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Abstract In this paper we study the possible orders of a non-abelian representation
group of a slim dense near hexagon. We prove that if the representation group R

of a slim dense near hexagon S is non-abelian, then R is a 2-group of exponent 4
and |R| = 2β , 1 + NPdim(S) ≤ β ≤ 1 + dimV (S), where NPdim(S) is the near
polygon embedding dimension of S and dimV (S) is the dimension of the universal
representation module V (S) of S. Further, if β = 1 + NPdim(S), then R is neces-
sarily an extraspecial 2-group. In that case, we determine the type of the extraspecial
2-group in each case. We also deduce that the universal representation group of S is
a central product of an extraspecial 2-group and an abelian 2-group of exponent at
most 4.

Keywords Near polygons · Non-abelian representations · Generalized
quadrangles · Extraspecial 2-groups

1 Introduction

A partial linear space is a pair S = (P,L) consisting of a non-empty ‘point-set’ P

and a ‘line-set’ L of subsets of P of size at least two such that any two distinct points
x and y are contained in at most one line. Such a line, if it exists, is written as xy
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and the points x and y are said to be collinear (notation: x ∼ y). If x and y are not
collinear, we write x � y. If each line of S contains exactly three points, then S is
called slim. For x ∈ P and A ⊆ P , we define

x⊥ = {x} ∪ {y ∈ P : x ∼ y} and A⊥ =
⋂

x∈A

x⊥.

If P ⊥ is empty, then S is called non-degenerate. A subset of P is a subspace of S if
any line containing at least two of its points is contained in it. For a subset X of P ,
the subspace 〈X〉 generated by X is the intersection of all subspaces of S containing
X. A geometric hyperplane of S is a subspace of S, different from P , that meets
every line non-trivially. The graph �(P ) with vertex set P , two distinct points being
adjacent if they are collinear in S, is called the collinearity graph of S. For x ∈ P

and an integer i, we write

�i(x) = {y ∈ P : d(x, y) = i},
�≤i (x) = {y ∈ P : d(x, y) ≤ i},

where d(x, y) denotes the distance between x and y in �(P ). The diameter of S

is the diameter of � (P ). If � (P ) is connected, then S is called a connected partial
linear space.

1.1 Representation of a partial linear space

Let S = (P,L) be a slim partial linear space. If x, y ∈ P and x ∼ y, we define x ∗ y

by xy = {x, y, x ∗ y}.

Definition 1.1 ([9], p. 525) A representation of S is a mapping ψ : x �→ 〈rx〉 from
the point set P of S into the set of subgroups of order 2 of a group R such that the
following hold:

(i) R is generated by Im(ψ).
(ii) If l = {x, y, x ∗ y} ∈ L, then {1, rx, ry, rx∗y} is a Klein four subgroup of R.

We write (R,ψ) to mean that ψ is a representation of S with representation group
R and say that (R,ψ) is a representation of S. We set Rψ = {rx : x ∈ P }. The rep-
resentation (R,ψ) of S is faithful if ψ is injective, and is abelian or non-abelian ac-
cording as R is abelian or not. Note that, in [9], ‘non-abelian representation’ means
‘the representation group is not necessarily abelian’.

Let S be a connected slim partial linear space. For an abelian representation of S,
the representation group can be considered as vector space over F2, the field with two
elements. If S admits at least one abelian representation, then there exists a unique
abelian representation ρ0 of S such that any other abelian representation of S is a
composition of ρ0 and a linear mapping (see [11]). The map ρ0 is called the univer-
sal abelian representation of S. The F2 vector space V (S) underlying the universal
abelian representation is called the universal representation module of S. Considering
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V (S) as an abstract group with the group operation +, it has the presentation

V (S) = 〈vx : x ∈ P ; 2vx = 0; vx + vy = vy + vx for x, y ∈ P ;
and vx + vy + vx∗y = 0 if x ∼ y〉

and ρ0 is defined by ρ0(x) = 〈vx〉 for x ∈ P .
A representation (R1,ψ1) of S is a cover of a representation (R2,ψ2) of S if there

exists a group homomorphism ϕ : R1 → R2 such that ψ2(x) = ϕ(ψ1(x)) for every
x ∈ P . If S admits a non-abelian representation, then there is a universal representa-
tion (R(S),ψS) which is the cover of every other representation of S. The universal
representation is unique (see [8], p. 306) and the universal representation group R(S)

of S has the presentation:

R(S) = 〈rx : x ∈ P, r2
x = 1, rxryrz = 1 if {x, y, z} ∈ L〉.

Whenever we have a representation of S, the group spanned by the images of the
points is a quotient of R(S). Further,

Lemma 1.2 ([9], p. 525) V (S) = R(S)/[R(S),R(S)].

The general notion of a representation group of a finite partial linear space with
p + 1 points per line for a prime p was introduced by Ivanov [8] in his investigations
of Petersen and Tilde geometries (motivated in large measure by questions about
the Monster and Baby Monster finite simple groups). A sufficient condition on the
partial linear space and on the non-abelian representation of it is given in [12] to
ensure that the representation group is a finite p-group. For more on non-abelian
representations, we refer to [8], also see ([12], Sections 1 and 2). In this paper, we
study the possible orders of a non-abelian representation group of a slim dense near
hexagon (Theorem 1.6).

1.2 Near 2n-gons

A near 2n-gon is a connected partial linear space S = (P,L) of diameter n such that
for each point-line pair (x, l) ∈ P × L, l contains a unique point nearest to x. Non-
degenerate near 4-gons are precisely generalized quadrangles (GQs, for short); that
is, non-degenerate partial linear spaces such that for each point-line pair (x, l) with
x /∈ l, x is collinear with exactly one point of l.

Let S = (P,L) be a near 2n-gon. The sets S(x) = �≤n−1(x), x ∈ P , are special
geometric hyperplanes. A subset C of P is convex if every shortest path in �(P ) be-
tween two points of C is entirely contained in C. A quad is a non-degenerate convex
subspace of P of diameter two. Thus a quad carries the structure of a generalized
quadrangle. Let x1, x2 ∈ P with d(x1, x2) = 2 and |{x1, x2}⊥| ≥ 2. If y1 and y2 are
distinct elements of {x1, x2}⊥ such that at least one of the lines xiyj contains at least
three points, then x1 and x2 are contained in a unique quad ([13], Proposition 2.5,
p. 10). We denote this quad by Q(x1, x2).

A near 2n-gon is called dense if each line contains at least three points and any two
distinct points at distance two from each other have at least two common neighbours.
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In a dense near 2n-gon, the number of lines through a point is independent of the
point ([2], Lemma 19, p. 152). We denote this number by t +1. A near 2n-gon is said
to have parameters (s, t) if each line contains s +1 points and each point is contained
in t + 1 lines. A dense near 4-gon with parameters (s, t) is written as an (s, t)-GQ.

Theorem 1.3 ([13], Proposition 2.6, p. 12) Let S = (P,L) be a near 2n-gon and Q

be a quad in S. Then, for x ∈ P , either

(i) there is a unique point y ∈ Q closest to x (depending on x) and d(x, z) =
d(x, y) + d(y, z) for all z ∈ Q; or

(ii) the points in Q closest to x form an ovoid Ox of Q.

The point-quad pair (x,Q) in Theorem 1.3 is called classical in the first case and
ovoidal in the second case. A quad Q in S is classical if (x,Q) is classical for each
x ∈ P , otherwise it is ovoidal.

1.3 Slim dense near hexagons

A near 6-gon is called a near hexagon. Let S = (P,L) be a slim dense near hexagon.
For x, y ∈ P with d(x, y) = 2, we write |�1(x) ∩ �1(y)| as t2 + 1 (though this de-
pends on x, y). We have t2 < t . We say that a quad Q in S is of type (2, t2) if it is
a (2, t2)-GQ. A quad in S is big if it is classical. Thus, if Q is a big quad in S, then
each point of S has distance at most one from Q.

Theorem 1.4 ([1], Theorem 1.1, p. 349) Let S = (P,L) be a slim dense near
hexagon. Then P is necessarily finite and S is isomorphic to one of the eleven near
hexagons with parameters as given below.

|P | t t2 dimV (S) NPdim(S) a1 a2 a4

(i) 759 14 2 23 22 − 35 −
(ii) 729 11 1 24 24 66 − −

(iii) 891 20 4� 22 20 − − 21

(iv) 567 14 2,4� 21 20 − 15 6

(v) 405 11 1,2,4� 20 20 9 9 3

(vi) 243 8 1,4� 18 18 16 − 2

(vii) 81 5 1,4� 12 12 5 − 1

(viii) 135 6 2� 15 8 − 7 −
(ix) 105 5 1,2� 14 8 3 4 −
(x) 45 3 1,2� 10 8 3 1 −

(xi) 27 2 1� 8 8 3 − −

Here, NPdim(S) is the F2-rank of the matrix A3 : P × P −→ F2 defined by
A3(x, y) = 1 if d(x, y) = 3 and zero otherwise. We add a star if and only if the cor-
responding quads are big. The number of quads of type (2, r), r = 1,2,4, containing
a given point of S is indicated by ar . A ‘–’ in a column means that ar = 0.
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For a description of the near hexagons (i)− (iii), see [13] and for (iv)− (xi), see
[1]. However, the parameters of these near hexagons suffice for our purposes here.
We refer to [5] and [6] for other classification results about slim dense near polygons.
For more on near polygons, see [4].

1.4 Extraspecial 2-groups

A finite 2-group G is extraspecial if its Frattini subgroup �(G), commutator sub-
group G′ and center Z(G) coincide and have order 2.

An extraspecial 2-group is of exponent 4 and of order 21+2m for some integer
m ≥ 1 and the maximum of the orders of its abelian subgroups is 2m+1 (see [7],
Section 20, pp. 78, 79). An extraspecial 2-group G of order 21+2m is a central product
of either m copies of the dihedral group D8 of order 8 or m − 1 copies of D8 with
a copy of the quaternion group Q8 of order 8. In the former case, G possesses a
maximal elementary abelian subgroup of order 21+m and we write G = 21+2m+ . If the
latter holds, then all maximal abelian subgroups of G are of the type 2m−1 × 4 and
we write G = 21+2m− .

Notation 1.5 For a group G, G∗ = G \ {1}.

1.5 The main result

In this paper, we prove the following.

Theorem 1.6 Let S = (P,L) be a slim dense near hexagon and (R,ψ) be a non-
abelian representation of S. Then

(i) R is a finite 2-group of exponent 4 and order 2β , where 1 + NPdim(S) ≤ β ≤
1 + dimV (S).

(ii) If β = 1 + NPdim(S), then R is an extraspecial 2-group. Further, R =
21+NPdim(S)
+ except for the near hexagon (vi) in Theorem 1.4. In that case,

R = 21+NPdim(S)
− .

Section 2 is about some elementary properties of slim dense near hexagons. In
Section 3, we study faithful representations of (2, t)-GQs. In Section 4, we study
non-abelian representations of slim dense near hexagons. We prove Theorem 1.6 in
Section 5.

2 Elementary properties

Let S = (P,L) be a slim dense near hexagon. Since a (2,4)-GQ admits no ovoids,
every quad in S of type (2,4) is big (see Theorem 1.3).

Lemma 2.1 ([1], p. 359) Let Q be a quad in S of type (2, t2). Then |P | ≥ |Q|(1 +
2(t − t2)). Equality holds if and only if Q is big. In particular, if a quad in S of type
(2, t2) is big then so are all quads in S of that type.
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Let Q1 and Q2 be two disjoint big quads in S. By Lemma 2.1, Q1 and Q2 are of
the same type.

Lemma 2.2 ([1], Proposition 4.3, p. 354) Let π be the map from Q1 to Q2 which
takes x to zx , where x ∈ Q1 and zx is the unique point in Q2 at distance one from x.
Then

(i) π is an isomorphism from Q1 to Q2.
(ii) The set Q1 ∗ Q2 = {x ∗ zx : x ∈ Q1} is a big quad in S disjoint from Q1 and Q2.

Let Y be the subspace of S generated by Q1 and Q2. Since Y is the union of
Q1,Q2 and Q1 ∗ Q2, it follows that Y is isomorphic to the near hexagon (xi), (x) or
(vii) according as Q1 and Q2 are of type (2,1), (2,2) or (2,4).

Let {i, j} = {1,2}. For x ∈ P \ Y , we denote by xj the unique point in Qj at a
distance 1 from x. For y ∈ Qi , zy ∈ Qj is defined as in Lemma 2.2. The following
elementary results are useful for us.

Proposition 2.3 For x ∈ P \ Y , d(zxi , xj ) = 1 and d(zx1 , zx2) = d(x1, x2) = 2; that
is, {x1, zx1 , x2, zx2} is a quadrangle in �(P ).

Proof Since x ∈ �1(x
1) ∩ �1(x

2), d(x1, x2) = 2. Further, d(xi, xj ) = d(xi, zxi ) +
d(zxi , xj ). So d(zxi , xj ) = 1 and d(zx1 , zx2) = 2. �

Proposition 2.4 Let l be a line of S disjoint from Y and x, y ∈ l, x �= y. Then,
x1y1 = x1zx2 in Q1 if and only if x2y2 = x2zx1 in Q2. In fact, if x1y1 = x1zx2 ,
then (y1, y2) = (zx2 , x2 ∗ zx1) or (x1 ∗ zx2 , zx1).

Proof We have xjyj = xj zxi if and only if yj ∈ {zxi , xj ∗ zxi }. If yj = xj ∗ zxi ,
then yi ∼ xi ∗ zxj , because 2 = d(yj , yi) = d(yj , xi ∗ zxj ) + d(xi ∗ zxj , yi). Since
yi ∼ xi , it follows that yi is a point in the line xizxj and so yi = zxj .

If yj = zxi , then applying the above argument to (x ∗ y)j = xj ∗ zxi , we get (x ∗
y)i = zxj and so yi = xi ∗ zxj . �

Proposition 2.5 Let l be a line of S disjoint from Y and x, y ∈ l, x �= y. Then
d(zxi , zyj ) ≤ 2 if and only if xiyi = xizxj in Qi .

Proof If xiyi = xizxj in Qi , then xjyj = xj zxi in Qj (Proposition 2.4) and
it follows that d(zxi , zyj ) ≤ 2. Conversely, let xiyi �= xizxj in Qi . Again by
Proposition 2.4, xjyj �= xj zxi in Qj . So yj

� zxi . Then d(xi, yj ) = d(xi, zxi ) +
d(zxi , yj ) = 1 + 2 = 3. This implies that d(zxi , zyj ) = 3. �

Proposition 2.6 Let Q be a big quad in S disjoint from Y . For x, y ∈ Q with x � y,
{d(zx1 , zy2), d(zx2 , zy1)} = {2,3}.

Proof By Lemma 2.2, there exists w ∈ {x, y}⊥ in Q such that x1w1 = x1zx2 . By
Proposition 2.4, (w1,w2) = (zx2 , x2 ∗zx1) or (x1 ∗zx2 , zx1). Assume that (w1,w2) =
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(zx2 , x2 ∗ zx1). Then, d(zx2 , zy1) = d(w1, zy1) = d(w1, zw1) + d(zw1 , zy1) = 2.
Now, y2 ∼ w2 and y2

� x2 in Q2 implies that x1
� zy2 . So d(x1, zy2) = 2 and

d(zx1 , zy2) = d(zx1 , x1) + d(x1, zy2) = 3. A similar argument holds if (w1,w2) =
(x1 ∗ zx2 , zx1). �

3 Representations of (2, t)-GQs

Let S = (P,L) be a (2, t)-GQ. Then P is finite and t = 1,2 or 4. For each value
of t there exists a unique generalized quadrangle, up to isomorphism ([3], Theorem
7.3, p. 99). A k-arc of S is a set of k pair-wise non-collinear points of S. A k-arc
is complete if it is not contained in a (k + 1)-arc. A point x is a center of a k-arc
if x is collinear with every point of it. An ovoid of S is a k-arc meeting each line
of S non-trivially. A spread of S is a set K of lines of S such that each point of S

is in a unique member of K . If O (resp., K) is an ovoid (resp., spread) of S, then
|O| = 1 + 2t (resp., |K| = 1 + 2t).

Since each line contains three points, each pair of non-collinear points of S is
contained in a (2,1)-subGQ of S. For t ′ < t , a (2, t ′)-subGQ of S and a point outside
it generate a (2,2t ′)-subGQ in S. The minimal number of points which are necessary
to generate a (2, t)-GQ is equal to 4 if t = 1, 5 if t = 2 and 6 if t = 4.

3.1 (2,2)-GQ

Let S = (P,L) be a (2,2)-GQ. For any 3-arc T of S, |T ⊥| = 1 or 3. Further, |T ⊥| = 1
if and only if T is contained in a unique (2,1)-subGQ of S; and |T ⊥| = 3 if and only
if T is a complete 3-arc. If S admits a k-arc, then k ≤ 5. Here 5-arcs are ovoids and S

contains six ovoids. Each ovoid is determined by any two of its points. Each point of
S is in two ovoids and the intersection of two distinct ovoids is a singleton. Any two
non-collinear points of S are in a unique ovoid of S and also in a unique complete
3-arc of S. Any incomplete 3-arc of S is contained in a unique ovoid. Any 4-arc of
S is not complete and is contained in a unique ovoid. The intersection of two distinct
complete 3-arcs of S is empty or a singleton.

A model for the (2,2)-GQ: Let 
 = {1,2,3,4,5,6}. A factor of 
 is a set of
three pair-wise disjoint 2-subsets of 
. Let E be the set of all 2-subsets of 
 and F
be the set of all factors of 
. Then |E | = |F | = 15 and the pair (E , F ) is a (2,2)-GQ.

3.2 (2,4)-GQ

Let S = (P,L) be a (2,4)-GQ. If S admits a k-arc, then 0 ≤ k ≤ 6. So S has no
ovoids. S admits two disjoint 6-arcs. A 5-arc of S is complete if and only if it is
contained in a unique (2,2)-subGQ of S. Each incomplete 5-arc has exactly one
center and each complete 5-arc of S has exactly two centers. Each 4-arc has two
centers and is contained in a unique complete 5-arc and in a unique complete 6-arc.
Each 3-arc of S has three centers and is contained in a unique (2,1)-subGQ of S. So
any 4-arc of S is contained in a unique (2,2)-subGQ of S.
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A model for the (2,4)-GQ: Let 
, E and F be as in the model of a (2,2)-GQ. Let

′ = {1′,2′,3′,4′,5′,6′}. Take

P = E ∪ 
 ∪ 
′; L = F ∪ {{i, {i, j}, j ′} : 1 ≤ i �= j ≤ 6}.
Then |P | = 27, |L| = 45 and the pair (P,L) is a (2,4)-GQ.

3.3 Representations

Let S = (P,L) be a (2, t)-GQ and (R,ψ) be a representation of S.

Proposition 3.1 R is an elementary abelian 2-group.

Proof Let x, y ∈ P and x � y. Let T be a (2,1)-subGQ of S containing x and y.
Let {x, y}⊥ ∩ T = {a, b}. Then [rx, ry] = 1, because rbry = ryrb , rbrx = rxrb and
r(a∗x)∗(b∗y) = r(a∗y)∗(b∗x). So R is abelian. �

For the rest of this section we assume that ψ is faithful.

Proposition 3.2 The following hold:

(i) |R| = 24 if t = 1;
(ii) |R| = 24 or 25 if t = 2, and both possibilities occur;
(iii) |R| = 26 if t = 4.

Proof Since S is generated by a set of k points where (t, k) ∈ {(1,4), (2,5), (4,6)},
F2-dimension of R is at most k. So |R| ≤ 2k .

(i) If t = 1, then |R| ≥ 24 because |P | = 9 and ψ is faithful. So |R| = 24.
(ii) If t = 2, then |R| ≥ 24 because S contains a (2,1)-subGQ. The rest follows

from the fact that S has a symplectic embedding in an F2-vector space of dimension
4 as well as an orthogonal embedding in an F2-vector space of dimension 5.

(iii) We prove this after Proposition 3.3. �

The following is a partial converse to the fact that rxry ∈ Rψ for x, y ∈ P with
x ∼ y. Recall that Rψ = {rx : x ∈ P }.

Proposition 3.3 Assume that (t, |R|) �= (2,24). If rxry ∈ Rψ for distinct x, y ∈ P ,
then x ∼ y.

Proof Let z ∈ P be such that rz = rxry . If x � y, then T = {x, y, z} is a 3-arc of S be-
cause ψ is faithful. There is no (2,1)-subGQ of S containing T because the subgroup
of R generated by the image of such a subGQ is of order 24 (Proposition 3.2(i)).
Every 3-arc of a (2,4)-GQ is contained in a unique (2,1)-subGQ. So t = 2 and T

is a complete 3-arc. Let Q be a (2,1)-subGQ of S containing x and y. Then z /∈ Q

and P = 〈Q,z〉. Since rz ∈ 〈ψ(Q)〉, |R| = | 〈ψ(Q)〉 | = 24, a contradiction to the
assumption. �
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If (t, |R|) = (2,24), then Proposition 3.3 is not true because in this case R∗ = Rψ ,
so rxry ∈ Rψ for non-collinear points x and y.

Proof of Proposition 3.2(iii) If t = 4, then there are 16 points of S not collinear with
a given point x. By Proposition 3.3, |R∗ \ Rψ | ≥ 16. Thus, |R| > 25 and so |R| = 26.
This completes the proof. �

Corollary 3.4 Let t = 4 and Q be a (2,2)-subGQ of S. Then |〈ψ(Q)〉| = 25.

Proof This follows from Proposition 3.2(iii) and the fact that P = 〈Q,x〉 for x ∈
P \ Q. �

Proposition 3.5 If t = 2, then |R| = 24 if and only if rarbrc = 1 for every complete
3-arc {a, b, c} of S.

Proof Let T = {a, b, c} be a complete 3-arc of S and Q be a (2,1)-subGQ of S con-
taining a and b. Then c /∈ Q and P = 〈Q,c〉.

If rarbrc = 1, then rc ∈ 〈ψ(Q)〉 and |R| = |〈ψ(Q)〉| = 24. Now, assume that |R| =
24. Let {x, y} = {a, b}⊥ ∩ Q. Then x, y ∈ T ⊥, since T is a complete 3-arc. Let z be
the point in Q such that {x, y, z} is a 3-arc in Q. Then c ∼ z and rz = (rarx)(rbry).
Since H = 〈ry : y ∈ x⊥〉 is a maximal subgroup of R ([10], 4.2.4, p. 68), |H | = 23.
So rc = rarb or rarbrx , since ψ is faithful. If the latter holds then rc∗z = ry , which is
not possible because ψ is faithful and y �= c ∗ z. Hence rc = rarb . �

Corollary 3.6 Assume that (t, |R|) = (2,24). Let T = {a, b, c} ⊂ P be such that
rarbrc = 1. Then T is a line or a complete 3-arc.

Proof Assume that T is not a line. Then, since ψ is faithful, T is a 3-arc. We show
that T is complete. Suppose that T is not complete. Let {a, b, d} be the complete 3-
arc of S containing a and b. Then rarbrd = 1 (Proposition 3.5) and c �= d . So rc = rd ,
contradicting the fact that ψ is faithful. �

Lemma 3.7 If S contains a 3-arc T = {a, b, c} such that rarbrc ∈ Rψ , then (t, |R|) =
(2,24). In particular, T is incomplete.

Proof Let x ∈ P be such that rx = rarbrc. Since ψ is faithful, x /∈ T . Let t = 2. If T

is complete, then |R| = 25 (Proposition 3.5) and x is collinear with at least one point
of T , say x ∼ a. Then rbrc = rxra = rx∗a ∈ Rψ , a contradiction to Proposition 3.3.
Thus, T is incomplete if t = 2.

Let Q1 be the unique (2,1)-subGQ of S containing T . If x ∈ Q1, then 〈ψ(Q1)〉 =
〈ra, rb, rc, rx〉 would be of order 23, contradicting Proposition 3.2(i). So x /∈ Q1 and
t �= 1. Let Q2 be the (2,2)-subGQ of S generated by Q1 and x. Then |〈ψ(Q2)〉| = 24,
and so t �= 4 (Corollary 3.4). Thus t = 2 and |R| = |〈ψ(Q2)〉| = 24. �

Lemma 3.8 Let a, b ∈ P with a � b. Set A = {rarx : x � a} and B = {rbrx : x � b}.
Then |A ∩ B| = t + 2.
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Proof It is enough to prove that rarx = rbry for rarx ∈ A, rbry ∈ B if and only if
either x = b and y = a holds or there exists a point c such that {c, a, y} and {c, b, x}
are lines. We need to prove the ‘only if’ part. Since ψ is faithful, x �= b if and only if
y �= a. Assume that x �= b and y �= a. For this, we show that y ∼ a and x ∼ b. Then
ra∗y = rary = rbrx = rb∗x . Since ψ is faithful, it would then follow that a ∗ y = b ∗ x

and this would be our choice of c.
First, assume that (t, |R|) �= (2,24). Since a � b, rarb /∈ Rψ by Proposition 3.3.

Since rxry = rarb , Proposition 3.3 again implies that x � y. Now, rarbry = rx ∈ Rψ .
By Lemma 3.7, {a, b, y} is not a 3-arc. This implies that y ∼ a. By a similar argument,
x ∼ b.

Now, assume that (t, |R|) = (2,24). Suppose that x � b. Then T = {a, b, x} is
a 3-arc of S. By Proposition 3.7, T is incomplete. Let Q be the (2,1)-subGQ in
S containing T and let {c, d} = {a, b}⊥ ∩ Q. Then rx = rarbrcrd = rxryrcrd . So
ryrcrd = 1. By Corollary 3.6, {c, d, y} is a complete 3-arc. Since b ∈ {c, d}⊥, it fol-
lows that b ∈ {c, d, y}⊥, a contradiction to that b � y. So x ∼ b. A similar argument
shows that y ∼ a. �

Proposition 3.9 Let K = R∗ \ Rψ . Each element of K is of the form ryrz for some
y � z in P , except when (t, |R|) = (2,25). In this case, exactly one element, say α,
of K can’t be expressed in this way. Moreover, α = rurvrw for every complete 3-arc
{u,v,w} of S.

Proof Since K is empty when (t, |R|) = (2,24), we assume that (t, |R|) = (1,24),
(2,25) or (4,26). Fix a, b ∈ P with a � b. Then rarb ∈ K (Proposition 3.3). Let A

and B be as in Lemma 3.8, and set

C = {rarbrx : {a, b, x} is a 3-arc which is incomplete if t = 2}.
By Proposition 3.3, A ⊆ K and B ⊆ K and by Lemma 3.7, C ⊆ K . Each element
of C corresponds to a 3-arc which is contained in a (2,1)-subGQ of S. Let rarbrx ∈
C and Q be the (2,1)-subGQ of S containing the 3-arc {a, b, x}. If {a, b}⊥ ∩ Q =
{p,q}, then ra∗prb∗q = rx implies that rarbrx = rprq . Thus, every element of C can
be expressed in the required form.

By Proposition 3.3, A ∩ C and B ∩ C are empty. By Lemma 3.8, |A ∩ B| = t + 2.
Then an easy count shows that

|A ∪ B ∪ C| =
{

10t − 4 if t = 1 or 4
10t − 5 if t = 2

.

So K = A ∪ B ∪ C if t = 1 or 4, and K \ (A ∪ B ∪ C) is a singleton if t = 2. This
proves the proposition for t = 1,4 and tells that if (t, |R|) = (2,25), then at most one
element of K can’t be written in the desired form.

Now, let (t, |R|) = (2,25) and T = {u,v,w} be a complete 3-arc of S. By
Lemma 3.7, α = rurvrw ∈ K . Suppose that α = rxry for some x, y ∈ P . Then x � y

by Lemma 3.7 and {x, y} ∩ T = � by Proposition 3.3. Suppose that x ∈ T ⊥ and Q

be the (2,1)-subGQ of S generated by {x,u, v, y}. Since w /∈ Q and rw = rurvrxry ,
it follows that |R| = 24, a contradiction. So, x /∈ T ⊥. Similarly, y /∈ T ⊥. Thus, each
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of x and y is collinear with exactly one point of T . Let x ∼ u. Then y � x ∗ u, since
x ∗ u ∈ T ⊥ and α = rxry . Let U be the (2,1)-subGQ of S generated by {u,x, y, v}.
Note that y ∼ u in U . Let z be the unique point in U such that {u,v, z} is a 3-arc of U .
Then rz = rxryrurv = rw . Since w �= z (in fact, w /∈ U ), this is a contradiction to the
faithfulness of ψ . Thus, α can’t be expressed as rxry for any x, y in P . This, together
with the last sentence of the previous paragraph, implies that α is independent of the
complete 3-arc T of S. �

4 Initial results

Let S = (P,L) be a slim dense near hexagon and (R,ψ) be a non-abelian repre-
sentation of S. For x ∈ P and y ∈ �≤2(x), [rx, ry] = 1 : if d(x, y) = 2, we apply
Proposition 3.1 to the restriction of ψ to the quad Q(x,y). From ([12], Theorem 2.9,
see Example 2.2 of [12]) applied to S, we have

Proposition 4.1 The following hold:

(i) For x, y ∈ P , [rx, ry] �= 1 if and only if d(x, y) = 3. In that case, 〈rx, ry〉 is a
dihedral group 21+2+ of order 8.

(ii) R is a finite 2-group of exponent 4, |R′| = 2 and R′ = �(R) ⊆ Z(R).
(iii) rx /∈ Z(R) for each x ∈ P and ψ is faithful.

We write R′ = 〈θ〉 throughout. Since R′ is of order two, Lemma 1.2 implies

Corollary 4.2 |R| ≤ 21+ dim V (S).

Proposition 4.3 R is a central product E ◦ Z(R) of an extraspecial 2-subgroup E

of R and Z(R).

Proof We consider V = R/R′ as a vector space over F2. The map f : V ×V −→ F2,
taking (xZ,yZ) to 0 or 1 accordingly [x, y] = 1 or not, is a symplectic bilinear form
on V . This form is non-degenerate if and only if R′ = Z(R). Let W be a complement
in V of the radical of f and E be its inverse image in R. Then E is extraspecial and
the proposition follows. �

From Proposition 4.3 it follows that the universal representation group of S is
a central product of an extraspecial 2-group and an abelian 2-group of exponent at
most 4.

Corollary 4.4 Let M be an abelian subgroup of R of order 2m intersecting Z(R)

trivially. Then |R| ≥ 22m+1. Equality holds if and only if R is extraspecial and M is
a maximal abelian subgroup of R intersecting Z(R) trivially.

The following lemma is useful for us.

Lemma 4.5 Let x ∈ P and Y ⊆ �3(x). Then [rx, 

y∈Y

ry] = 1 if and only if |Y | is even.
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Proof Since R′ ⊆ Z(R), [rx, 

y∈Y

ry] is well-defined (though 

y∈Y

ry depends on the

order of multiplication). Let y, z ∈ �3(x) be distinct. The subgraph of �(P ) in-
duced on �3(x) is connected (see [2], Corollary to Theorem 3, p. 156). Let y = y0,

y1, . . . , yk = z be a path in �3(x). Then ryrz = 
 ryi∗yi+1 (0 ≤ i ≤ k − 1). Since
d(x, yi ∗ yi+1) = 2, [rx, ryrz] = 1. Now, the result follows from Theorem 4.1(i). �

Notation 4.6 For a quad Q in S, we denote by MQ the elementary abelian
2-subgroup of R generated by ψ(Q).

Proposition 4.7 Let Q be a quad in S and MQ ∩ Z(R) �= {1}. Then Q is of type
(2,2), |MQ| = 25 and MQ ∩ Z(R) = {1, rarbrc} for every complete 3-arc {a, b, c}
of S.

Proof Suppose that MQ ∩ Z(R) �= {1} and 1 �= m ∈ MQ ∩ Z(R). Then m �= rx for
each x ∈ P (Proposition 4.1(iii)). If Q is of type (2,1) or (2,4), then by Proposi-
tion 3.9, m = ryrz for some y, z ∈ Q,y � z. Choose w ∈ P \ Q with w ∼ y. Then
[rw, rz] = [rw, ryrz] = [rw,m] = 1. But d(w, z) = 3 by Theorem 1.3(i), a contradic-
tion to Proposition 4.1(i).

So Q is a (2,2)-GQ. If |MQ| = 24, then M∗
Q = {rx : x ∈ Q} and m = rx ∈ Z(R)

for some x ∈ Q, contradicting Proposition 4.1(iii). So |MQ| = 25. Now, either m =
rurv for some u,v ∈ Q,u � v or m = rarbrc for every complete 3-arc {a, b, c} of Q

(Proposition 3.9). The above argument again implies that the first possibility does not
occur. �

Proposition 4.8 Let Q and Q′ be two disjoint big quads in S of type (2, t2), t2 �= 2.
Then MQ ∩ MQ′ = {1}.

Proof Suppose that MQ ∩ MQ′ �= {1} and 1 �= m ∈ MQ ∩ MQ′ . Assume that m = rx
for some x ∈ Q. Choose a point w ∈ Q′ with d(x,w) = 3. Then [rx, rw] = [m,rw] =
1, since MQ′ is abelian. This contradicts Proposition 4.1(i).

So, m �= rx for each x ∈ P . Since Q is of type (2,1) or (2,4), m = ryrz for some
y, z ∈ Q with y � z (Proposition 3.9). Choose w ∈ Q′ with w ∼ y. This is possible
since Q′ is big. Then d(w, z) = 3 and [rw, rz] = [rw, ryrz] = [rw,m] = 1, again a
contradiction to Proposition 4.1(i). �

Proposition 4.9 Let Q be a quad in S of type (2,2). Then Q is ovoidal if and only if
|MQ| = 25 and MQ ∩ Z(R) = {1}.

Proof First, assume that Q is ovoidal and let z ∈ P \ Q be such that the pair (z,Q)

is ovoidal. Let Oz = {x1, · · ·, x5} be the ovoid of Q defined as in Theorem 1.3(ii).
If |MQ| = 24, then for the complete 3-arc {x1, x2, y} of Q containing x1 and x2,
d(y, z) = 3 and rx1rx2ry = 1 (Proposition 3.5). But [rz, ry] = [rz, rx1rx2ry] = 1, a
contradiction to Proposition 4.1(i). So |MQ| = 25. Suppose that MQ ∩ Z(R) �= {1}
and 1 �= m ∈ MQ ∩ Z(R). By Proposition 4.7, m = rarbrc for every complete 3-arc
{a, b, c} of Q. In particular, for the complete 3-arc {x1, x2, y} of Q containing x1 and
x2, the above argument leads to a contradiction. So MQ ∩ Z(R) = {1}.
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Now, assume that |MQ| = 25 and MQ ∩ Z(R) = {1}. Suppose that Q is classical
and let {a, b, c} be a complete 3-arc of Q. Then, by Proposition 3.5, rarbrc �= 1. Since
(x,Q) is classical for each x ∈ P \ Q, either each of a, b, c is at a distance two from
x or exactly two of them are at a distance three from x. In either case, [rx, rarbrc] = 1
(see Lemma 4.5). So 1 �= rarbrc ∈ MQ ∩ Z(R), a contradiction. �

5 Proof of Theorem 1.6

Let S = (P,L) be a slim dense near hexagon and let (R,ψ) be a non-abelian repre-
sentation of S. By Proposition 4.1(ii), R is a finite 2-group of exponent 4. By Corol-
lary 4.2, |R| ≤ 21+dimV (S). For each of the near hexagons in Theorem 1.4, except
(vi), we find an elementary abelian subgroup of R of order 2ξ , 2ξ = NPdim(S),
intersecting Z(R) trivially. Then by Corollary 4.4, |R| ≥ 21+2ξ and R = 21+2ξ

+ if

equality holds. For the near hexagon (vi) we prove in Subsection 5.3 that R = 21+2ξ
− ,

thus completing the proof of Theorem 1.6.

5.1 The near hexagons (vii) to (xi)

Let S = (P,L) be one of the near hexagons (vii) to (xi) and Q be a big quad in
S. Set M = MQ. Then, by Proposition 4.7, M ∩ Z(R) = {1} and |M| = 24 or 26

according as Q is of type (2,1) or (2,4). If Q is of type (2,2), then |M| = 24 or 25.
Also, if |M| = 25, then |M ∩ Z(R)| = 2 because Q is classical (Propositions 4.7
and 4.9). Thus, R has an elementary abelian subgroup of order 2ξ intersecting Z(R)

trivially.

5.2 The near hexagons (i) to (v)

Let S = (P,L) be one of the near hexagons (i) to (v). Fix a ∈ P and b ∈ �3(a).
Let l1, · · ·, lt+1 be the lines containing a, xi be the point in li with d(b, xi) = 2 and
A = {xi : 1 ≤ i ≤ t + 1}. For a subset X of A, we set TX = {rx : x ∈ X}, MX = 〈TX〉
and M = 〈rb〉MX . Then MX and M are elementary abelian 2-subgroups of R.

Proposition 5.1 Let X be a subset of A such that

(i) MX ∩ Z(R) = {1},
(ii) TX is linearly independent.

Then, |M| = 2|X|+1 and M ∩ Z(R) = {1}. In particular, |R| ≥ 22|X|+3.

Proof By (ii), 2|X| ≤ |M| ≤ 2|X|+1. If |M| = 2|X|, then rb can be expressed as a
product of some of the elements rx , x ∈ X. Since [ra, rx] = 1 for x ∈ X, it follows
that [ra, rb] = 1, a contradiction to Proposition 4.1(i). So |M| = 2|X|+1. Suppose

that M ∩ Z(R) �= {1} and 1 �= z ∈ M ∩ Z(R). Let z = 

y∈X∪{b}r

iy
y , iy ∈ {0,1}. Since

[rx, z] = 1, ib = 0 by the above argument. It follows that z ∈ MX , a contradiction to
(i). So M ∩ Z(R) = {1}.
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By Corollary 4.4, |R| ≥ 22(|X|+1)+1 = 22|X|+3. �

A subset X of A is good if (i) and (ii) of Proposition 5.1 hold. In the rest of
this Section, we find good subsets of A of size (ξ − 1), thus completing the proof
of Theorem 1.6 for the near hexagons (i) to (v). The next Lemma gives a necessary
condition for a subset of A to be good.

Lemma 5.2 Let X be a subset of A which is not good, α ∈ MX ∩ Z(R) (possibly
α = 1) and

α = 

xk∈X

rik
xk

(1)

where ik ∈ {0,1}. Set B = {k : xk ∈ X}, B ′ = {k ∈ B : ik = 1} and Ai,j = {k ∈ B ′ :
xk ∈ Q(xi, xj )} for 1 ≤ i �= j ≤ t +1. Assume that B ′ is non-empty when α = 1. Then

(i) |B ′| ≥ 3,
(ii) |B ′| is even if and only if |Ai,j | is even.

Proof (i) |B ′| ≥ 2 because rxk
/∈ Z(R) for each k (Proposition 4.1(iii)). If |B ′| = 2,

then rxry = α for some pair of distinct x, y ∈ X. Since ψ is faithful and rx, ry are
involutions, α �= 1. For the quad Q = Q(x,y), 1 �= α ∈ MQ ∩ Z(R). By Propo-
sition 4.7, Q is a (2,2)-GQ and rarbrc = α for each complete 3-arc {a, b, c} of
Q. In particular, if {x, y,w} is the complete 3-arc of Q containing x and y, then
rxryrw = α. It follows that rw = 1, a contradiction. So |B ′| ≥ 3.

(ii) Let w ∈ Q(xi, xj ) and w � a. For each m ∈ B ′
i,j = B ′ \ Ai,j , xm ∼ a and

xm /∈ Q(xi, xj ). So d(w,xm) = 3. Now, [rw, 

m∈B ′

i,j

rxm ] = [rw, 

m∈B ′rxm ] = [rw,α] =

1, since α ∈ Z(R). So |B ′
i,j | is even by Lemma 4.5. This implies (ii). �

In what follows, for any subset X of A which is not good, B ′ is defined relative to
an expression as in (1) for an arbitrary but fixed element of MX ∩Z(R). Any quad Q

in S containing the point a is determined by any two distinct points xi and xj of A

that are contained in Q. In that case we sometimes denote by AQ the set Ai,j defined
in Lemma 5.2.

5.2.1 The near hexagon (i)

There are 7 quads in S containing the point x1 ∈ A. This partitions the 14 points
( �= x1) of A, say

{x2, x3} ∪ {x4, x5} ∪ {x6, x7} ∪ {x8, x9} ∪ {x10, x11} ∪ {x12, x13} ∪ {x14, x15}.
Consider the quad Q(x10, x12). We may assume that Q(x10, x12)∩A = {x10, x12, x15}.
Let X = {x2, x3, x4, x5, x6, x7, x8, x10, x12, x14}. Then |X| = 10. We show that X is a
good subset of A.

Assume otherwise. Let C1 = {8,10,12,14} and C2 = B \ C1. For k ∈ C1,
Q(x1, xk) ∩ A = {x1, xk, xk+1}. So A1,k ⊆ {k}. By Lemma 5.2(ii), either C1 ⊆ B ′
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or C1 ∩ B ′ is empty. If C1 ⊆ B ′, then A1,14 = {14}, A10,12 = {10,12} and by
Lemma 5.2(ii), |B ′| would be both odd and even.

So C1 ∩ B ′ is empty. Then B ′ ⊆ C2. Since A1,8 is empty, |B ′| is even. Choose
j ∈ B ′ (see Lemma 5.2(i)). Observe that there exists a k ∈ {8, · · ·,15} such that
Q(xj , xk) ∩ {xi : i ∈ C2} = {xj }. Then Aj,k = {j} and |B ′| is odd also, a contradic-
tion.

5.2.2 The near hexagon (ii)

Let X = {xi : 1 ≤ i ≤ 11}. Then |X| = 11. Also X is a good subset of A. Otherwise,
for some i, j ∈ B ′ with i �= j (see Lemma 5.2(i)), Ai,j = {i, j} and Ai,12 = {i} and,
by Lemma 5.2(ii), |B ′| would be both even and odd.

5.2.3 The near hexagon (iii)

Let Q1, · · ·,Q5 be the five (big) quads in S containing x1 and a. Let
Q1 ∩ A = {x1, x2, x3, x4, x5},
Q2 ∩ A = {x1, x6, x7, x8, x9},
Q3 ∩ A = {x1, x10, x11, x12, x13},
Q4 ∩ A = {x1, x14, x15, x16, x17},
Q5 ∩ A = {x1, x18, x19, x20, x21}.

Let X = {x2, x3, x4, x5, x6, x7, x8, x10, x14}. Then |X| = 9. We show that X is a good
subset of A. Assume otherwise. Since Q5 ∩ X is empty, AQ5 is empty and, by
Lemma 5.2(ii), |B ′| and |AQ| are even for each quad Q in S containing a. Since
AQ3 ⊆ {10} and |AQ3 | is even, 10 /∈ AQ3 and so, 10 /∈ B ′. This argument with Q3 re-
placed by Q4 shows that 14 /∈ B ′. Since AQ2 ⊆ {6,7,8} and |AQ2 | is even, j /∈ B ′ for
some j ∈ {6,7,8}. Since |B ′| ≥ 3 (Lemma 5.2(i)), k ∈ B ′ for some k ∈ {2,3,4,5}.
Then, Aj,k = {k}, contradicting that |Aj,k| is even.

5.2.4 The near hexagon (iv)

Let Q1, · · ·,Q6 be the six big quads in S containing the point a. Any two of these
big quads meet in a line through a and any three of them meet only at {a}. Let

Q1 ∩ A = {x1, x2, x3, x4, x5},
Q2 ∩ A = {x1, x6, x7, x8, x9},
Q3 ∩ A = {x2, x6, x10, x11, x12},
Q4 ∩ A = {x3, x7, x10, x13, x14},
Q5 ∩ A = {x4, x8, x11, x13, x15},
Q6 ∩ A = {x5, x9, x12, x14, x15}.

Let X = {x1, x2, x3, x4, x6, x7, x8, x10, x11}. Then |X| = 9. We show that X is a good
subset of A. Assume otherwise. Since Q6 ∩ X is empty, AQ6 is empty and, by
Lemma 5.2(ii), |B ′| and |AQ| are even for every quad Q in S containing a. We
first verify that for

(i, j, k) ∈ {(1,11,14), (1,12,13), (2,9,13), (3,6,15), (4,6,14), (5,6,13)},
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Q(xi, xj ) is of type (2,2) and Q(xi, xj ) ∩ A = {xi, xj , xk}. Since A1,12 ⊆ {1} and
|A1,12| is even, it follows that 1 /∈ B ′. Similarly, considering A2,9 and A5,6, we con-
clude that 2 /∈ B ′ and 6 /∈ B ′. Since 6 /∈ B ′, considering A3,6 and A4,6, we conclude
that 3 /∈ B ′ and 4 /∈ B ′. Since |B ′| ≥ 3 is even, it follows that B ′ = {7,8,10,11} and
so A1,11 = {11}, contradicting that |A1,11| is even.

5.2.5 The near hexagon (v)

Let Q1,Q2,Q3 be the three big quads in S containing a. Their intersection is {a}
and any two of these big quads meet in a line through a. We may assume that

Q1 ∩ A = {x1, x2, x3, x4, x5},
Q2 ∩ A = {x1, x6, x7, x8, x9},
Q3 ∩ A = {x2, x6, x10, x11, x12}.

Let X = {x1, x2, x3, x4, x6, x7, x8, x10, x11}. Then |X| = 9. We show that X is a good
subset of A. Assume otherwise. We note that the quads Q(xr, xk) are of type (2,2) in
the following cases:

r = 1 and k ∈ {10,11,12}; r = 2 and k ∈ {7,8,9}; r = 6 and k ∈ {3,4,5}.
Now, Ar,s ⊆ {r} for (r, s) ∈ {(1,12), (2,9), (6,5)} because xs /∈ X. Considering
A1,12, we conclude that 10,11 /∈ B ′ in view of the following: A1,12 ⊆ {1}, A1,k ⊆
{1, k} for k ∈ {10,11} and the parity of |B ′| and |A1,j | are the same for all j �= 1.
Similarly, considering A2,9 (respectively, A6,5) we conclude that 7,8 /∈ B ′ (respec-
tively, 3,4 /∈ B ′). Since |B ′| ≥ 3, it follows that B ′ = {1,2,6}. But A5,9 is empty be-
cause {x5, x9, x12}∩X and {10,11}∩B ′ are empty. So |B ′| is even (Lemma 5.2(ii)),
a contradiction.

5.3 The near hexagon (vi)

We consider this case separately because the technique of the previous subsection
only yields |R| ≥ 217 in this case.

Let S = (P,L) be a slim dense near hexagon and Y be a proper subspace of S

isomorphic to the near hexagon (vii). Big quads in Y (as well as in S) are of type
(2,4). There are three pair-wise disjoint big quads in Y and any two of them generate
Y . Fix two disjoint big quads Q1 and Q2 in Y . Let (R,ψ) be a non-abelian represen-
tation of S. Set M = 〈ψ(Y )〉 and Mi = MQi

for i = 1,2. Then |Mi | = 26 (Proposi-
tion 3.2(iii)), Mi ∩ Z(R) = {1} (Proposition 4.7), M1 ∩ M2 = {1} (Proposition 4.8).
Since Y contains pairs of points at distance 3, (M,ψ) is a non-abelian representation
of Y (see Proposition 4.1(i)). So, M = 21+12+ with M = M1M2R

′ (Theorem 1.6 for
the near hexagon (vii)). Also, R = M ◦ N , a central product of M and N = CR(M).

Let {i, j} = {1,2}. For x ∈ P \ Y , we denote by xj the unique point in Qj at
distance 1 from x. For y ∈ Qi , let zy denote the unique point in Qj at distance 1 from
y. For each x ∈ P \ Y , we can write rx = mx

1mx
2nx for some mx

1 ∈ M1, mx
2 ∈ M2 and

nx ∈ N .

Proposition 5.3 For x ∈ P \ Y , mx
i = rz

xj
.
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Proof Let Hj = 〈rw : w ∈ Qj ∩ xj⊥〉 ≤ Mj . Then Hj is a maximal subgroup of Mj

([10], 4.2.4, p. 68) and rx ∈ CR(H1) ∩ CR(H2). For all h ∈ Hj ,

[
mx

i ,h
] = [

mx
1mx

2nx,h
] = [rx, h] = 1.

So mx
i ∈ CMi

(Hj ). Note that CMi
(Hj ) = 〈rz

xj
〉, a subgroup of order 2. If mx

i = 1,
then rx = mx

j nx commutes with every element of Mj . In particular, [rx, ry] = 1 for
every y ∈ Qj ∩ �3(x), a contradiction to Theorem 4.1(i). So mx

i = rz
xj

. �

Propositions 5.3 implies that nx is uniquely determined as nx = rx(m
x
1mx

2)−1.

Proposition 5.4 For x ∈ P \ Y , nx is an involution and nx /∈ Z(R). In particular,
rx /∈ M .

Proof By Proposition 2.3, d(zx1 , zx2) = 2. So [mx
1,mx

2] = [rz
x2 , rzx1 ] = 1 (Proposi-

tion 5.3). Now, r2
x = 1 implies n2

x = 1. We show that nx �= 1 and nx /∈ Z(R). The
quad Q = Q(x1, x2) in S is of type (2,2) or (2,4) because x1 and x2 have at least
three common neighbours x, zx1 and zx2 . Let U be the (2,2)-GQ in Q generated
by {x1, x2, x, zx1 , zx2}. If Q is of type (2,4), then 〈ψ(U)〉 is of order 25 (Corol-
lary 3.4). If Q is of type (2,2), then U = Q is ovoidal because it is not a big quad. So
〈ψ(U)〉 is of order 25 (Proposition 4.9). Therefore, rarbrc �= 1 for every complete 3-
arc {a, b, c} of U (Proposition 3.5). In particular, nx = rxrz

x1 rzx2 �= 1 for the complete
3-arc {x, zx1 , zx2} of U . Now, applying Proposition 4.7 (respectively, Proposition 4.9)
when Q is of type (2,4) (respectively, of type (2,2)), we conclude that nx /∈ Z(R). �

Proposition 5.5 Let Q be a big quad in S disjoint from Y and x, y ∈ Q. Then:

(i) [nx,ny] = 1 if and only if x = y or x ∼ y;
(ii) There is a unique line lx = {x, y, x ∗y} in Q containing x such that nx∗y = nxny .

For any other line l = {x, z, x ∗ z} in Q, nx∗z = nxnzθ .

Proof (i) Let x ∼ y. By Propositions 2.5 and 5.3, [mx
2,m

y

1] = [mx
1,m

y

2] = 1 or θ .
Then [nx,ny] = [mx

1mx
2nx,m

y

1m
y

2ny] = [rx, ry] = 1.
Now, assume that x � y. By Propositions 2.6 and 5.3, {[mx

1,m
y

2], [mx
2,m

y

1]} =
{1, θ}. Since [rx, ry] = 1, it follows that [nx,ny] = θ �= 1.

(ii) Let x ∈ Q and lx be the line in Q containing x which corresponds to the
line xj zxi in Qj . This is possible by Lemma 2.2. For u,v ∈ lx , d(zuj , zvi ) ≤ 2
(Proposition 2.5). So [mu

i ,m
v
j ] = 1. Then ru∗v = (mu

1mv
1)(m

u
2mv

2)(nunv). So nu∗v =
nunv. Let l be a line ( �= lx ) in Q containing x. For y �= w in l, [my

2,mw
1 ] = θ

because d(zy1 , zw2) = 3 (Proposition 2.5). Then ry∗w = (m
y

1m
y

2ny)(m
w
1 mw

2 nw) =
(m

y

1mw
1 )(m

y

2mw
2 )nynwθ and so ny∗w = nynwθ . �

Corollary 5.6 Let Q be as in Proposition 5.5 and I2(N) be the set of involutions in
N . Define δ from Q to I2(N) by δ(x) = nx , x ∈ Q. Then

(i) [δ(x), δ(y)] = 1 if and only if x = y or x ∼ y.
(ii) δ is one-to-one.
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(iii) There exists a spread T in Q such that for x, y ∈ Q with x ∼ y,

δ(x ∗ y) =
{

δ(x)δ(y) if xy ∈ T

δ(x)δ(y)θ if xy /∈ T
.

Proof (i) and (iii) follow from Proposition 5.5. We now prove (ii). Let δ(x) =
δ(y) for x, y ∈ Q. By (i), x = y or x ∼ y. If x ∼ y, then rx∗y = rxry =
(mx

1m
y

1)(mx
2m

y

2)α ∈ M , where α = [mx
2,m

y

1] ∈ R′. But this is not possible as
x ∗ y /∈ Y (Proposition 5.4). So x = y. �

Now, let S = (P,L) be the near hexagon (vi). Then big quads in S are of type
(2,4). We refer to ([1], p. 363) for the description of the corresponding Fischer space
on the set of 18 big quads in S. This set partitions into two families F1 and F2 of size
9 each such that each Fi defines a partition of the point set P of S. Let Ui , i = 1,2,
be the linear space whose point set is Fi . If Q1 and Q2 are two distinct points of Ui ,
then the line containing them is {Q1,Q2,Q1 ∗ Q2}, where Q1 ∗ Q2 is defined as in
Lemma 2.2. Then Ui is an affine plane of order 3.

Consider the family F1. Fix a line {Q1,Q2,Q1 ∗ Q2} in U1 and set Y = Q1 ∪
Q2 ∪ Q1 ∗ Q2. Then Y is a subspace of S isomorphic to the near hexagon (vii).
Fix a big quad Q in U1 disjoint from Y . Let the subgroups M and N of R be as in
the beginning of this subsection. Then |N | ≤ 27 because |R| ≤ 21+dimV (S) = 219. We
show that N = 21+6− . This would prove Theorem 1.6 in this case.

Let {a1, a2, b1, b2} be a quadrangle in Q, where a1 � a2 and b1 � b2. Let δ be as in
Corollary 5.6. The subgroup 〈δ(a1), δ(a2), δ(b1), δ(b2)〉 of R is isomorphic to H =
〈δ(a1), δ(a2)〉◦ 〈δ(b1), δ(b2)〉. We write N = H ◦K where K = CN(H). Then |K| ≤
23. There are three more neighbours, say w1,w2,w3, of a1 and a2 in Q different from
b1 and b2. We can write

δ(wi) = δ(a1)
i1δ(a2)

i2δ(b1)
j1δ(b2)

j2ki

for some ki ∈ K , where i1, i2, j1, j2 ∈ {0,1}. By Corollary 5.6(i), [δ(wi), δ(ar)] = 1
and [δ(wi), δ(br )] �= 1 for r = 1,2. This implies that i1 = i2 = 0 and j1 = j2 = 1.
So δ(wi) = δ(b1)δ(b2)ki . In particular, ki is of order 4. Since [δ(wi), δ(wj ] �= 1 for
i �= j , it follows that [ki, kj ] �= 1. Thus, K is non-abelian of order 8 and k1, k2, k3
are three pair-wise distinct elements of order 4 in K . So K is isomorphic to Q8 and
N = 21+6− .
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