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Abstract Generalizing the work of Farahat-Higman on symmetric groups, we de-
scribe the structures of the even centers Zn of integral spin symmetric group superal-
gebras, which lead to universal algebras termed as the spin FH-algebras. A connection
between the odd Jucys-Murphy elements and the Catalan numbers is developed and
then used to determine the algebra generators of the spin FH-algebras and of the even
centers Zn.
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1 Introduction

1.1

In a fundamental paper [2], Farahat and Higman discovered some remarkable mul-
tiplicative structures of the centers of the integral group algebras for the symmetric
groups Sn with respect to the basis of conjugacy class sums. This led to two uni-
versal algebras, K and G, which were then shown to be polynomial algebras with a
distinguished set of ring generators. As an immediate consequence, the center of the
integral group algebra for Sn is shown in [2] to have the first n elementary symmetric
polynomials of the Jucys-Murphy elements as its ring generators (which is a modern
reinterpretation since the papers [6, 9] appeared after [2]), and this has implications
on modular representations of the symmetric groups. A symmetric function inter-
pretation of the class sum basis for G was subsequently obtained by Macdonald [8,
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pp.131-4]. Some results of Farahat-Higman were generalized to the wreath products
by the second author and they admit deep connections with the cohomology rings of
Hilbert schemes of points on the affine plane or on the minimal resolutions (see Wang
[14, 15]).

I. Schur in a 1911 paper [12] initiated the spin representation theory of the sym-
metric groups by first showing that Sn admits double covers ˜Sn, nontrivial for n ≥ 4:

1 −→ {1, z} −→ ˜Sn−→Sn −→ 1

where z is a central element of ˜Sn of order 2. We refer to Józefiak [4] (also [5]) for an
excellent modern exposition of Schur’s paper via a systematic use of superalgebras.
Given a commutative ring R with no 2-torsion, we form the spin symmetric group
algebra RS−

n = R˜Sn/〈z + 1〉, which has a natural superalgebra structure.

1.2

The goal of this paper is to formulate and establish the spin group analogue of the
fundamental work of Farahat-Higman. It turns out that all the results of Farahat-
Higman [2] afford natural spin generalizations but the combinatorial aspect becomes
much richer and more involved.

It is known (cf. [4]) that the even center Zn of the superalgebra RS−
n has a basis

given by the even split class sums of ˜Sn. We first show that the structure constants in
Zn with respect to the class sum basis are polynomials in n and describe a sufficient
condition for the independence of n of these structure constants, just as in [2]. This
leads to two universal algebras, K and F , which we call the filtered and graded spin
FH-algebras respectively. The proofs here are similar to the ones in [2], but we need to
carefully keep track of the (sometimes subtle) signs appearing in the multiplications
of cycles in RS−

n . Our treatment systematically uses the notion of modified cycle type
(cf. [8, p.131]).

The odd Jucys-Murphy elements Mi for RS−
n introduced by Sergeev [13] (also cf.

related constructions by Nazarov [11]) will play the role of the usual Jucys-Murphy
elements for Sn. The odd Jucys-Murphy elements anti-commute with each other, and
a conceptual framework has been provided by the notion of degenerate spin affine
Hecke algebras (see Wang [16]). We show that the top degree term of any elementary
symmetric function in the squares M2

i is a linear combination of the even split class
sums with coefficients given explicitly in terms of the celebrated Catalan numbers,
see Theorem 4.5. This remarkable combinatorial connection is key for establishing
the algebraic structure of the spin FH-algebra K. Then the algebraic structure of K
boils down to some novel combinatorial identity of Catalan numbers which is verified
by using the Lagrange inversion formula. As a corollary, we obtain a new proof of a
theorem in Brundan-Kleshchev [1] for the ring generators of RS−

n , which has been
used in modular spin representations of the symmetric groups.

Built on the results of Macdonald [8, pp.131-4], we develop a connection between
the algebra F and the ring of symmetric functions. This is achieved by establishing
an injective algebra homomorphism from F to G.
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1.3

It is well known that the 2-regular conjugacy classes of the symmetric group Sn are
parameterized by the odd partitions of n, and so at least formally there are many
similarities between 2-modular representations and complex spin representations of
the symmetric groups. John Murray studied the connections among Farahat-Higman,
Jucys-Murphy, and center of the group algebra FSn, where F is a field of charac-
teristic 2. In particular, a modulo 2 identity of Murray [10, Proposition 7.1] which
involves the Catalan numbers bears an amazing resemblance to our Theorem 4.5 over
integers. It would be very interesting to understand a conceptual connection behind
these remarkable coincidences between 2-modular and complex spin setups for the
symmetric groups.

1.4

The paper is organized as follows. In Section 2, we review the cycle notation for el-
ements in the double cover ˜Sn following [4] and the basis of even split class sums
for the even center Zn. In Section 3, we establish the basic properties of the struc-
ture constants of Zn, which give rise to the filtered and graded spin FH-algebras. In
Section 4, we develop the combinatorial connection between the odd Jucys-Murphy
elements and Catalan numbers, and then use it in Section 5 to establish the main
structure result for the filtered spin FH-algebra K. Finally in Section 6, we develop a
connection between the algebra F and symmetric functions.

2 The preliminaries

2.1 The double covers of the symmetric groups

The symmetric group Sn is generated by si , 1 ≤ i ≤ n − 1, subject to the relations

s2
i = 1, sisi+1si = si+1sisi+1, sj si = sisj for |i − j | > 1.

The generators si may be identified with the transpositions (i, i + 1), 1 ≤ i ≤ n − 1.
The double cover, ˜Sn, of Sn is defined as the group generated by t1, t2, . . . , tn−1 and
z, subject to the relations

z central, t2
i = z, z2 = 1, ti ti+1ti = ti+1ti ti+1, tj ti = zti tj for |i − j | > 1.

This gives rise to a short exact sequence of groups

1 −→ {1, z} −→ ˜Sn
θn−→ Sn −→ 1.

where θn(ti) = si .
There is a cycle presentation of ˜Sn, as there is for Sn. Following [4], define

xi = ti ti+1 · · · tn−1tntn−1 · · · ti+1ti ∈ ˜Sn+1
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for i = 1, . . . , n − 1. Then, for a subset {i1, . . . , im} of {1, . . . , n}, we define a cycle
of length m

[i1, i2, . . . , im] =
{

z, for m = 1,

xi1ximxim−1 · · ·xi2xi1, for m > 1.

It follows that θn([i1, . . . , im]) = (i1, . . . , im).

2.2 The even split conjugacy classes of ˜Sn

We sometimes write a partition λ = (λ1, λ2, . . .), a non-increasing sequence of posi-
tive integers, or write λ = (1m1,2m2, . . .) = (imi )i≥1, where mi is the number of parts
of λ equal to i. We denote the length of λ by �(λ) and let |λ| = λ1 + λ2 + · · · .
Let P (n) (respectively, E P(n), O P(n)) denote the set of all partitions of n (re-
spectively, having only even, odd parts). Set P = ∪n≥0 P (n), E P = ∪n≥0 E P(n), and
O P = ∪n≥0 O P (n).

Given w ∈ Sn with cycle-type ρ = (ρ1, . . . , ρt ,1, . . . ,1), we define the modified
cycle-type of w to be ρ̃ = (ρ1 − 1, . . . , ρt − 1) (see [8, pp.131]). Given a partition λ,
let Cλ(n) denote the conjugacy class of Sn containing all elements of modified type
λ if |λ| + �(λ) ≤ n, and denote Cλ(n) = ∅ otherwise.

What follows is, essentially, a “modified type” version of what appears in [4, Sec-
tion 3B]. Also we have adopted the more standard modern convention of group
multiplication from right to left (different from the convention in [4, 12]), e.g.
(1,2)(2,3) = (1,2,3) (instead of (1,3,2)). The set θ−1

n (Cλ(n)) either splits into two
conjugacy classes of ˜Sn, or it is a single conjugacy class of ˜Sn. In the first case, we call
Cλ(n) a split conjugacy class of Sn, and call the two conjugacy classes in θ−1

n (Cλ(n))

split conjugacy classes of ˜Sn. In fact, we have the following (cf. [4, Theorem 3.6]).

Lemma 2.1 Let Cλ(n) be a nonempty conjugacy class of Sn. Then θ−1
n (Cλ(n)) splits

into two conjugacy classes of ˜Sn if and only if either

(1) λ ∈ E P (whence the conjugacy class or its elements are called even split), or
(2) |λ| is odd, all parts of λ are distinct, and |λ| + �(λ) = n or n − 1.

For λ ∈ E P , denote by Dλ(n) the (even split) conjugacy class in ˜Sn which contains
the following distinguished element of modified type λ

tλ = [1,2, . . . , λ1 + 1][λ1 + 2, . . . , λ1 + λ2 + 2]
· · · [λ1 + . . . + λ�−1 + �, . . . , λ1 + . . . + λ� + �] (2.1)

and hence θ−1
n (Cλ(n)) = Dλ(n)

⊔

zDλ(n) if |λ| + �(λ) ≤ n; set Dλ(n) = ∅ other-
wise.

Suppose s′ ∈ θ−1
n (s). Then, the other member of θ−1

n (s) is zs′. We denote
the common value of s′xs′−1 = (zs′)x(zs′)−1 by sxs−1, for x ∈ ˜Sn. Let x =
[i1, . . . , im][j1, . . . , jk] · · · ∈ ˜Sn be a product of disjoint cycles such that θn(x) is of
modified type λ. Let s ∈ Sn be of modified type μ. Then

s([i1, . . . , im][j1, . . . , jk] · · · )s−1 = z|λ||μ|[s(i1), . . . , s(im)][s(j1), . . . , s(jk)] · · · ,
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according to [4, Proposition 3.5]. In particular, we have the following.

Lemma 2.2 For λ ∈ E P of length �, the even split conjugacy class Dλ(n) consists of
all products of disjoint cycles in ˜Sn of the form

[i1, . . . , iλ1+1][j1, . . . , jλ2+1] · · · [k1, . . . , kλ�+1].

Remark 2.3 The Dλ(n) in the present paper is different from that in [4]. The cor-
responding conjugacy class in [4] - call it D̃λ(n) to distinguish from our Dλ(n) - is
given by D̃λ(n) = zn−�(λ)Dλ(n). The present definition of Dλ(n), just as the defini-
tion of modified cycle type, is consistent with the natural embedding of ˜Sn in ˜Sn+1 in
the sense that Dλ(n + 1) ∩ ˜Sn = Dλ(n) for all n.

The embedding of ˜Sn in ˜Sn+1 gives the union ˜S∞ = ∪n≥1˜Sn a natural group
structure. By Remark 2.3, the union Dλ := ∪n≥1Dλ(n) is an even split conjugacy
class in ˜S∞ for each λ ∈ E P . We define the homomorphism θ : ˜S∞ −→ S∞ by
θ(x) = θn(x) for x in ˜Sn.

2.3 The spin group superalgebra

Let R be a commutative ring which contains no 2-torsion. The group algebra R˜Sn

has a super (i.e. Z2-graded) algebra structure given by declaring the elements ti for
all 1 ≤ i ≤ n − 1 to be odd, i.e., of degree 1. The spin group algebra, RS−

n is defined
to be the quotient of R˜Sn by the ideal generated by z + 1:

RS−
n = R˜Sn/〈z + 1〉.

We may view the spin group algebra as the algebra generated by the elements ti ,
i = 1, . . . , n − 1, subject to the relations

t2
i = −1, ti ti+1ti = ti+1ti ti+1, tj ti = −ti tj (|i − j | > 1).

Remark 2.4 One defining relation of RS−
n above is t2

i = −1 as in [4], while a different
relation t2

i = 1 was used in the recent book of Kleshchev [7] and in [16]. One can use
a scalar

√−1 to exchange the two notations. Also, the cycle notation in RS−
n adopted

in [4] and here differs from the one used in [7, 13] by some scalars dependent on the
length of a cycle.

We adapt the notion of cycles for ˜Sn to the spin group algebra setting. As before,
and by an abuse of notation, we take

xi = ti ti+1 · · · tn−2tn−1tn−2 · · · ti+1ti

for i = 1, · · · , n − 1. Then for a subset {i1, . . . , im} of {1, . . . , n}, a cycle in the spin
group algebra is defined to be

[i1, i2, . . . , im] =
{−1, for m = 1,

xi1ximxim−1 · · ·xi2xi1, for m > 1.



180 J Algebr Comb (2009) 29: 175–193

We have the following properties of the cycles (cf. [4, Theorem 3.1]):

[i1, . . . , im] = (−1)m−1[i2, . . . , im, i1],
[i, i + 1, . . . , i + j − 1] = (−1)j−1ti ti+1 . . . ti+j−2, j > 0,

[a, i1, . . . , im][a, j1, . . . , jn] = −[a, j1, . . . , jn, i1, . . . , im],
if {i1, . . . , im} ∩ {j1, . . . , jn} = ∅. (2.2)

The algebra RS−
n inherits a superalgebra structure from R˜Sn by letting the ele-

ments ti , 1 ≤ i ≤ n − 1 be of degree 1. Denote by Zn = Z(RS−
n ) the even center of

RS−
n , i.e. the set of even central elements in the superalgebra RS−

n , for finite n as
well as n = ∞. For λ ∈ E P , we let dλ(n) denote the image in RS−

n of the class sum
of Dλ(n) in R˜Sn if |λ| + �(λ) ≤ n, and 0 otherwise. The following is clear.

Lemma 2.5 The set {dλ(n) | λ ∈ E P, |λ| + �(λ) ≤ n} forms a basis for the even
center Zn.

3 The structure constants of the centers

3.1 Some preparatory lemmas

Let N be the set of positive integers. For any subset Y of elements in ˜S∞, define a
subset of N

N(Y ) = {j ∈ N|θ(σ )(j) �= j for some σ in Y }.
It is clear that N(Y ) = ∪σ∈Y N(σ ). We denote the cardinality of N(Y ) by |N(Y )|.

Lemma 3.1 [2, Lemma 3.5] Let x, y ∈ ˜S∞. Suppose that x is of modified type λ, y

is of modified type μ and that xy is of modified type ν. Then |ν| ≤ |λ| + |μ|, with
equality if and only if N(xy) = N(x, y).

Two r-tuples of elements in ˜S∞, (x1, . . . , xr ) and (y1, . . . , yr ), are said to be con-
jugate in ˜S∞ if yi = wxiw

−1, 1 ≤ i ≤ r for some w in ˜S∞. For any conjugacy class,
C , of such r-tuples, we denote by |N(C)| the cardinality of N(x1, . . . , xn) for any
element (x1, . . . , xn) in C .

The next lemma is a spin variant of [2, Lemma 2.1].

Lemma 3.2 Let C be a conjugacy class of r-tuples of even split elements in ˜S∞. Then,

the intersection of C with

r
︷ ︸︸ ︷

˜Sn × · · · × ˜Sn is empty if n < |N(C)| and is a conjugacy
class of r-tuples in ˜Sn if n ≥ |N(C)|. The number of r-tuples in the intersection is
n(n − 1) · · · (n − |N(C)| + 1)/k(C) where k(C) is a constant.



J Algebr Comb (2009) 29: 175–193 181

3.2 Behavior of the structure constants

Consider the multiplication in the even center Zn:

dλ(n)dμ(n) =
∑

ν∈E P
aν
λμ(n)dν(n)

where the structure constants aν
λμ(n) are integers and they are undetermined when

n < |ν| + �(ν).

Example 3.3 Denote by cλ(n) the class sum of Cλ(n) for Sn. Then,

c(4)(8)c(2)(8) = 25c(4)(8) + 35c(2)(8) + 32c(3,1)(8) + 32c(1,1)(8) + 18c(2,2)(8)

+ 7c(6)(8) + 2c(4,2)(8) ∈ Z(RS8),

d(4)(8)d(2)(8) = 13d(4)(8) − 35d(2)(8) − 18d(2,2)(8)

− 7d(6)(8) + 2d(4,2)(8) ∈ Z(RS−
8 ),

[c(2)(6)]2 = 2c(2,2)(6) + 5c(4)(6) + 10c(2)(6) + 8c(1,1)(6) + 40c∅(6) ∈ Z(RS6),

[d(2)(6)]2 = 2d(2,2)(6) − 5d(4)(6) + 8d(2)(6) + 40d∅(6) ∈ Z(RS−
6 ).

The following is a spin version of [2, Theorem 2.2 and Lemma 3.9], and we present
its detailed proof to indicate the sign difference from loc. cit.

Theorem 3.4 Let λ,μ, ν ∈ E P .

(1) There is a unique polynomial f ν
λμ(x) such that aν

λμ(n) = f ν
λμ(n) for all n ≥ |ν|+

�(ν). The degree of f ν
λμ(x) is no greater than the maximum value of |N(C)| −

|ν| − �(ν) for any class C of pairs (a, b) such that a ∈ Dλ, b ∈ Dμ, and either
ab ∈ Dν or ab ∈ zDν .

(2) The polynomial f ν
λμ(x) = 0, unless |ν| ≤ |λ| + |μ|.

(3) If |ν| = |λ| + |μ|, then the polynomial f ν
λμ(x) is constant, i.e., the structure con-

stants aν
λμ(n) are independent of n.

Proof Let d̃λ(n) be the class sum of Dλ(n) in R˜Sn. We write

d̃λ(n)d̃μ(n) =
∑

ν

uν
λμ(n)d̃ν(n) +

∑

ν

vν
λμ(n)zd̃ν(n).

Therefore, upon passing to RS−
n , we obtain that

aν
λμ(n) = uν

λμ(n) − vν
λμ(n).

For each triple (λ,μ, ν) of partitions in E P , consider the sets

Xν
λμ = {(a, b) ∈ ˜S∞ × ˜S∞ | a ∈ Dλ,b ∈ Dμ and ab ∈ Dν},

Y ν
λμ = {(a, b) ∈ ˜S∞ × ˜S∞ | a ∈ Dλ,b ∈ Dμ and ab ∈ zDν}.
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Any conjugate pair of (a, b) ∈ Xν
λμ (resp. Y ν

λμ) also lies in Xν
λμ (resp. Y ν

λμ). There-
fore, Xν

λμ and Y ν
λμ can be written as disjoint unions of conjugacy classes, say

Xν
λμ = C1 � C2 � · · · � Cr ,

Y ν
λμ = Cr+1 � Cr+2 � · · · � Cr+s .

By Lemma 3.2, the number of pairs (a, b) of Xν
λμ with a and b in ˜Sn is

r
∑

i=1

(n(n − 1) · · · (n − |N(Ci )| + 1))/k(Ci ). (3.1)

In other words, the above number is equal to the total number of elements from Dν(n)

that appear upon multiplication of the class sums d̃λ(n) and d̃μ(n). To find uν
λμ(n),

we must divide (3.1) by the order of Dν(n), which is equal to

(n(n − 1) · · · (n − |ν| − �(ν) + 1))/k(ν).

Note that |ν| + �(ν) = |N(ab)| ≤ |N(a, b)| = |N(Ci )| for (a, b) ∈ Ci . We have

uν
λμ(n) = k(ν)

r
∑

i=1

(

(n−|ν|− �(ν))(n−|ν|− �(ν)− 1) · · · (n−|N(Ci )|+ 1)
)

/k(Ci ).

One has a similar formula for vν
λμ(n). So the required polynomial f ν

λμ(x) is given by

r
∑

i=1

k(ν)

k(Ci )

(

(x − |ν| − �(ν))(x − |ν| − �(ν) − 1) · · · (x − |N(Ci )| + 1)
)

−
r+s
∑

i=r+1

k(ν)

k(Ci )

(

(x − |ν| − �(ν))(x − |ν| − �(ν) − 1) · · · (x − |N(Ci )| + 1)
)

whose degree is no greater than max1≤i≤r+s{|N(Ci )| − |ν| − �(ν)}. This proves (1).
Part (2) holds, since aν

λμ(n) = 0 for every n unless |ν| ≤ |λ| + |μ| by Lemma 3.1.
If |ν| = |λ| + |μ|, it follows by (1) and Lemma 3.1 that the polynomial f ν

λμ is of
degree 0, whence a constant. This proves (3). �

3.3 The spin FH-algebras K and F

Let B be the ring consisting of all polynomials that take integer values at all integers.
By definition, f ν

λμ(x) belongs to B for all λ,μ, ν in E P . We define a B-algebra K
with B-basis {dλ|λ ∈ E P} and multiplication given by

dλdμ =
∑

ν

f ν
λμ(x)dν,

where the sum is over all ν in E P such that |ν| ≤ |λ| + |μ|. We will refer to K as the
(filtered) spin FH-algebra. The following is an analogue of [2, Theorem 2.4] and it
can be proved in the same elementary way.
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Proposition 3.5 The spin FH-algebra K is associative and commutative. There exists
a surjective homomorphism of algebras

φn : K −→ Z(ZS−
n ),

∑

fλ(x)dλ �→
∑

fλ(n)dλ(n).

Let K(m) with m being even be the subspace of K that is the B-span of all
dλ’s with |λ| = m (in this case, m will be called the degree of dλ). Set K(m) =
⊕0≤i≤m,i even K(i). Then, it follows by Theorem 3.4 that {K(m)} defines a filtered
algebra structure on K . Given x ∈ K, there is a unique even integer m such that
x ∈ K(m) and x �∈ K(m−2), and we denote by x∗ the top degree part of x such that
x − x∗ ∈ K(m−2). Hence, we have

(dλdμ)∗ =
∑

|ν|=|λ|+|μ|
f ν

λμdν ∈ K.

Define a graded Z-algebra, F � F (0) ⊕ F (2) ⊕ F (4) ⊕ · · · , where F (m) (m even)
is defined to be the Z-span of all the symbols dλ with |λ| = m, with multiplication

dλ ∗ dμ =
∑

|ν|=|λ|+|μ|
f ν

λμdν.

Recall that the coefficients f ν
λμ such that |ν| = |λ| + |μ| (which are equal to aν

λμ(n)

for large n) are integers. Then the graded algebra associated to K is given by

grK ∼= B ⊗Z F .

It follows from Proposition 3.5 that the algebra F is commutative and associative.
We will refer to F as the graded spin FH-algebra.

It will be convenient to think of dλ in K or F as the class sum of the conjugacy
class Dλ in Z∞, but with multiplications modified in two different ways; note that
the usual multiplication on Z∞ induced from the group multiplication in ˜S∞ has an
obvious divergence problem.

Lemma 3.1 also exhibits filtered ring structures on RS−
n as well as on Zn, which

allow us to define the associated graded rings gr(RS−
n ) and grZn. Thus, it will make

sense to talk about the top degree term x∗ of x ∈ RS−
n .

3.4 Some distinguished structure constants

As in [8], we will write λ ∪ μ for the partition that is the union of λ and μ. If μ is
a partition contained in λ, the notation λ − μ will denote the partition obtained by
deleting all parts of μ from λ. Let � denote the usual dominance order of partitions.
For a one-part partition (s) with even s, we write d(s) = ds .

Proposition 3.6 Let λ = (imi(λ))i≥1 ∈ E P and let s > 0 be even. Then in K, we have

(dλds)
∗ =

∑

μ

(−1)�(μ) (ms+|μ| + 1)(s + |μ| + 1)s!
m0(μ)!∏i≥1 mi(μ)! dλ∪(s+|μ|)−μ (3.2)
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where the sum is over all partitions μ = (imi(μ))i≥1 ∈ E P contained in λ with �(μ) ≤
(s + 1), and m0(μ) = s + 1 − �(μ).

Proof The proof is completely analogous to the proof of [2, Lemma 3.11], and hence
will be omitted. Here we only remark that the sign (−1)�(μ) appearing on the right-
hand side of (3.2) is due to the multiplication of �(μ) cycles in dλ with an (s + 1)-
cycle and (2.2). �

In the same way as Macdonald ([8, pp.132]) reformulated the formula in [2],
Proposition 3.6 can be reformulated as follows.

Proposition 3.7 Let λ = (imi(λ))i≥1 ∈ E P and let s > 0 be even.

(1) If |λ| + s = m, then

f
(m)
λ (s) =

⎧

⎨

⎩

(−1)�(λ)(m + 1)s!
(s + 1 − �(λ))!∏i≥1 mi(λ)! , if �(λ) ≤ s + 1,

0, otherwise.

(2) If |λ| + s = |ν|, and write ν = (ν1, ν2, . . .), then

f ν
λ(s) =

∑

f
(νi)
μ (s)

summed over pairs (i,μ) such that μ ∪ ν = λ ∪ (νi), where μ ∈ E P.

(3) The coefficient f ν
λ(s) = 0 unless ν � λ ∪ (s), and f

λ∪(s)
λ(s) > 0.

Remark 3.8 Let λ = (imi(λ))i≥1 and μ = (imi(μ))i≥1 be partitions in E P . As a variant
of [2, Lemma 3.10], we have the following formula of structure constants:

f
λ∪μ
λμ =

∏

i≥1

(mi(λ) + mi(μ))!
mi(λ)!mi(μ)! .

Theorem 3.9 The algebra Q ⊗Z F is a polynomial algebra generated by dm with
m = 2,4,6, . . . .

Proof Let λ = (λ1, λ2, . . .) ∈ E P . By Proposition 3.7, we have inductively

dλ1 ∗ dλ2 ∗ · · · =
∑

μ∈E P ,μ�λ

hλμdμ (3.3)

where hλμ ∈ Z with hλλ > 0 by Remark 3.8. Hence (hλμ) is a triangular integral
matrix with nonzero diagonal entries, whose inverse matrix has rational entries. �



J Algebr Comb (2009) 29: 175–193 185

4 The Jucys-Murphy elements and Catalan numbers

4.1 The odd Jucys-Murphy elements

Recall the Jucys-Murphy elements [6, 9] in the symmetric group algebra RSn are
defined to be ξk = ∑k−1

i=1 (i, k) for 1 ≤ k ≤ n. The odd Jucys-Murphy elements Mk in
the spin group algebra RS−

n were introduced by Sergeev [13] up to a common factor√−1 (cf. Remark 2.4) as

Mk =
k−1
∑

i=1

[i, k], 1 ≤ k ≤ n

and they are closely related to the constructions in [11, 16]. It follows by (2.2) that

M2
k = −(k − 1) −

k−1
∑

i,j=1; i �=j

[i, j, k]. (4.1)

We caution that our M2
k differs from the square of the odd Jucys-Murphy elements

used in [1, 7, 13, 16] by a sign.
According to [11, 13], for 1 ≤ r ≤ n, the r th elementary symmetric function in the

M2
k (1 ≤ k ≤ n)

er;n =
∑

1≤i1<i2<···<ir≤n

M2
i1
M2

i2
· · ·M2

ir

lies in the even center Zn. For λ ∈ E P(2r), we note that the coefficient in er;n of the
given element tλ introduced in (2.1) (for n ≥ |λ| + �(λ)) is independent of n. Hence,
we have the following well-defined element

e∗
r =

∑

i1<i2<···<ir

(

M2
i1
M2

i2
· · ·M2

ir

)∗

as the n → ∞ limit of e∗
r;n, which is then written as

e∗
r =

∑

λ∈E P (2r)

Aλdλ ∈ K. (4.2)

We shall write A2r for A(2r). The goal of this section is to calculate the Aλ.

Example 4.1 The first few e∗
r are computed as follows.

e∗
1 = −d2

e∗
2 = d(2,2) − 2d4

e∗
3 = −d(2,2,2) + 2d(4,2) − 5d6.
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4.2 The relations among Aλ

Lemma 4.2 Let r ≥ 1 and λ = (λ1, λ2, . . . , λ�) ∈ E P(2r) be of length �. The coeffi-
cients Aλ in (4.2) admit the following factorization property:

Aλ = Aλ1Aλ2 · · ·Aλ�
.

Proof The proof is by induction on �(λ) = �, with the case �(λ) = 1 being trivial.
Let λ ∈ E P(2r) be of length � > 1. Recall that the element tλ in (2.1) of modified

type λ = (λ1, λ2, . . . , λ�) can be written as tλ = uv, where

u = [1,2, . . . , λ1 + 1] · · · [λ1 + · · · + λ�−2 + � − 1, . . . , λ1 + · · · + λ�−1 + � − 1]
is of modified type λ̃ = (λ1, λ2, . . . , λ�−1) and length (� − 1), and

v = [λ1 + · · · + λ�−1 + �, . . . , λ1 + · · · + λ� + �].
To find the coefficient Aλ of dλ in e∗

r we will count the number of appearances of tλ
in e∗

r . Suppose that tλ appears upon multiplication of a particular term, M2
i1

· · ·M2
ir

,

of e∗
r . Since tλ has the top degree 2r among the cycles in M2

i1
· · ·M2

ir
, we can and

will regard the products M2
is

and M2
i1

· · ·M2
ir

as in gr(RS−
n ) in the remainder of this

proof, e.g. M2
k = −∑

1≤i �=j≤k−1[i, j, k]. To produce a (2n+ 1)-cycle by multiplying
together 3-cycles, one needs n 3-cycles. Then we have that ir = λ1 + · · · + λ� + �.
Furthermore, since i1 < · · · < ir and because of the increasing arrangement of the
cycles of u and v, the cycle v must appear upon multiplication of the last λ�/2 of the
M2

ik
, and the smallest such ik has to satisfy ik ≥ λ1 + · · · + λ�−1 + � + 2. The factor

u must appear upon multiplication of the first (λ1 + · · · + λ�−1)/2 factors M2
ik

with
the largest such ik being λ1 + · · · + λ�−1 + � − 1.

Therefore, the contribution to the multiplicity of tλ in er comes exactly from the
partial sum

∑

M2
i1

· · ·M2
ir

of er where the indices satisfy the conditions

3 ≤ i1 < i2 < · · · < (

i
r− 1

2 λ�
= λ1 + · · · + λ�−1 + � − 1

)

< i
r− 1

2 λ�+1 < · · · < ir = λ1 + · · · + λ� + �

and ir−λ�/2+1 ≥ λ1 +· · ·+λ�−1 +�+2. This partial sum can be written as the product
E1E2, where

E1 =
∑

M2
i1

· · ·M2
i
r− 1

2 λ�

, E2 =
∑

M2
i
r− 1

2 λ�+1
· · ·M2

ir
.

Thus, the multiplicity of tλ in e∗
r is the product of the coefficient of u in E1, which is

∏�−1
i=1 Aλi

by the induction assumption, and the coefficient of v in E2, which is Aλ�
.

This proves the lemma. �

Lemma 4.3 The following recursive relation holds:

A2 = −1, A2r = 2A2r−2 −
r−2
∑

s=1

A(2r−2−2s,2s) (r ≥ 2) (4.3)
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where we have denoted A(b,a) = A(a,b) for a > b.

Proof We have seen that A2 = −1 in Example 4.1. Note that A2r is equal to the
coefficient of d(2r)(2r +1) appearing in e∗

r , which is the multiplicity of each (2r +1)-
cycle, say [1,2, · · · ,2r + 1], that appears in er;2r+1. Observe that only the following
summand

∑

1≤i1<···<ir−1≤2r

M2
i1

· · ·M2
ir−1

· M2
2r+1

in er;2r+1 contributes to the multiplicity of the (2r + 1)-cycle [1,2, · · · ,2r + 1].
The expression

∑

i1<···<ir−1≤2r M2
i1

· · ·M2
ir−1

, which can and will be taken in grZ2r ,
is a linear combination of the class sums dλ(2r) where λ ∈ E P(2r − 2) satisfies
|λ| + �(λ) = 2r − 2 + �(λ) ≤ 2r , that is, �(λ) ≤ 2. Therefore, any such λ must be one
of the following partitions

λ(s) := (2r − 2 − 2s,2s), 0 ≤ 2s ≤ r − 1.

The coefficient of dλ(s) (2r) in
∑

i1<···<ir−1<2r+1 M2
i1

· · ·M2
ir−1

is Aλ(s) . By counting

the (2r + 1)-cycles appearing in the product dλ(s) (2r) · M2
2r+1 and using (4.1), we

calculate that the contribution from Aλ(s)dλ(s) (2r) · M2
2r+1 to the coefficient A2r is

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−Aλ(s) · |Dλ(s) (2r)| · 2
(2r−1−2s

1

)(2s+1
1

)

|D(2r)(2r + 1)| for 0 < 2s ≤ r − 1,

A(2r−2) · |D(2r−2)(2r)| · 2
(2r−1

1

)

|D(2r)(2r + 1)| for s = 0,

which, by an elementary calculation, is

=
⎧

⎨

⎩

−2Aλ(s) , for 0 < 2s < r − 1,

−Aλ(s) , for 2s = r − 1 with r odd,

2A2r−2, for s = 0.

Summarizing, we have shown that

A2r =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

2A2r−2 − A(r−1,r−1) −
(r−3)/2
∑

s=1

2A(2r−2s−2,2s), for r odd,

2A2r−2 −
(r−2)/2
∑

s=1

2A(2r−2s−2,2s), for r even,

which can then be easily recast as in the lemma. �

4.3 Catalan numbers and the coefficients Aλ

Recall the r + 1’st Catalan number, Cr+1, is defined to be

C1 = 1, Cr+1 = 1

r + 1

(

2r

r

)

.
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It is well known that a generating function for the Catalan numbers

c(x) =
∞
∑

n=0

Cn+1x
n+1

can be calculated to be (cf. Goulden-Jackson [3, Sect. 2.7.3])

c(x) = 1 − √
1 − 4x

2
= 2x

1 + √
1 − 4x

(4.4)

and it satisfies the quadratic equation

c(x)2 − c(x) + x = 0. (4.5)

The following lemma is immediate from taking the expansion in x of (4.5).

Lemma 4.4 We have the following recursive relation for the Catalan numbers:

C2 = 1, Cr+1 = 2Cr +
r−2
∑

s=1

Cr−sCs+1 (r ≥ 2). (4.6)

Theorem 4.5 Let λ = (λ1, λ2, . . .) ∈ E P. The coefficients Aλ are given by:

A2r = −Cr+1,

Aλ = Aλ1Aλ2 · · · = (−1)�(λ)
∏

i≥1

Cλi
2 +1

.

Proof By Lemma 4.2 and Lemma 4.3, we have

A2 = −1, A2r = 2A2r−2 −
r−2
∑

s=1

A2r−2−2sA2s (r ≥ 2).

This implies that −A2r satisfies the same initial condition for r = 1 and the same
recursive relation as for Cr+1 by Lemma 4.4, whence −A2r = Cr+1. The general
formula for Aλ follows from this and Lemma 4.2. �

5 The structures of the algebra K and the centers Zn

5.1 A criterion for the subspace H(m)

Given an even positive integer m, let H(m) denote the B-submodule of K(m) spanned
by the elements (dλdμ)∗ where λ,μ ∈ E P , |λ| + |μ| = m, |λ| > 0, and |μ| > 0.



J Algebr Comb (2009) 29: 175–193 189

For any partition ν = (2m2,4m4,6m6, . . .) in E P we define the following polyno-
mial (which lies in B):

Pν(x) = (−1)�(ν)

(

x

m2,m4,m6, . . .

)

= (−1)�(ν) x(x − 1) · · · (x − (m2 + m4 + m6 + . . .) + 1)

m2!m4!m6! . . . .

The proposition below is an analogue of [2, Theorem 4.3], and it can be proved
as in loc. cit.. We remark that the sign in the definition of the polynomial Pν(x),
different from loc. cit., has its origin in the formula of Proposition 3.6 which is used
in the proof in an essential way.

Proposition 5.1 An element
∑

ν∈E P (m) aνdν of K(m) is contained in H(m) if and only
if

∑

ν∈E P (m)

aνPν(−m) = 0. (5.1)

5.2 The algebra generators

We shall need the Lagrange inversion formula (cf. e.g. [3, Sect. 1.2.4]) which we
recall here. Let S[[x]] denote the set of all formal power series in the variable x

with coefficients in a commutative ring S. Let S[[x]]0 denote the subset of all formal
power series in the variable x that have zero constant term and let S[[x]]1 denote the
subset of all power series that have nonzero constant term. Let S((x)) denote the set
of all formal Laurent series in x with coefficients in S. Finally, given a power series
or Laurent series f , we define [xi]f to be the coefficient of xi in the series f .

Lemma 5.2 Lagrange inversion formula Let φ(s) ∈ S[[s]]1. Then there exists a
unique formal power series w(x) ∈ S[[x]]0 such that w = xφ(w). Moreover, if
f (s) ∈ S((s)), then

[xn]f (w) = 1

n
[sn−1]{f ′(s)φn(s)}, for n �= 0.

Theorem 5.3 Let m = 2r be an even positive integer. Then the coefficients Aλ from
(4.2) satisfy the identity

∑

λ∈E P (m)

AλPλ(−m) = 2(−1)r .
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Proof We calculate by Theorem 4.5 and the binomial theorem that
∑

λ∈E P (m) AλPλ(−m)

= [ym]
∑

λ=(2i2 ,4i4 ,6i6 ,··· )
(−1)�(λ)Aλ

( −m

i2, i4, i6, · · ·
)

y2i2+4i4+6i6+···

= [ym]
∑

N≥0

(−1)N
∑

N=i2+i4+···
A

i2
2 A

i4
4 A

i6
6 · · ·

( −m

i2, i4, i6, · · ·
)

y2i2y4i4y6i6 · · ·

= [ym]
∑

N≥0

(−1)N
(−m

N

)

(A2y
2 + A4y

4 + A6y
6 + · · · )N ,

which, using A2r = −Cr+1 from Theorem 4.5 and (4.4–4.5), is

= [ym]
∑

N≥0

(−1)N
(−m

N

)

(

1 + y−2c(y2)
)N

= [ym](1 − (1 + y−2c(y2)
)−m

= [ym](1 − c(y2)
)m

.

Write m = 2r and x = y2. Now the proof of the theorem is completed by
Lemma 5.4 below. �

Lemma 5.4 Let r be a positive integer. Then,

[xr ](1 − c(x))2r = 2(−1)r .

Proof We rewrite (4.5) as c(x) = x(1 − c(x))−1. Applying the Lagrange inversion
formula in Lemma 5.2 (by setting w = c and φ = (1 − c)−1 therein) gives us

[xr ]c(x)k = 1

r
[sr−1]{ksk−1(1 − s)−r }

= k

r
[sr−k](1 − s)−r = k

r
(−1)r−k

( −r

r − k

)

.

Hence, by the binomial theorem and noting that [xr ]c(x)k = 0 for k > r , we have

[xr ](1 − c(x))2r =
r

∑

k=1

(

2r

k

)

[xr ](−c(x))k

=
r

∑

k=1

(−1)r
k

r

(

2r

k

)( −r

r − k

)

= 2(−1)r
r

∑

k=1

(

2r − 1

k − 1

)( −r

r − k

)

= 2(−1)r
(

r − 1

r − 1

)

= 2(−1)r .
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In the second last equality, we have used a standard binomial formula: for c ≥ 0,

c
∑

s=0

(

a

s

)(

b

c − s

)

=
(

a + b

c

)

.

�

Denote by B[ 1
2 ] the localization at 2 of the ring B. Set K[ 1

2 ] = B[ 1
2 ] ⊗B K and

K[ 1
2 ](m) = B[ 1

2 ] ⊗B K(m) for m even.

Theorem 5.5

1. Let m = 2r ∈ N. Then, the B[ 1
2 ]-module K[ 1

2 ](m) is spanned by e∗
r and H(m).

2. As a B[ 1
2 ]-algebra, K[ 1

2 ] is generated by e∗
r for r ≥ 1.

Proof (1) Let X = ∑

Bλdλ be an element of K(m), and write
∑

BλPλ(−m) = q

for some q ∈ B. Recall e∗
r = ∑

λ∈E P (2r) Aλdλ. We have
∑

λ AλPλ(−m) = 2(−1)r ,

Theorem 5.3. Then, Y := 2X − (−1)rqe∗
r ∈ H(m) by Proposition 5.1, and hence X =

(−1)r
q
2 e∗

r + 1
2Y lies in the span of e∗

r and H(m).
(2) Let A be the B[ 1

2 ]-subalgebra of K[ 1
2 ] generated by e∗

1, e∗
2, . . .. It suffices to

show that K ⊆ A, or K(m) ⊆ A for all even m ≥ 0 by induction on m. Certainly,
K(0) ⊆ A. Let m = 2r > 0 and assume that K(n) ⊆ A for all even n < m. This implies
that H(m) is contained in A by the definition of H(m). Since by definition A also
contains e∗

r , we have by (1) that K(m) is contained in A. �

As a corollary to Theorem 5.5, we have the following theorem by applying the sur-
jective homomorphism φn : K[ 1

2 ] −→ Z(Z[ 1
2 ]S−

n ) (see Proposition 3.5) and a base
ring change. Another proof based on Murphy’s method (cf. [9]) of Theorem 5.6 was
given earlier by Brundan and Kleshchev [1] (whose working assumption that R is a
field of characteristic �= 2 can be obviously relaxed).

Theorem 5.6 Let R be a commutative ring which contains 1
2 (e.g. any field of char-

acteristic not equal to 2). Then the even center of RS−
n is the R-algebra generated

by (the top-degree terms of) the r th elementary symmetric functions in M2
1 , . . . ,M2

n

with r = 1, . . . , n.

We remark that “the top-degree terms of” in the statement of the above Theorem is
easily removable, if one follows the proof of Theorem 5.5 (1) more closely together
with the surjective homomorphism φn.

6 Connections with symmetric functions

Recall that the original results for the symmetric groups similar to our Theorem 3.4
and Proposition 3.6 were established in Farahat-Higman [2]. This led to the introduc-
tion of a ring G by Macdonald (see [8, pp.131–134]), which is completely analogous
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to our current F . Recall that G is the Z-span of cλ for λ ∈ P , where cλ is formally
the class sum of the conjugacy class in S∞ of modified type λ (analogous to our dλ).
The algebra Q ⊗Z G is known to be freely generated by cr , r = 1,2,3, . . ., where
cr = c(r). Let 
 denote the ring of symmetric functions over Z. Macdonald then
established a ring isomorphism ϕ : G → 
, cλ �→ gλ, where gλ is a new basis of
symmetric functions explicitly defined in [8, pp.132–134].

Proposition 6.1

(1) There exists a natural injective algebra homomorphism ι : F −→ G, which sends
dλ �→ (−1)�(λ)cλ for each λ ∈ E P.

(2) There exists an isomorphism of algebras ψ : Q ⊗Z F → 
e
Q

:= Q[p2,p4, . . .]
which sends dλ to (−1)�(λ)gλ for each λ ∈ E P .

Proof (1) The multiplication in the ring G is written as

cλ ∗ cμ =
∑

ν∈P :|ν|=|λ|+|μ|
kν
λμcν, for λ,μ ∈ P .

By [2, Lemma 3.11] (or [8, pp.132, (5), (6)] where the notation aν
λμ was used for

kν
λμ), we observe that, for λ ∈ E P and s an even integer, the constant kν

λ(s) = 0 unless
ν ∈ E P and |ν| = |λ|+ s. By further comparing with Proposition 3.7, we have kν

λ(s)
=

(−1)�(λ)+1−�(ν)f ν
λ(s), which is equivalent to

ι (dλ ∗ ds) = (−1)�(λ)+1cλ ∗ cs = ι(dλ) ∗ ι(ds). (6.1)

This and (3.3) imply that for λ = (λ1, λ2, . . .) ∈ E P ,

cλ1 ∗ cλ2 ∗ · · · =
∑

μ∈E P ,μ�λ

(−1)�(λ)+�(μ)hλμcμ.

Hence, for μ ∈ E P ,

(−1)�(μ)cμ =
∑

λ∈E P
h̃μλ (−cλ1) ∗ (−cλ2) ∗ · · ·

dμ =
∑

λ∈E P
h̃μλ dλ1 ∗ dλ2 ∗ · · · ,

where [h̃μλ] denotes the inverse matrix of [hλμ]. Now it follows from these identities
and (6.1) that ι(dλ ∗ dμ) = ι(dλ) ∗ ι(dμ), i.e., ι is an algebra homomorphism.

It follows from (1) and Theorem 3.9 that the image ι(Q ⊗Z F ) is the polynomial
algebra generated by c(s), s = 2,4,6, . . .. Now (2) follows by composing ι and the
ring isomorphism ϕ : G → 
, cλ �→ gλ and by noting that g(s) = −ps for all (even)
s ≥ 1 (cf. [8, pp.132–134]). �

Proposition 6.1 (1) is essentially equivalent to the claim that there is no cancella-
tion in the contributions to dν when the (spin) permutations are multiplied between
the class sums dλ and dμ. It fits with the computations in Example 3.3.
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Remark 6.2 In the same way as e∗
r was defined right before (4.2), we can define

p∗
r ∈ F as the “∗-stabilization” of the r th power sum of M2

1 ,M2
2 ,M2

3 , . . .. Then one
can show as in [15, Propositions 5.5, 5.6] that the isomorphism ψ : Q ⊗Z F → 
e

Q

sends p∗
r to −p2r . If we denote by η the algebra isomorphism 
e

Q
→ 
Q := Q⊗Z 


sending p2r to pr for each r , then the composition ηψ sends e∗
r to (−1)rhr , where

hr denotes the r th complete homogeneous symmetric function.

Problem 1 Determine explicitly the distinguished basis for 
Q which corresponds
to the basis dλ in Q ⊗Z F under the isomorphism ηψ .

In the original setup of symmetric groups [2, 8], Macdonald’s isomorphism G ∼= 


actually identifies the r th elementary symmetric function in the Jucys-Murphy el-
ements with (−1)rhr ∈ 
, according to [15, Theorem 5.7] (see also [10, Proposi-
tion 3.2]). So the symmetric functions in the above Problem can be viewed as another
reasonable spin analogue of Macdonald’s symmetric functions gλ.
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