On a generalization of cyclic semifields
Norman L. Johnson1
, Giuseppe Marino2
, Olga Polverino3
and Rocco Trombetti2
1University of Iowa Mathematics Dept. Iowa City IA 52242 USA
2Università degli Studi di Napoli “Federico II” Dipartimento di Matematica e Applicazioni 80126 Napoli Italy
3Seconda Università degli Studi di Napoli Dipartimento di Matematica 81100 Caserta Italy
2Università degli Studi di Napoli “Federico II” Dipartimento di Matematica e Applicazioni 80126 Napoli Italy
3Seconda Università degli Studi di Napoli Dipartimento di Matematica 81100 Caserta Italy
DOI: 10.1007/s10801-007-0116-x
Abstract
A new construction is given of cyclic semifields of orders q 2 n , n odd, with kernel (left nucleus) \mathbb F q n {\mathbb{F}}_{q^{n}} and right and middle nuclei isomorphic to \mathbb F q 2 {\mathbb{F}}_{q^{2}} , and the isotopism classes are determined. Furthermore, this construction is generalized to produce potentially new semifields of the same general type that are not isotopic to cyclic semifields. In particular, a new semifield plane of order 4 5 and new semifield planes of order 16 5 are constructed by this method.
Pages: 1–34
Keywords: keywords cyclic semifield; net replacement; lifting
Full Text: PDF
References
1. Albert, A.A.: Isotopy for generalized twisted fields. An. Acad. Bras. C. 33, 265-275 (1961)
2. Ball, S., Bamberg, J., Lavrauw, M., Penttila, T.: Symplectic spreads. Designs Codes Cryptogr. 32(1- 3), 9-14 (2004)
3. Ball, S., Brown, M.R.: The six semifield planes associated with a semifield flock. Adv. Math. 189(1), 68-87 (2004)
4. Ball, S., Ebert, G.L., Lavrauw, M.: A geometric construction of finite semifields. J. Algebra 311, 117-129 (2007)
5. Biliotti, M., Jha, V., Johnson, N.L.: The collineation groups of generalized twisted field planes. Geom. Dedic. 76(1), 97-126 (1999)
6. Biliotti, M., Jha, V., Johnson, N.L.: Foundations of Translation Planes. Monographs and Textbooks in Pure and Applied Mathematics, vol.
243. Dekker, New York (2001)
7. Cannon, J., Playoust, C.: An Introduction to MAGMA. University of Sydney Press, Sydney (1993)
8. Dembowski, P.: Finite Geometries. Springer, Berlin (1968)
9. Ganley, M.J., Jha, V., Johnson, N.L.: The translation planes admitting a nonsolvable doubly transitive line-sized orbit. J. Geom. 69(1-2), 88-109 (2000)
10. Jha, V., Johnson, N.L.: On the nuclei of semifields and Cofman's many-subplane problem. Abh. Math. Semin. Univ. Hamb. 57, 127-137 (1987)
11. Jha, V., Johnson, N.L.: An analog of the Albert-Knuth theorem on the orders of finite semifields, and a complete solution to Cofman's subplane problem. Algebras Groups Geom. 6(1), 1-35 (1989)
12. Jha, V., Johnson, N.L.: A geometric characterization of generalized Desarguesian planes. Atti Semin. Mat. Fis. Univ. Modena 38(1), 71-80 (1990)
13. Jha, V., Johnson, N.L.: Translation planes of large dimension admitting nonsolvable groups. J. Geom. 45(1-2), 87-104 (1992)
14. Johnson, N.L., Marino, G., Polverino, O., Trombetti, R.: Semifields of order q6 with left nucleus Fq3 and center Fq . Finite Fields Appl. (to appear) (available online 8 May 2007)
15. Johnson, N.L., Vega, O.: Symplectic spreads and symplectically paired spreads. Note Mat. 26, 105- 111 (2006)
16. Kantor, W.M.: Commutative semifields and symplectic spreads. J. Algebra 270(1), 96-114 (2003)
17. Lunardon, G.: Translation ovoids. J. Geom. 76, 200-215 (2003)
18. Lunardon, G.: Symplectic spreads and finite semifields. Des. Codes Cryptogr. 44(1-3), 39-48 (2007) J Algebr Comb (2009) 29: 1-34
19. Lunardon, G., Marino, G., Polverino, O., Trombetti, R.: Translation dual of a semifield. J. Comb. Theory Ser. A (to appear)
20. Marino, G., Polverino, O., Trombetti, R.: On Fq -linear sets of P G(3, q3) and semifields. J. Comb.
2. Ball, S., Bamberg, J., Lavrauw, M., Penttila, T.: Symplectic spreads. Designs Codes Cryptogr. 32(1- 3), 9-14 (2004)
3. Ball, S., Brown, M.R.: The six semifield planes associated with a semifield flock. Adv. Math. 189(1), 68-87 (2004)
4. Ball, S., Ebert, G.L., Lavrauw, M.: A geometric construction of finite semifields. J. Algebra 311, 117-129 (2007)
5. Biliotti, M., Jha, V., Johnson, N.L.: The collineation groups of generalized twisted field planes. Geom. Dedic. 76(1), 97-126 (1999)
6. Biliotti, M., Jha, V., Johnson, N.L.: Foundations of Translation Planes. Monographs and Textbooks in Pure and Applied Mathematics, vol.
243. Dekker, New York (2001)
7. Cannon, J., Playoust, C.: An Introduction to MAGMA. University of Sydney Press, Sydney (1993)
8. Dembowski, P.: Finite Geometries. Springer, Berlin (1968)
9. Ganley, M.J., Jha, V., Johnson, N.L.: The translation planes admitting a nonsolvable doubly transitive line-sized orbit. J. Geom. 69(1-2), 88-109 (2000)
10. Jha, V., Johnson, N.L.: On the nuclei of semifields and Cofman's many-subplane problem. Abh. Math. Semin. Univ. Hamb. 57, 127-137 (1987)
11. Jha, V., Johnson, N.L.: An analog of the Albert-Knuth theorem on the orders of finite semifields, and a complete solution to Cofman's subplane problem. Algebras Groups Geom. 6(1), 1-35 (1989)
12. Jha, V., Johnson, N.L.: A geometric characterization of generalized Desarguesian planes. Atti Semin. Mat. Fis. Univ. Modena 38(1), 71-80 (1990)
13. Jha, V., Johnson, N.L.: Translation planes of large dimension admitting nonsolvable groups. J. Geom. 45(1-2), 87-104 (1992)
14. Johnson, N.L., Marino, G., Polverino, O., Trombetti, R.: Semifields of order q6 with left nucleus Fq3 and center Fq . Finite Fields Appl. (to appear) (available online 8 May 2007)
15. Johnson, N.L., Vega, O.: Symplectic spreads and symplectically paired spreads. Note Mat. 26, 105- 111 (2006)
16. Kantor, W.M.: Commutative semifields and symplectic spreads. J. Algebra 270(1), 96-114 (2003)
17. Lunardon, G.: Translation ovoids. J. Geom. 76, 200-215 (2003)
18. Lunardon, G.: Symplectic spreads and finite semifields. Des. Codes Cryptogr. 44(1-3), 39-48 (2007) J Algebr Comb (2009) 29: 1-34
19. Lunardon, G., Marino, G., Polverino, O., Trombetti, R.: Translation dual of a semifield. J. Comb. Theory Ser. A (to appear)
20. Marino, G., Polverino, O., Trombetti, R.: On Fq -linear sets of P G(3, q3) and semifields. J. Comb.