ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

The case of equality in the Livingstone-Wagner Theorem

David Bundy1 and Sarah Hart2
1Universität zu Kiel Mathematisches Seminar Ludewig-Meyn Straße 4 Kiel 24098 Germany
2Birkbeck, University of London School of Economics, Mathematics and Statistics Malet Street London WC1E 7HX UK

DOI: 10.1007/s10801-008-0130-7

Abstract

Let G be a permutation group acting on a set Ω  of size n\in \Bbb N and let 1\leq  k<( n - 1)/2. Livingstone and Wagner proved that the number of orbits of G on k-subsets of Ω  is less than or equal to the number of orbits on ( k+1)-subsets. We investigate the cases when equality occurs.

Pages: 215–227

Keywords: keywords livingstone-wagner theorem; permutation groups; orbits; partitions

Full Text: PDF

References

1. Cameron, P.J.: Transitivity of permutation groups on unordered sets. Math. Z. 148(2), 127-139 (1976)
2. Cameron, P.J.: Orbits of permutation groups on unordered sets. J. London Math. Soc. (2) 17(3), 410- 414 (1978)
3. Cameron, P.J.: Orbits of permutation groups on unordered sets. II. J. London Math. Soc. (2) 23(2), 249-264 (1981)
4. Cameron, P.J., Neumann, P.M., Saxl, J.: An interchange property in finite permutation groups. Bull. London Math. Soc. 11(2), 161-169 (1979)
5. Cameron, P.J., Thomas, S.: Groups acting on unordered sets. Proc. London Math. Soc. (3) 59(3), 541- 557 (1989)
6. GAP-Groups, Algorithms and Programming, Version 4.4.4 (2004).
7. Livingstone, D., Wagner, A.: Transitivity of finite permutation groups on unordered sets. Math. Z. 90, 393-403 (1965)
8. Robinson, G. de B.: Note on a theorem of Livingstone and Wagner. Math. Z. 102, 351-352 (1967)
9. Schur, I.: Vorlesungen Über Invariantentheorie. Bearbeitet und herausgegeben von Helmut Grunsky.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition