A combinatorial proof of a Weyl type formula for hook Schur polynomials
Jae-Hoon Kwon
University of Seoul Department of Mathematics 90 Cheonnong-dong, Dongdaemun-gu Seoul 130-743 South Korea
DOI: 10.1007/s10801-007-0109-9
Abstract
In this paper, we present a simple combinatorial proof of a Weyl type formula for hook Schur polynomials, which was obtained previously by other people using a Kostant type cohomology formula for \frak gl m | n \frak{gl}_{m|n} . In general, we can obtain in a combinatorial way a Weyl type character formula for various irreducible highest weight representations of a Lie superalgebra, which together with a general linear algebra forms a Howe dual pair.
Pages: 439–459
Keywords: keywords hook Schur polynomial; Lie superalgebra; character formula
Full Text: PDF
References
1. Beilinson, A., Bernstein, J.: Localisation de g-modules. C. R. Acad. Sci. Paris Ser. I Math. 292, 15-18 (1981)
2. Brylinski, J.L., Kashiwara, M.: Kazhdan-Lusztig conjecture and holonomic systems. Invent. Math. 64, 387-410 (1981)
3. Berele, A., Regev, A.: Hook Young diagrams with applications to combinatorics and to the representations of Lie superalgebras. Adv. Math. 64, 118-175 (1987)
4. Björner, A., Brenti, F.: Combinatorics of Coxeter Groups. Graduate Texts in Mathematics, vol.
231. Springer, Berlin (2005)
5. Brundan, J.: Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra gl(m|n). J. Am. Math. Soc. 16, 185-231 (2003)
6. Casian, L., Collingwood, D.: The Kazhdan-Lusztig conjecture for generalized Verma modules. Math. Z. 195, 581-600 (1987)
7. Cheng, S.-J., Wang, W.: Howe duality for Lie superalgberas. Compos. Math. 128, 55-94 (2001)
8. Cheng, S.-J., Wang, W.: Lie subalgebras of differential operators on the super circle. Publ. Res. Inst. Math. Sci. 39, 545-600 (2003)
9. Cheng, S.-J., Wang, W., Zhang, R.B.: A super duality and Kazhdan-Lusztig polynomials. arXiv:math.RT/0409016
10. Cheng, S.-J., Zhang, R.B.: Analogue of Kostant's u-cohomology formula for the general linear superalgebra. Int. Math. Res. Not. 31-53 (2004)
11. Cheng, S.-J., Zhang, R.B.: Howe duality and combinatorial character formula for orthosymplectic Lie superalgebras. Adv. Math. 182, 124-172 (2004)
12. Davidson, M., Enright, T., Stanke, R.: Differential operators and highest weight representations. Mem. Am. Math. Soc. 94, 455 (1991)
13. Deodhar, V.: On some geometric aspects of Bruhat orderings, II: the parabolic analogue of Kazhdan- Lusztig polynomials. J. Algebra 111, 483-506 (1987)
14. Enright, T.: Analogues of Kostant's u-cohomology formulas for unitary highest weight modules. J. Reine Angew. Math. 392, 27-36 (1988)
15. Enright, T., Howe, R., Wallach, N.: A classification of unitary highest weight modules, in Representation theory of reductive groups. Prog. Math. 40, 97-143 (1983)
16. Fulton, W.: Young Tableaux. London Mathematical Society Student Texts, vol.
35. Cambridge University Press, Cambridge (1997)
17. Frenkel, I.: Representations of Kac-Moody algebras and dual resonance models in Applications of group theory in physics and mathematical physics. In: Lectures in Applied Mathematics, vol. 21, pp. 325-353. AMS, Providence (1985)
18. Garland, H., Lepowsky, J.: Lie Algebra Homology and the Macdonald-Kac Formulas. Invent. Math. 34, 37-76 (1976)
19. Howe, R.: Remarks on classical invariant theory. Trans. Am. Math. Soc. 313, 539-570 (1989)
20. Kac, V.G.: Lie superalgebras. Adv. Math. 26, 8-96 (1977)
21. Kac, V.G.: Characters of typical representations of classical Lie superalgebras. Commun. Algebra 5, 889-897 (1977)
22. Kac, V.G.: Representations of classical Lie superalgebras in differential geometrical methods in mathematical physics II. In: Lecture Notes in Mathematics, vol. 676, pp. 597-626. Springer, Berlin (1978)
23. Kac, V.G., Radul, A.: Representation theory of the vertex algebra W1+\infty . Transform. Groups 1, 41-70 (1996)
24. Kashiwara, M., Vergne, M.: On the Segal-Shale-Weil representations and harmonic polynomials. Invent. Math. 44, 1-47 (1978)
25. Kazhdan, D., Lusztig, G.: Representations of Coxeter groups and Hecke algebras. Invent. Math. 53, 165-184 (1979)
26. Knuth, D.: Permutations, matrices, and the generalized Young tableaux. Pac. J. Math. 34, 709-727 (1970)
27. Kwon, J.-H.: Rational semistandard tableaux and character formula for the Lie superalgebra gl\infty |\infty . Adv. Math. 217, 713-739 (2008)
28. Kwon, J.-H.: Crystal graphs for Lie superalgebras and Cauchy decomposition. J. Algebr. Comb. 25, 57-100 (2007)
29. Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford University Press, Ox- ford (1995)
30. Serganova, V.: Kazhdan-Lusztig polynomials and character formula for the Lie superalgebra gl(m|n).
2. Brylinski, J.L., Kashiwara, M.: Kazhdan-Lusztig conjecture and holonomic systems. Invent. Math. 64, 387-410 (1981)
3. Berele, A., Regev, A.: Hook Young diagrams with applications to combinatorics and to the representations of Lie superalgebras. Adv. Math. 64, 118-175 (1987)
4. Björner, A., Brenti, F.: Combinatorics of Coxeter Groups. Graduate Texts in Mathematics, vol.
231. Springer, Berlin (2005)
5. Brundan, J.: Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra gl(m|n). J. Am. Math. Soc. 16, 185-231 (2003)
6. Casian, L., Collingwood, D.: The Kazhdan-Lusztig conjecture for generalized Verma modules. Math. Z. 195, 581-600 (1987)
7. Cheng, S.-J., Wang, W.: Howe duality for Lie superalgberas. Compos. Math. 128, 55-94 (2001)
8. Cheng, S.-J., Wang, W.: Lie subalgebras of differential operators on the super circle. Publ. Res. Inst. Math. Sci. 39, 545-600 (2003)
9. Cheng, S.-J., Wang, W., Zhang, R.B.: A super duality and Kazhdan-Lusztig polynomials. arXiv:math.RT/0409016
10. Cheng, S.-J., Zhang, R.B.: Analogue of Kostant's u-cohomology formula for the general linear superalgebra. Int. Math. Res. Not. 31-53 (2004)
11. Cheng, S.-J., Zhang, R.B.: Howe duality and combinatorial character formula for orthosymplectic Lie superalgebras. Adv. Math. 182, 124-172 (2004)
12. Davidson, M., Enright, T., Stanke, R.: Differential operators and highest weight representations. Mem. Am. Math. Soc. 94, 455 (1991)
13. Deodhar, V.: On some geometric aspects of Bruhat orderings, II: the parabolic analogue of Kazhdan- Lusztig polynomials. J. Algebra 111, 483-506 (1987)
14. Enright, T.: Analogues of Kostant's u-cohomology formulas for unitary highest weight modules. J. Reine Angew. Math. 392, 27-36 (1988)
15. Enright, T., Howe, R., Wallach, N.: A classification of unitary highest weight modules, in Representation theory of reductive groups. Prog. Math. 40, 97-143 (1983)
16. Fulton, W.: Young Tableaux. London Mathematical Society Student Texts, vol.
35. Cambridge University Press, Cambridge (1997)
17. Frenkel, I.: Representations of Kac-Moody algebras and dual resonance models in Applications of group theory in physics and mathematical physics. In: Lectures in Applied Mathematics, vol. 21, pp. 325-353. AMS, Providence (1985)
18. Garland, H., Lepowsky, J.: Lie Algebra Homology and the Macdonald-Kac Formulas. Invent. Math. 34, 37-76 (1976)
19. Howe, R.: Remarks on classical invariant theory. Trans. Am. Math. Soc. 313, 539-570 (1989)
20. Kac, V.G.: Lie superalgebras. Adv. Math. 26, 8-96 (1977)
21. Kac, V.G.: Characters of typical representations of classical Lie superalgebras. Commun. Algebra 5, 889-897 (1977)
22. Kac, V.G.: Representations of classical Lie superalgebras in differential geometrical methods in mathematical physics II. In: Lecture Notes in Mathematics, vol. 676, pp. 597-626. Springer, Berlin (1978)
23. Kac, V.G., Radul, A.: Representation theory of the vertex algebra W1+\infty . Transform. Groups 1, 41-70 (1996)
24. Kashiwara, M., Vergne, M.: On the Segal-Shale-Weil representations and harmonic polynomials. Invent. Math. 44, 1-47 (1978)
25. Kazhdan, D., Lusztig, G.: Representations of Coxeter groups and Hecke algebras. Invent. Math. 53, 165-184 (1979)
26. Knuth, D.: Permutations, matrices, and the generalized Young tableaux. Pac. J. Math. 34, 709-727 (1970)
27. Kwon, J.-H.: Rational semistandard tableaux and character formula for the Lie superalgebra gl\infty |\infty . Adv. Math. 217, 713-739 (2008)
28. Kwon, J.-H.: Crystal graphs for Lie superalgebras and Cauchy decomposition. J. Algebr. Comb. 25, 57-100 (2007)
29. Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford University Press, Ox- ford (1995)
30. Serganova, V.: Kazhdan-Lusztig polynomials and character formula for the Lie superalgebra gl(m|n).