups associated with the simple Lie algebra of type (G2). Am. J. Math.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition