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Abstract For several families F of finite transitive permutation groups it is shown
that each finite group is isomorphic to a 2-point stabilizer of infinitely many members
of F.
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1 Introduction

Graphs, strongly regular graphs, finite distributive lattices and many other combina-
torial objects are universal [1] in the sense that each finite group is isomorphic to the
full automorphism group of one of these objects. In this note we consider a group-
theoretic version of this notion. A family F of finite permutation groups will be called
universal if each finite group is isomorphic to a 2—point stabilizer of a member of F.

We describe a transitive permutation group as A/ B, the set of cosets of a subgroup
B of A with the usual action. In each of the following families, the subgroup B is
embedded in A in a “natural” manner, specified more precisely in Sect. 2.

Theorem 1.1 Each of the following families of permutation groups is universal,
where q is any given prime power and n ranges over all positive integers:

@) S(:kz)/S,, for fixed k > 2;
(ii) S(Z) /PTU L(n, q) for fixed k > 1 and q, where the Gaussian coefficient (Z)q is
q

the number of k-dimensional subspaces of F;
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(ii1) Su(n,k)q/AI“L(n, q) for fixed k > 0 and q, where a(n, k)q denotes the number
of k-dimensional affine subspaces of IFZ;

@iv) Sy/PTUI(V) for any fixed isometry type Iy of N = |Zx (V)| totally singular
or nondegenerate k—dimensional subspaces of an n—dimensional symplectic,
orthogonal or unitary vector space V, over a given finite field, with projective
semilinear isometry group PT'1(V); and

(v) PGL(n, q)/N(n, q) for each q, where N(n, q) is the group of n X n monomial
matrices over Fy, modulo scalars.

In Sect. 2 we will show that, whenever n is sufficiently large with respect to |G|, in
each case there is a 2—point stabilizer isomorphic to G. The group-theoretic structure
of G does not enter at all: our arguments are the same for cyclic groups and simple
groups.

This type of question arose in [6], where a stronger version of (ii) in the case k = 1
was used to show that the set of symmetric designs with the parameters of a projec-
tive space PG(d, g) is universal for each ¢ > 3. (The same was accomplished for
Hadamard designs much later in [7], again using a version of (ii) with k = 1.) A gen-
eral conjecture concerning universality appeared in [2] (see below). The preceding
examples were obtained soon afterwards, but universality seemed and still seems an
entertaining rather than a useful property. Nevertheless, our results and related ones
[4, 5] suggest that this notion needs to be examined further.

Each of the permutation groups in the theorem has base size 2 for large n. In fact,
a simple counting argument [2] shows that “almost all” pairs of points are bases.
Our arguments show that there are large numbers of orbits of pairs of points with
stabilizers isomorphic to G (cf. Theorem 2.1’). It is difficult to imagine how mere
counting could prove this.

What these results need is a general theory. Is there a general result that includes
all of the above permutation groups? One possibility is

[2, Conjecture 2.4]: Let G1, G2, ... be primitive groups of degrees n1, na, ...,
where n; — oo and G; # S, or Ay, foralli. Let X be an abstract group which
is embeddable in G; for infinitely many values of i. Then, for some i, and some
permutation g € S,,, we have G; N Gf = X.

It might be more reasonable to assume, in addition, that there are “natural” injections
G; — Gj4 forall i, as in all known examples of this phenomenon.

Proof outline All of the proofs are elementary. The idea is as follows. In each case we
have a permutation action A/B of a symmetric or linear group A on a large set. We
construct a rather boring faithful permutation action of the target group G on A/B:
a small number of regular orbits together with a very large number of fixed points.
We then construct a permutation or linear transformation & € A that commutes with
G and whose cycles are very restricted. The goal is then to show that, if ¢ € B and
0% =1t € BN B%then o =t € G. In general, this is accomplished in two steps.

(1) We prove that «~!a® = t7 o is 1 by playing information concerning the
supports of & and «® against the fact that !0 € B.

(2) Once o commutes with & we use the nontrivial cycles of « to restrict ¢ and
eventually to deduce that o € G. These cycles are designed to be of different lengths
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whenever this is allowed by the requirement that « commutes with G; and the sup-
ports of these cycles must overlap somewhat when viewed in the underlying set or
vector space.

In order for both (1) and (2) to work we need to have a highly structured set,
or basis of a vector space, underlying A; and a detailed description of the desired
element «, including the lengths and supports its different cycles. Nevertheless, there
is a great deal of freedom in our constructions. Our choices for « are certainly far
from optimal.

We emphasize that our elementary arguments are far more combinatorial than they
are group-theoretic.

2 Proofs

There is an obvious permutation action of S, on the set (;f ) of all k-subsets of the
n-set X underlying S,. We begin with the case k = 2:

Theorem 2.1 If G is a finite group and n > (2|G| + 1)[log |G| + 3] + 4, then G is
isomorphic to a 2—point stabilizer in the permutation group S(g) /S,.!

Proof Let G = (g1, ..., g¢) with d minimal, so that all g; # 1 and d < log|G]|; let
d =0if G = 1. We will use the following n—set X:

X :=(G x MHU{uUY with M :={1,...,m} form:=d +3

for some set {u}UY, where g € G acts faithfully on X by inducing 1 on {u} U Y and
sending (h,i) — (hg,i) for h € G,i € M. Thus, we can view G as a subgroup of §,,.
Note that

Y| —2=n—|Gm—=3>|Gm+m—+1>m (1

by hypothesis.

Choose distinct points yg, ..., y, € Y.

Let {Z,u}:={{z,u}|z€Z} C ()2() whenever Z C X\ {u}.

Let y (k) denote the k—cycle (1, ..., k) of M; we will use various k.

We will show that, for the permutation « € S(rzz) defined as follows, S, N S and
Cs, (o) both turn out to be G:

a:{(g, i), u}— {(g,i¥"™), u} forall g e G,i € M,

a:{(g,i), yo} < {(g,i),yi} forallge G,i e M,

a:{(8. 1), (88 17U (g, 17UFD), (g8, 7 U+
forallge G,1<j<d,1<i<j+2,and

aisa (|Y|+ 1)—cycleon {Y, u} U {{yo, yl}}.

1Logarithms will be to the base 2.
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(We assume that o fixes every 2-subset not mentioned. We will adopt this con-
vention in all descriptions of permutations in later proofs.) To see that this is
well-defined, suppose that {(g, i), (g;jg,i”Y*)} = {(g,i"), (gjrg’,i’V(j/”))} for
some g, i, j, g i, j with j > j’ (so that i < j + 2). The possibility i = i’?U'+2),
i7U+2) =i’  cannot occur: the support of the product of y(j +2) = (1,...,j +2)
andy(j'+2)=(,...,j +2)is{l,..., j+2}since j +2> j' +2 > 3. It follows
that g =g’,i =i"and g;j¢ = gjrg, sothat j = j’.

Note that ¥ (j + 2) is not used when G =1 (i.e., d = 0). Also note that every pair
containing u is in the support of «.

Clearly G centralizes «.

Consider o, T € S, such that 0% = 7. We must show thatc =7 € G.

Claim 1 « centralizes o.

Otherwise, 1 # p :=a 'a® =a~'o~laoc =t~ !0 € S,,. The only pairs in (}2() that

might be moved by p are those in the support of « or «, namely

{(g,0),u}, {(g,0), yo}, {(g.0), i},
{(8.). (g8~ "), (v u}. {yo. yil.

{(g. D), u}?, {(g.1), y0}7, {(g. D). i},
{(8.). (2j8- "N, {y. u)”. {y0. y1)°.

for some g, i, j, y. If p moves some x € X then it moves all n — 2 pairs {x, x"} with
x" € X — {x, x”}. Since n — 2 > 2(|G|m + 2) by hypothesis, the only members of X
occurring in (at least) n — 2 members of the above list are u and u?. It follows that
these are the only points moved by p, and hence p = (u, u?).

There are at least | Y| — 2 choices for z; € Y such that {z, u}"‘_I # {vo, y1}, {u, u},
and then {zi, u}"‘_I = {zp,u} with zo € Y and z, # u® = u”. For each such z; we
have {zo, u}®” = {z1,u}® @ = {2}, uP} = {z1,u"} # {22, u}, so that {z2, u} lies in
the support of @ and hence must be a pair of the form {(g, )7, u°}, {(g,i)?, y7},
{8, D)7, ¥7}, {(8.1)7, (858 i"UF)7}, {y7,u”} or {5, y7}. Since u” # z3,u, no
pair {y?,u®} can occur here. Thus, for each of (at least) |Y| — 2 choices for zi,
we have z € (G x M)° U{y7 |0 <i <m}. Then [Y| —2 < |G|m +m + 1, which
contradicts (1). This proves our claim.

Claim2 o € G.

Clearly o = t permutes the cycles of «. Since « has a unique (|Y| 4+ 1)—cycle (as
n<2|Y|+1), 0 €8, centralizes the (Y| + 1)—cycle on {Y, u} U {{yo, y1}}, hence
fixes {yo, y1} and thusis 1 on Y U {u}.

Since j +2 <d + 2=m — 1, each m—cycle of « has support {g x M, u} for
some g € G, so that these sets are permuted by o. Since o fixes u, it permutes the
subsets of X of the form g x M, g € G: there is a permutation g — g of G such that
(gxM)Y =gxMforallgeG.
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If i € M, then o permutes the transpositions of « involving y; = y7, and hence
sends G x i to itself. Thus, (g,i)° = (g,i) forall g, i.

This completes the proof if G = 1. Thus, we now assume that G # 1. In view of
the action of G on X, by replacing o by o1~ we may assume that 1 = 1. We must
show that o = 1.

Fix g and j. Then the pairs {(g, i), (g;g,i”Y*?)}, 1 <i < j+2,liecina (j +2)-
cycle of « that is sent by o to another (j 4 2)-cycle. Thus, {{(g, i),(gj&, irU+2yy |
I1<i<j+ 2}0 = {{(g,i), ((gj_~g,i7’(j+2)) [1<i<j+ 2}} must have the form
{{(g.i". (8", iU} |1 <i’ < j+2} for some g'. As before, there cannot be
a pair i,i’ € {1,..., j + 2} such that (g,i) = (g;g’,i"”U*?) and (g;g,i"V*?) =
(g',i"). Consequently, g =g’ and g;g = g8’ = g;& for each j.

Since the g; generate G it follows that hg=hgforallh, g € G. Letting g = 1 we
seethath =hl =hforall h € G,and hence (g,i)° = (g, i) forall g, i, as claimed. [

There are many choices for « in the above simple construction. Perhaps more
interesting is the observation that there are so many choices that the number of non-
conjugate pairs {S,, Sy} with G = §, N S5 is enormous:
n2/10

Theorem 2.1’ In Theorem 2.1, if also n > 40 then there are more than n orbits

of S(rzz) on the pairs of points whose stabilizers are isomorphic to G.

Proof We let X and G be the same as before, and construct permutations « as above
for a given choice yy, ..., y,, € Y such that o also has one further cycle of length
('Y '2_1) using all of Y\{yo}. The same argument as above shows that we still have
S» NSy = G. The number of o obtained in this manner is the number of choices for
our additional cycle, namely N := ((lle_l) — 1)!, where |Y| > 1+ n/2.

The subgroup S, of S(;) is self-normalizing, and each orbit of S,, on S(:zz) /Sn has
size at most n!. Thus, the number of inequivalent pairs S, S, of points for which
Sp NSy = G is at least

N/nl'> (n2/8)---(n+ 1) > nn*=8m/8 > ;n?/10, 0

The above lower bound estimate is clearly very crude. Similar addenda are easily
obtained for our remaining theorems.

Theorem 2.2 If G is a finite group, k >3 and n > 2|G|[log|G| + k1%, then G is
isomorphic to a 2—point stabilizer in the permutation group S(Z) /Su.

Proof Let G = (g1, ..., g4) be as before, where d <log|G|, and let m :=d + k and
M :={1,...,m}. This time let our n-set be the disjoint union

X = (G x M)U{uUwUy,

where G acts on G x M as before, inducing 1 on {u}UWUY, and where |W| =k —2.
Note that |Y|=n — |G|m — 1 — (k — 2) > |G|mk by hypothesis.
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Let yo, ..., ym € Y and y (k) be as before. Let Yy—> ={y2,..., yk—1}, and let Y*
be any set of (m + 1) — (k — 2) members of (11:)
If K is any (k — 2)—subset of X, for any distinct a, b € X\ K write

X
{a,b,K}:={a,b} UK € <k>’ and
{A;b, K} :={{a,b,K}|ac A} C (f) if A C X\(K U{b)).

Define o € S(Z) as follows:

a{(g, i), u, Wy {(g,i?"™),u, W} forallge G,i € M,

a:{(g,1), y0, W} < {(g,1),yi, W}forallge G,i e M,
a:{(g.0), (g8, 17 UHD), W) > {(g,i7UD), (g8, i7U*D*), W} for all g € G,
l<j<d 1<i<j+2,

aisa (|Y|+ 1)—cycleon all |Y|+ 1 members of {Y; u, W}U {{yo, V1, W}}, and
e «isan (m + 1)—cycle on all m + 1 members of {W; yg, Y2} U Y*.

Note that j +2 <d +2 <m, so that | <i < j 4 2 implies that i € M. Once again,
« is well-defined and centralizes G.

Let 0,7 € S, and 0“ = 7. Once again we claim that « centralizes o. This time,
the only k—sets that might be moved by p :=a~'a® =77 1o € S, are

{(g. ), u, W}, {(g,0), yo0, W}, {(g, 1), yi, W}

{(g.1). (2. i"IF), WY, {y:u, W}, {yo. y1. W}, {w: yo, Yi—2}, in ¥*,
{(g.1),u, W}7, {(g. 1), y0. W}7, {(g. 1), yi, W},

{(8.1). (2. i"Y), WY, {yiu, WI%. {y0. y1. W}°. {w: yo. ¥i—2}%, in Y*7,

for some j, g,i, y, w. If p moves some x € X then it moves all (Z:%) of the k—sets
containing x but not x”. However, it follows from the above list that fewer than 4n of
the k—sets moved by p contain any given member of X, where 4n < ("52) < (Zj)
Thus, p = 1, as claimed. (N.B.—Thus, the case k > 3 is somewhat easier than the case
k =2 was.)

Consequently, 0 = t permutes the cycles of «, which have lengths m, 2, j + 2,
m+1lor|Y|+1,where2 < j+2<d+2<m<m+1<|Y|+1.Sinceo € S,
centralizes the (|Y|+ 1)—cycle on {Y; u, W}U {{yo, Y1, W}}, it sends this set to itself,
hence fixes u, {yo, y1}, Y and W, and then is 1 on Y. Also o centralizes the (m + 1)—
cycle of ¢ and is 1 on {u} U Y;_; and Y*, and hence it is also 1 on W.

Since o permutes the m—cycles of « it permutes the sets {g x M;u, W}, g € G,
and hence also the sets g x M. Then there is a permutation g — g of G such that
(g x M)° = g x M for all g. Moreover, since o permutes the transpositions in «
it fixes each subset G x i, i € M, and we obtain ¢ € G precisely as in the proof of
Theorem 2.1. O
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Theorem 2.3 If G is a finite group, k > 1, n > 4k|G| + 2k and q is any prime
power, then G is isomorphic to a 2-point stabilizer in the permutation group
S(Z) /PI'L(n, q).

q

Notation The indicated symmetric group acts on the set Sy (IFZ) of all k—spaces of
]FZ, and PI"L(n, ¢) is the group of all invertible projective semilinear transformations
of that vector space.

Proof We will use 2k copies of the regular representation of G. Namely, write K =
F 2« and

g =( ® Kxg) ® Ku®(Y)
ge
for vectors u and xg, g € G, that are linearly independent over K, and where (Y)

denotes the I, —span of the linearly independent set Y. Let each i € G act linearly on

]FZ, fixing each member of ¥ and acting on (®geccKx,) @ Ku as a K-linear trans-

formation sending x, > x4, while fixing u. Note that |Y| > 2k|G|, by hypothesis.
We will construct a permutation @ € S (Z)q such that PT'L(n, g) N PT'L(n, g)* and

Cpri(n,q) (@) both turn out to be G. Once again let G = (g1, ..., g4) with minimal
d <log|G|. We use several permutations:

2k+Y| 2k 1Y

e 1, acycle of length (( X )q — (k)q — (k )q — 2) on Sy (Ku + (Y))\(Sk(Ku)
U Sk((Y))) to be defined below;

e 1, acycle of length (2kk)q on S;(Kx1); and

e 7j, 1 < j <d, apermutation of Sx(Kx1 + (xg;) + (¥))\Sk(Kx1) that has a sin-
gle nontrivial cycle of k—spaces, and these span Kx; + (xg;) + (¥), where the
lengths of the nontrivial cycles differ for different j. Such permutations exist since
(2k+}(+|Y|)q _ (2](")(] —d> (Zk‘;‘y‘)q, the number of k—spaces in a hyperplane of
Kxi 4 (xg) +(Y).

Note that the nontrivial cycles of all of the above permutations have different lengths.
We still need to define the permutation w. Write A = Ku and B = (Y). Choose
any k-spaces X1, X in A 4+ B such that dimANX;=1,dimBN X, =k — 1 and
BNX;=ANX,=0.Letw beacycle of length |Sx(A+ B)| — |Sk(A)| — |Sk(B)| —2
of Sp(A + B)\(Sk (A) U S (B)) that fixes X1 and X;. The crucial property of 7 is
that no y € PI'L(n, q) can induce a non-scalar transformation of A + B that fixes A
and B and commutes with w. For, suppose that there is such a y. Then y induces a
nontrivial power 7/ on Sy (A + B)\(Sk(A) U Sk(B)), fixing only X and X there.
Since (A N X1) + (B N X») is another k-space fixed by 7/, this is impossible.
Define o as follows (where / ranges through G):

e acycle of length (zkk)q —1on S (Ku);
a cycle of length (Zkk)q —2o0n S (K (u + dec xg));
a cycle of length (<£>)q on S ({Y));

7 on Sg(Ku + (Y)\(Sk(Ku) U Sk ((Y));
nf on S(Kx)" = Si(Kxp); and
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° nj}.’ on (Sk(le + (xgj) + (Y))\Sk(le))h whenever 1 < j <d.

Since gj_1 # gi for j #1i, (Kxi + (xg;) +(Y)) N (Kxp + (xg;n) +(¥)) =0forh # 1,
and hence the permutation « is well-defined.

Once again G commutes with «. Once again consider o, T € PI'L(n, ¢) such that
0% = 1; later we will view these as elements of 'L(n, g). Since n = 2k|G |+ 2k + |Y|
and |G| < |Y|/2k, it follows that t !0 = @~ 'a® moves at most

2%k 2k+1+1Y]\ 1/n
2(|G|+2)< > +2(d|G|+2)< ) <—( )
k), k L 2\k),

members of Sy (]FZ). However, every nontrivial element of P'L(n, ¢) moves at least

%(Z)q members of Sk (FZ) (see, for example, [3, Proposition 3.1]). Consequently,
1710 =1 and o centralizes «. (N.B.—This restriction on the possible number of
moved points makes this part of the proof easier than before.)

Thus, o permutes the nontrivial cycles of «. Since the permutations 7w, m,
and 7, were constructed so as to be pairwise not conjugate under the action of
PI'L(n, q), o permutes the nontrivial cycles of « lying in each of the following sets:
Si(Ku +(Y)), Sk(Ku), Sk((Y)), Si(K (@ + Y geiX))s UnegSk(Kxp) | h € G),
and Upeg Sk (Kx1 + (xg) + (Y)" whenever 1 < j < d. Each such cycle of k—spaces
spans a subspace of F”, so that o fixes Ku + (Y), Ku, (Y) and K (u + deG Xg),
and acts on each of the following sets of subspaces:

{Kxp |he G} and {Kxp+ (xg;n) +(Y)|heG} forl<j<d.

Foreachh € G leth € G satisfy (Kx;)° = K xj;. By replacing o by some o'h with
h € G we may assume that 1 = 1.

Since o fixes Ku and (Y) and commutes with the unique longest cycle on
Si(Ku + (Y)), the crucial property of 7 states that o is a scalar on Ku + (Y). We
may assume that o =1 on Ku + (Y).

If a c K let a € K with a’(u + decxg) = (a(u + decxg))" =au +
> geglaxg)?, where (axg)” € Kxz. Then a’ = a and (ax,)” = axg.

In particular, if G =1 then this shows that o = 1, as required. Now assume that
G #1.

Fixg=g;. If h € Glet h' € G with (Kxp + (xg) +(Y))” = Kxpr + (xgpr) + (¥).
Then Kxj € Kxp + (xgpr) +(Y), so that b’ = h does not depend on g. Now Kxj +
(xgn)? € Kxj, + (xg;l> + (Y), where (x¢,)7 C (Kxgp)? = Kxg—h.

Thus, gjﬁ = gj_h for all j and k. As before it follows that g = g for all g. Conse-
quently, (ax,)° =ax; =axg foralla e K, g € G,so thato =1. O

Remark When k =1 the above result is already “better” than [6, Proposition 10.2],
where it was assumed that n > 20|G|? in a similar argument. However, that paper
needed to impose many additional restrictions on « for its applications to symmetric
designs. Moreover, we also needed a version of Theorem 2.3: there are exponentially
many different orbits of pairs of points even with the aforementioned additional re-
strictions.

@ Springer



J Algebr Comb (2008) 28: 351-363 359

We turn next to the symmetric group on the set of affine subspaces of a vector
space. Recall that AT'L(n, ¢) denotes the group of all invertible semilinear affine
transformations of IF‘Z, and that S, k) q acts on the set of all a(n, k), affine k—spaces
of F”.

q

Theorem 2.4 [f G is a finite group, k >0, n > 4(k + 1)|G| 4+ 2k + 2 and q is any
prime power, then G is isomorphic to a 2—point stabilizer in the permutation group
Sa(n,k)q /AT'L(n, q).

Sketch While it is straightforward to imitate previous proofs, it is easier to modify
the proof of Theorem 2.3 slightly. In that proof, use K = F ¢+ and let H be a
hyperplane of IE"Z fixed by G and containing no member of {x; | g € G} U{u}UY U
{u + > ¢ei X} Choose o to be 1 on Si(H) and to have one very large cycle on
each subset Sx(Ku), S (K(u + deG xg)), S ((Y)), Sk(Ku + (Y)), Sk (Kxp), and
Sk(Kx1 + (xg;) + (YoO' forh € G, 1< j <d, as before.

Complete the proof of Theorem 2.3 as before. Then restrict from PI'L(n, q)
to AI'L(n, g) by fixing H and using the same G and «. Then G < AT'L(n,q) N
AT'L(n,q)* <PI'L(n,q) NPI'L(n,q)* =G. 0

Notation Let V be a vector space equipped with a nondegenerate quadratic, alter-
nating or hermitian form. Let PI'I(V') denote the projectivized version of the group
of all semilinear transformations of V that preserve the form up to a field automor-
phism and a scalar. Fix an isometry type Z; of totally singular or nondegenerate
k—dimensional subspaces of V. For any subspace W let Z; (W) denote the set of all
subspaces of type Z in W.

Theorem 2.5 If G is a finite group, k > 1, n > 8k|G| + 8k, q is any prime power
and V is an n—dimensional F,—space equipped as above, then G is isomorphic to a
2-point stabilizer in the permutation group Sy /PTI(V), where N = |Zy(V)].

Proof This time we use 4k copies of the regular representation of G. Namely, write
K= quk, let T: K — I, denote the trace map, and let

V=((® Keg)®(® Kfo)) L (Kud(Y)).
geG geG

Here eg, f,, for g € G, are singular vectors that are linearly independent over
K such that (aeg, Bfy) = T(ap) for all o, € F; (or T(a¢B) when V is uni-
tary with associated involutory field automorphism 8 — B), (eg,en) = (fy, fo) =
(eg, fn) =0for g #h, and Ku ® (Y) is a nondegenerate I, -subspace perpendicular
to (@geGKeg) @ (@gEGng)-

The remainder of the proof is very similar to that of Theorem 2.3. O

This theorem can also be proved by restricting from the groups PI'L(V) and G to
the subgroup PI'I(V) and essentially the same G.
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The preceding results all used permutation representations of the symmetric group
in order to handle 2—point stabilizers. The next result uses a permutation representa-
tion of PGL(n, q¢), with stabilizer the group N = N(n, q) of all n x n monomial
matrices over [F,, modulo scalar matrices.

Theorem 2.6 If G is a finite group, n > |G|[log|G| + 6], and q is any prime
power, then G is isomorphic to a 2—point stabilizer in the permutation representation
PGL(n,q)/N(n, q).

Proof Let G = (g1, ..., gg) with d minimal, so thatd <log|G|andd =0if G = 1.
Write D :={1,...,d}and M :={1, ..., m}, where m :=n —2|G|—d|G|—1 > 4|G]|
by hypothesis. Let IFZ have the following basis:

{x(), (), w(j,8),u,zk)| g G, jeD, ke M},

and let each 2 € G act on this basis by fixing # and each z(k) and sending x(g) —
x(gh), y(g) — y(gh) and w(j, g) — w(j, gh) for g € G, j € D. Thus, we can view
G as a subgroup of PGL(n, g). Note that there are no basis vectors w(j, g) if G = 1.
View N as the group of monomial transformations with respect to the above basis.
Define o € GL(n, ¢) as follows, where g € G, j € D, ke M, s, := ng(g),

Sy =2 g ¥(g) and s; =3 z(k):
x(g) > x(g)
y(g) > y(g) +x(g)

J
w(j. g) > w(j,g)+x(g)+ > y(gig) +s:
1
U u-+sy
k
2(k) > > 2(@) +u+ sy + sy
1

In order to see that « is invertible, note that Im « contains all x(g) and y(g), then also
u and all z(k), and finally all w(j, g).

As usual « centralizes G. As usual we consider o, 7, p € N such that t = ¢% and
p=1"'o =a 'a. Using the definition of e, there are two ways to describe the

action of a? = ap:

x(8)7 > x(g)°

y(8)° = ()7 +x(8)°
J
w(j, 8)° > w(ji, ) +x(8)° + Y ¥(gig)” +s7
1
u’ > u’ + sy
k
207 = Y 2 +u” +57 + 57
1
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and
x(g) = x(g)”

y(g) = y(&)f +x(g)”
J
w(j, g) > w(i, ) +x(2)” + Y y(gig)” +57
1
ur u’ —i—sf
k
2(k) > > (i) +uf + P+ 5P,
1

The rest of the argument consists of a straightforward comparison of these different
descriptions of «® = «p.

As o, p € N, each image of a basis vector under either of these linear transforma-
tions is a scalar multiple of a basis vector.

Define the weight of a vector to be the number of nonzero coordinates when it is
written in our basis. The weights of ap-images for different “types” of basis vectors
are as follows:

type x(g) y@ w(,9) u z(k)
weight 1 2 24j+4m 1+|G| 1+k+2|G]|

where j € D,k € M. We will also use a slight refinement of weight: the number of
nonzero coordinates of a given type (hence, for example, x-weight and xy-weight).
Note that some coincidences are possible for the above weights, for example if G = 1.
However, in general all of the above weights are different (recall that m > 4|G}|), and
hence our two descriptions of the action of «p imply that o maps each basis vector
to a scalar multiple of one of the same type.

The only basis vectors whose ap-images have weight 1 are the x(g). Hence,
x(g)° =ayx(g) witha, € F, g € G, and ap sends

agx(g) = agx(g)
agx(g) H agx(g)”.

Then x(g) = x(g)” for all g.

Replace o by o1~ in order to have 1 = 1.

The only basis vectors whose ap-images have weight 2 and x-weight 1 are the
y(g) (this uses the fact that x(g) = x(g)”). Since we already know that x(g)? has x-
weight 1, it follows from the above description of the behavior of y(g)? that y(g)° =
bgy(g') with b, € F, g’ € G, and

bey(g') > by y(g') + agx(g)
bgy(g") = by [y(g’)” + x(g’)].
Then a, = bg, g =g', y(g) = y(g)” and y(g)° =a,y(g) forall g.
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The only basis vector whose cp-image has weight 1 + |G|, with x-weight 0, is u.
Since we already know that u® + s has x-weight 0, it follows that u” = fu with
feF,and fur> fu+sy, fur> flu”+sy]. Thenu =u” and all ag = f.

The only basis vector whose ap-image has weight 1 + k + 2| G|, with xy-weight
2|Gl, is z(k). This time z(k)° = frz(k) with f; € F, and

k
fiz(ky > Y fiz(i) + fu +s7 +5s5
1

k

Jrez(k) fk[Zz(i)p +u+ sy +sy].
i

Then all fi = f, z(i) =z(i)”, z2(k)° = fz(k), s{ = fs; and sf =s,.

Thus, if G =1 then o is the scalar transformation f on all basis vectors
x(g),y(g), u, z(k), and we are finished. Now assume that G # 1.

The only basis vectors whose cp-images have weight 2 + j + m, with y-weight j,
are the w(j, g). This time w(j, g)° =c; w(j, ¥(j, &) withc;, €F, ¥(j,g) € G,
and (abbreviating ¥ = ¥ (J, g))

J
Cj Wi ) > cjow(i ) + fx@) + Y fy(@ig) + s
1

J
g ) > [0 + 2 + ] v + 52,
1

Thenallc;,=f,g=v andgig =gV =ggforall j, g,i.
As usual, E = hg for all &, g, and then h = h. Thus, o induces f on each of the
basis vectors, so that o = 1 in PGL(n, gq). O

Remark Of course, the corresponding result and proof hold for PSL(n,q) and
PT'L(n, g) with very minor modifications.

The action in the preceding theorem has a building-theoretic description: for each
q and varying n, the permutation representation of PGL(n, ¢) on the set of apartments
of the underlying building yields a universal family. A similar argument shows that
the corresponding result holds for the buildings of each type of classical group for
each choice of field.
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