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Abstract In recent years, there has been considerable interest in showing that certain
conditions on skew shapes A and B are sufficient for the difference s4 — sp of their
skew Schur functions to be Schur-positive. We determine necessary conditions for
the difference to be Schur-positive. Specifically, we prove that if s4 — sp is Schur-
positive, then certain row overlap partitions for A are dominated by those for B. In
fact, our necessary conditions require a weaker condition than the Schur-positivity
of s4 — sp; we require only that, when expanded in terms of Schur functions, the
support of s4 contains that of sp. In addition, we show that the row overlap con-
dition is equivalent to a column overlap condition and to a condition on counts of
rectangles fitting inside A and B. Our necessary conditions are motivated by those of
Reiner, Shaw and van Willigenburg that are necessary for s4 = sp, and we deduce a
strengthening of their result as a special case.

Keywords Schur function - Skew Schur function - Schur-positivity -
Dominance order

1 Introduction

In many respects, the basis of Schur functions is the most interesting and important
basis for the ring of symmetric functions. The significance of Schur functions is high-
lighted by their appearance in several areas of mathematics. In particular, they arise in
the representation theory of the symmetric group and of the general and special linear
groups. They appear in algebraic geometry, specifically in the study of the cohomol-
ogy ring of the Grassmannian, and they are also closely connected to the eigenvalues
of Hermitian matrices.
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It is therefore natural to study the expansion of symmetric functions as a linear
combination of Schur functions. For example, skew Schur functions s;,, and the
product s, s; of two Schur functions are famous examples of Schur-positive func-
tions: they can be written as linear combinations of Schur functions with all coeffi-
cients positive. Taking this a step further, several recent papers such as [1, 4-7, 10]
have asked when expressions of the form

Saju —Sgjr O  SpSy — SgS¢

are Schur-positive. These papers have been concerned with giving conditions on
A, p, o and t that result in Schur-positive expressions. We wish to focus on the con-
verse direction: if we know that the expressions are Schur-positive, what must be true
about A, i, 0 and t?

Let us first note that )5, is just a special type of skew Schur function (see the
paragraph immediately following Example 3.13 for an explanation). Therefore, it
suffices to consider differences of the form s4 — sp, where A and B are skew shapes.
It is well-known that if s4 — sp is Schur-positive, then the partition of row lengths of
B must dominate the partition of row lengths of A; see Proposition 3.1. Similarly, the
partition of column lengths of B must dominate the partition of column lengths of A.
In [11], some necessary conditions on A and B are given for the equality s4 = sp to
hold; these conditions depend not only on the rows lengths of A and B, but also on the
overlaps between the various rows. Inspired by this, our main result, Corollary 3.10,
roughly says that if s4 — sp is Schur-positive, then all the row overlaps for B must
dominate those of A. It is worth mentioning that this result includes the well-known
results about the partitions of row lengths and column lengths as special cases. The
full details are the bulk of the content of Section 3.

In the remainder of Section 3, we give two applications of our results. In turns out
that our results require a weaker condition than the Schur-positivity of s4 — sp. We
say that the support of a skew shape A is the set of partitions A such that s, appears
with nonzero coefficient when we expand s4 in terms of Schur functions. Instead of
requiring that s4 — sp is Schur-positive, our proofs only require that the support of
A contains the support of B. This allows us to strengthen the aforementioned result
of [11]. We conclude by restricting our results to obtain necessary conditions for
$78y, — SoS7 to be Schur-positive.

2 Preliminaries

We follow the terminology and notation of [9] and [13].

2.1 Skew shapes

A partition ) of n is a weakly decreasing list of positive integers (A1, ..., A;) whose
sum is n. We say that n is the size of A, denoted ||, and we call [ the length of A and
denote it by £(A). It will be convenient to set Ay = 0 for k > £(1), thus identifying

A with (A1,...,4¢3),0,0,...,0), where the string of zeros has arbitrary length. In
particular, the unique partition of 0 can be denoted by (0). We will mainly think of A
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in terms of its Young diagram, which is a left-justified array of boxes that has A; boxes
in the ith row from the top. For example, if A = (4, 4, 3), which we will abbreviate as
A = 443, then the Young diagram of A is

We will say that a partition pu is contained in a partition A if the Young diagram of
wu is contained in the Young diagram of A. In this case, we define the skew shape
A/ to be the set of boxes in the Young diagram of A that remain after we remove
those boxes corresponding to p. For example, the skew shape A = (4,4, 3)/(2) is
represented as

We will label skew shapes by simply using single uppercase roman letters, as in the
example above. We write |A| for the size of A, which is simply the number of boxes
in the skew shape A. If A =X/u and u = (0), then A is said to be a straight shape.

2.2 Skew Schur functions and the Littlewood—Richardson rule

While skew shapes are our main diagrammatical objects of study, our main algebraic
objects of interest are skew Schur functions, which we now define. For a skew shape
A, a semi-standard Young tableau (SSYT) of shape A is a filling of the boxes of A
with positive integers such that the entries weakly increase along the rows and strictly
increase down the columns. For example,

—_
[\]

—_
—_
[\
w

is an SSYT of shape 443/2. The skew Schur function s 4 in the variables (x1, x2, ...)
is then defined by
SA = Z X r
T

where the sum is over all SSYT T of shape A, and
T __ #U'sinT #2’sinT
X — xl X2 .
For example, the SSYT above contributes the monomial xfx§x3x5x72 to s443/2. The
sequence (#1’sin T,#2’sin T, ...) is known as the content of T .
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If A is a straight shape, then s4 is called simply a Schur function, and some of
the significance of Schur functions stems from the fact that they form a basis for
the symmetric functions. Therefore, every skew Schur function can be written as a
linear combination of Schur functions. A simple description of the coefficients in
this linear combination is given by the celebrated Littlewood—Richardson rule, which
we now describe. The reverse reading word of an SSYT T is the word obtained by
reading the entries of 7 from right to left along the rows, taking the rows from top
to bottom. For example, the SSYT above has reverse reading word 213211775. An
SSYT T is said to be an LR-filling if, as we read the reverse reading word of T, the
number of appearances of i always stays ahead of the number of appearances of i 41,
fori =1,2,.... The reader is invited to check that the only possible LR-fillings of
443/2 have reading words 112211322 and 112211332. The Littlewood—Richardson
rule [8, 12, 15, 16] then states that

A
Si/n = 2 :Cuusv )
v

where ¢, is the ubiquitous Littlewood—Richardson coefficient, defined to be the
number of LR-fillings of A/u with content v. For example, if A = 443/22, then
S4 = Sa41 + S432. It follows that any skew Schur function can be written as a linear
combination of Schur functions with all positive coefficients, and we thus say that
skew Schur functions are Schur-positive.

As mentioned in the introduction, our main goal is to determine when the differ-
ence s4 — sp of two skew Schur functions is Schur-positive. It turns out that most
of our results can be expressed in terms of the support of skew Schur functions. The
support supp(A) of s4 is defined to be the set of those partitions v for which s,, ap-
pears with nonzero coefficient when we expand s4 in terms of Schur functions. For
example, we have supp(443/2) = {441, 432}.

We will make significant use of the transpose operation on skew shapes and we
will also need the related @ involution on symmetric functions. For any partition A,
we define the transpose A’ to be the partition obtained by reading the column lengths
of A from left to right. For example, (443)" = 3332. The transpose operation can
be extended to skew shapes A = A/u by setting A” = A’ /u’. Then w is defined by
w(sy) = s;:. It can be shown that w(s4) = s4: for any skew shape A.

A

2.3 Extended dominance order

The well-known dominance order is typically restricted to partitions of equal size, but
its definition readily extends to give a partial order on arbitrary partitions, and this is
our final preliminary.

Definition 2.1 For partitions A = (A1, A2, ..., A,) and = (1, K2, ..., Us), we de-
fine the dominance order < by A < p if

At Ay A+ A S A2+ i

forall k =1,2,...,r. In this case, we will say that u dominates A, or is more domi-
nant than A.
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Note that our definition does not require that |A| = |x|. For example, we have
4,2,1) < (4,4).

We will need the following result about our extended definition of dominance
order. Since it is straightforward to check, we leave the proof as an exercise.

Lemma 2.2 Consider two sequences a = (ay,az, ...,ay) and b = (b1,b, ..., bs)
of natural numbers such that r <s and a; < b; fori =1,2,...,r. Let ¢ and
denote the partitions obtained by sorting the parts of a and b respectively into weakly
decreasing order. Then a < f3.

3 Necessary conditions for Schur-positivity

We begin in earnest by stating well-known necessary conditions for s4 — sp to be
Schur-positive, which nevertheless seem to be absent from the literature. Since nec-
essary conditions are our focus and we wish to make our presentation self-contained,
we will also give a proof. For any skew shape A, let rows(A) denote the partition
obtained by sorting the row lengths of A into weakly decreasing order. Similarly, let
cols(A) be the partition obtained from the column lengths.

Proposition 3.1 Let A and B be skew shapes. If A € supp(A), then
rows(A) < A < cols(A)’
and both inequalities are sharp. Consequently, if so — sp is Schur-positive, then

rows(A) <rows(B) and cols(A) < cols(B).

Proof We first show that A < cols(A)’. Suppose we wish to construct an LR-filling
of A that is as dominant as possible. Thus we wish to use as many 1’s as possible,
then as many 2’s as possible, and so on. Since we can only have at most one i in
each column of A, fill the ith highest box of every column of A with the number i,
for all i. It is straightforward to check that the result is an LR-filling of A of content
cols(A)’, and that every other LR-filling of A will have a less dominant content. See
Figure 1(a) for an example.

Applying the @ involution, we know that A € supp(A) if and only if A" € supp(A’).
Thus A" < cols(A”)! =rows(A)". As shown in [2], when partitions p and v satisfy
|;| = |v]|, the transpose operation is order-reversing with respect to < ;i.e. u < v if
and only if v' < u’. We conclude that rows(A) < A. This inequality is sharp since
Al < cols(A") is sharp.

If s4 — sp is Schur-positive, then supp(sp) C supp(s4) and so rows(A) < rows(B)
and cols(B)" < cols(A)’. The result now follows from the order-reversing property
of the transpose operation. g

Remark 3.2 1t follows from Proposition 3.1 that a skew shape A has an LR-filling
with content rows(A) and that this is its least dominant LR-filling. We now give a
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Fig. 1 The most and least
dominant fillings of 553111/31
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direct description of this filling, since it will be useful later. First consider the right-
most box of each non-empty row of A, and fill these with the numbers 1,2, ... from
top to bottom. Then apply this procedure to the skew shape consisting of the boxes
of A that have not yet been filled. Repeat until every box of A has been filled. It is
readily checked that the resulting filling is an LR-filling with content rows(A). See
Figure 1(b) for an example.

Now that we have discussed the well-known necessary conditions, we are ready
to describe our new necessary conditions for Schur-positivity. These conditions are
inspired by the necessary conditions for skew Schur equality of [11] and we begin
with the relevant background from [11]. The central definition gives a measure of the
amount of overlap among the rows of a skew shape and among the columns.

Definition 3.3 Let A be a skew shape with r rows. For i = 1,...,r — k + 1,
define overlap, (i) to be the number of columns occupied in common by rows
i,i +1,...,i +k — 1. Then rowsi(A) is defined to be the weakly decreasing re-
arrangement of (overlapy (1), overlap, (2), ..., overlap; (i —k -+ 1)). Similarly, we de-
fine colsy (A) by looking at the overlap among the columns of A.

In particular, note that rows; (A) = rows(A) and cols; (A) = cols(A).

Example 3.4 Let A =553111/31 as in Figure 1. We have that rows; (A) = 432111,
rowsy(A) =22111, rows3(A) = 11, rowsq(A) = 1 and rows; (A) = 0 otherwise. Also
cols|(A) =42222, colsp(A) =2211, cols3(A) =111, cols4(A) =1 and cols; (A) =0
otherwise.

The following result is taken directly from [11].
Proposition 3.5 Given a skew shape A, consider the doubly-indexed array

(rectsg 1 (A)),i>1

where rectsg ;(A) is defined to be the number of k x | rectangular subdiagrams con-
tained inside A. Then we have

rectsy (A) = Z (rowsi (A)'),,

I'>1
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= Z (colsl(A)t)k/ ) 3.1

k'>k

Consequently, any one of the three forms of data

(rowsg (A))k=1, (cols;(A));=1, (rectsy;(A))ki>1

on A determines the other two uniquely.

Note that (3.1) tells us that rectsg ;(A) is the number of boxes weakly to the right
of column [ in the partition rowsg (A).

Not only do (rows(A))k>1, (cols;(A));>1 and (rectsg ;(A))k,;>1 determine each
other, but their inequalities are related in the following sense.

Proposition 3.6 Let A and B be skew shapes. Then rowsi(A) < rowsg(B) if and
only if rectsy j(A) <rectsy ;(B) for all l. Similarly, cols;(A) < cols;(B) if and only if
rectsg ;1 (A) <rectsg ;(B) for all k. Consequently, the following are equivalent:

o 1owsg(A) X rows(B) for all k;
e cols;(A) <X cols;(B) forall I;
e rectsy j(A) <rectsy ;(B) forall k,1.

Proof Suppose that rowsy (A) < rowsg (B) for some fixed k. For any fixed [, we wish
to show that rectsy ;(A) < rectsi ;(B); i.e. the number of elements of the partition
rowsy(A) weakly to the right of column [/ is less than or equal to the number of
elements of rows (B) weakly to the right of column /. Suppose column / in rowsy (A)
and rowsg (B) has length a and b respectively. If a < b then we have

rectsg (A) = Z ((rowsg(A)); =1+ 1) = (Z(rowsk(A))i) —a(l—1)

i=1 i=1

< (Z(rowskw)),-) —a(l =)= (Cows(B))i —1+1)

i=1 i=1
b
< Z ((rowsy(B)); — I + 1) =rectsy ;(B).
i=1
If a > b then

rectsg,1(A) = Y ((rowsg(A)); — [+ 1) = (Z(rowsk(A))i) —al—1)

i=1 i=1

< (Z(rowsk(B»i) —a(l—1)

i=1

b a
= (Z(row(B))i) +| D owse(B)) | —at—1)
i=1

i=b+1
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b
< (Z(rowskw))i) +@—b(—1)—al —1)

i=1

b
= (Z(rowsk(B))i) —b(l — 1) =rectsy ;(B).

i=1

Now suppose rects (A) < rectsi ;(B) for all [. For any fixed j, we wish to show
that

J J
D (rowsi(A)); < ) (rowse(B)); -

i=1 i=l1

Suppose row j in rows,(A) and rowsg(B) has length a and b respectively. If a < b
then, referring to Figure 2(a), we see that

j
S rowsk(A)); = ja+rectsas1(A) < jb+rectsipi1(A)  (32)
i=1
J
< jb+rects p1(B) =Y _(rows(B)); .
i=1
a b b a
] SE—— ] S

SRREEEE ©
S
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SRR &

~
T
1
1
1
1
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1
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1
1
1
1
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[]

(a) (b)

Fig. 2 Demonstration of inequalities in the proof of Proposition 3.6. All diagrams represent rowsy (A).
The shaded regions in the diagrams on the left represent (3.2). Likewise, the shaded regions on the right
represent (3.3)
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If a > b then, referring to Figure 2(b), we see that

J
Z(rowsk(A))i = ja +rectsg 441(A)

i=1
= jb+ j(a —b) +rectsg 411(A) < jb +rectsg pr1(A)  (3.3)
j
< jb+rectsi p1(B) =Y _(rowsi(B)); -

i=1

We conclude that rowsy (A) < rowsy (B) if and only if rectsy ;(A) < rectsy ;(B) for
all /. The proof that cols;(A) < cols;(B) if and only if rectsg ;(A) < rects ;(B) for
all k is similar. It is then an easy consequence that the three sets of inequalities are
equivalent. O

For any skew shape A, we let trim(A) denote the skew shape obtained from A by
deleting the top element of every non-empty column of A. We will consider trim(A)
to be a function on skew shapes, so that trim* (A) = trim (trim*~!(A)) and trim! (A)
is simply trim(A).

Lemma 3.7 Let A be any skew shape and let k be an integer with k > 2. Then
rowsy_1 (trim(A)) = rowsy (A).

Proof Note that if the ith row of A has ¢ columns in common with the (i + k — 1)st
row of A, then the (i 4 1)st row of trim(A) has exactly ¢ columns in common with
the (i +k — 1)st row of trim(A). The result follows. Il

We are now in a position to state and prove the central part of our main result.

Theorem 3.8 Ler A and B be skew shapes. If supp(A) 2 supp(B), then

rowsy (A) < rowsg(B) for all k.

Proof We consider a particular LR-filling of B. Roughly speaking, we will fill B
with the numbers 1, 2, ..., k — 1 in the most dominant way possible, and then fill the
boxes that remain with the numbers &, k + 1, ... in the least dominant way possible.
More precisely, fill the ith highest box of each column of B, when such a box exists,
with i, fori =1,2, ...,k — 1. Thus there will be (cols(B)’); boxes of B filled with
i,fori =1,2,...,k— 1. See Figure 3 for an example of the entire proof in action in
the case k = 3. We see that the boxes of B that remain empty form the skew shape
trimf ! (B). We fill these boxes with the numbers k, k + 1, ... in the least dominant
way possible, as described in Remark 3.2. Thus there will be rows (trim*~! (B))i—k+1
boxes of B filled with i, fori =k, k + 1,.... It is straightforward to check that the
overall result is an LR-filling of B. The key observation is that, by repeated applica-
tions of Lemma 3.7, rows(trimk’l (B)) =rowsi(B).
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Fig. 3 Demonstration of the proof of Theorem 3.8 with k = 3; trimf—1 (B) and trimf 1 (A) are shaded

Since supp(B) < supp(A), there must be an LR-filling of A with content
((cols(B)’)1, . (cols(B) )s_1. rows (trim* 1 (B)) |, rows (trim* 1 (B)),. . . ) .

In our running example, Figure 3 shows one possibility. Removing the boxes of A
filled with 1,2, ...,k — 1 in this filling results in a skew shape C that is filled with
the numbers k, k + 1, .... We see that subtracting kK — 1 from the entries of the boxes
of C results in an LR-filling of C of content rows (trim*~1(B)). This is the filling of C
shown in Figure 3. By Proposition 3.1, we deduce that rows(C) < rows (trim*~1(B)).

Now consider trim*~'(A). As with trim*~!(B), by repeated applications of
Lemma 3.7, rows (trimk_l (A)) =rowsg (A). Also note that in any SSYT of shape A,
the numbers 1, 2, ..., k — 1 can only appear in the top k — 1 boxes of some column of
A. Therefore, trim*~!(A) C C, by definition of C. Applying Lemma 2.2, we deduce
that rows (trim* ! (A)) < rows(C), and so rows (trim*~'(A)) < rows(trim*~!(B)).
This is exactly the desired inequality: rowsy (A) < rowsg(B). Il

As a special case of Theorem 3.8, we achieve our main goal of obtaining necessary
conditions for Schur-positivity.

Corollary 3.9 Let A and B be skew shapes. If s — sp is Schur-positive, then

rowsy (A) < rowsg(B) for all k.

Combining Theorem 3.8 and Corollary 3.9 with Proposition 3.6, we actually
get three equivalent sets of necessary conditions for support containment or Schur-
positivity.

Corollary 3.10 Let A and B be skew shapes. If s4 — sp is Schur-positive, or if A
and B satisfy the weaker condition that supp(A) 2 supp(B), then the following three
equivalent conditions are true:

o 1owsi(A) <rowsy(B) for all k;
e cols;(A) < cols;(B) forall I;
o rectsy ;(A) <rectsy ;(B) forall k,l.
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Fig. 4 Positioning two skew
shapes A and B as shown results
in another skew shape

Example 3.11 Let

A= and B =

L ]

We see that rowsy(A) = 111 and rowsy(B) = 21. Thus we know that sg — s4 is not
Schur-positive. On the other hand, rows3(A) = 1 while rows3(B) = 0, implying that
sA — sp is not Schur-positive. Moreover, we can conclude that supp(A) and supp(B)
are incomparable under containment order.

It is certainly not the case that rows;(A) < rowsg(B) for all k implies that
supp(A) 2 supp(B). To see the smallest example, let A =311/1 and B = 22, and
note that 22 € supp(B) \ supp(A).

We conclude with two applications of Theorem 3.8. The central result of the
penultimate section of [11], namely Corollary 8.11, states that if s4 = sp then
rowsg (A) = rowsg (B) for all k. Since < is a partial order, we can use Theorem 3.8
to replace the hypothesis s4 = sp with the weaker hypothesis supp(A) = supp(B) as
follows.

Corollary 3.12 Let A and B be skew shapes. If supp(A) = supp(B), then

rowsy (A) = rowsg (B) for all k.

Example 3.13 We note that pairs of skew shapes (A, B) with supp(A) = supp(B) but
sA # sp are quite common. When |A| = |B| =5, there are already several examples,
including A =3311/21 and B = 3321/211. We see that

sA =532+ 52111 + 8221 +s311 and sp =532 + 52111 + 25221 + $311-

Any product s4sp of skew Schur functions s4 and sp is again a skew Schur func-
tion, as made evident by Figure 4 and the definition of skew Schur functions. We
denote the skew shape of Figure 4 by A x B. In particular, for partitions y and §, the
product sy, ss of Schur functions is a skew Schur function. The Schur-positivity of the
expression

SaSg — Sy s (3.4)
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for partitions «, B has been studied, for example, in [1, 4, 6]. It is natural to ask
what Theorem 3.8 tells us about expressions of the form (3.4). We first observe that
for a straight shape o = (a1, a2, ..., o), we have rowsg (o) = (o, Xk+1, - .., @) for
k=1,2,...,1. For partitions « and g, let « U 8 denote the partition whose multiset
of parts equals the union of the multisets of parts of « and 8. The following result is
essentially Theorem 3.8 specialized to skew shapes of the form A * B.

Corollary 3.14 If partitions «, B, y and § satisfy the condition that sysg — sy, 55 is
Schur-positive, or satisfy the weaker condition that supp(sySg) 2 supp(sy Ss), then

@y Og 1 -5 ) U B, Bt -+ B = WVies Vit -+ V) U (ks Sgg15 -+, 61)

for all k, and for all | > max{£(a), £(B)}.

In words, we might say that all the “tails” from o« and 8 are dominated by those
from y and §.
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