A noncommutative symmetric system over the Grossman-Larson Hopf algebra of labeled rooted trees
Wenhua Zhao
Illinois State University Department of Mathematics Normal IL 61790-4520 USA
DOI: 10.1007/s10801-007-0100-5
Abstract
In this paper, we construct explicitly a noncommutative symmetric ( N {\mathcal{N}} CS) system over the Grossman-Larson Hopf algebra of labeled rooted trees. By the universal property of the N \mathcal {N} CS system formed by the generating functions of certain noncommutative symmetric functions, we obtain a specialization of noncommutative symmetric functions by labeled rooted trees. Taking the graded duals, we also get a graded Hopf algebra homomorphism from the Connes-Kreimer Hopf algebra of labeled rooted forests to the Hopf algebra of quasi-symmetric functions. A connection of the coefficients of the third generating function of the constructed N \mathcal {N} CS system with the order polynomials of rooted trees is also given and proved.
Pages: 235–260
Keywords: keywords noncommutative symmetric functions; grossman-larson Hopf algebra; Connes-kreimer Hopf algebras; labeled rooted trees
Full Text: PDF
References
1. Abe, E.: Hopf Algebras. Translated from the Japanese by Hisae Kinoshita and Hiroko Tanaka. Cambridge Tracts in Mathematics, vol.
74. Cambridge University Press, Cambridge (1980)
2. Aguiar, M., Bergeron, N., Sottile, F.: Combinatorial Hopf algebras and generalized Dehn- Sommerville relations. Compos. Math. 142(1), 1-30 (2006). See also math.CO/0310016
3. Bass, H., Connell, E., Wright, D.: The Jacobian conjecture, reduction of degree and formal expansion of the inverse. Bull. Am. Math. Soc. 7, 287-330 (1982) J Algebr Comb (2008) 28: 235-260
4. Connes, A., Kreimer, D.: Hopf algebras, renormalization and noncommutative geometry. Commun. Math. Phys. 199(1), 203-242 (1998). See also hep-th/9808042
5. Duchamp, G., Klyachko, A., Hivert, H., Thibon, J.-Y.: Noncommutative symmetric functions. VI. Free quasi-symmetric functions and related algebras. Int. J. Algebra Comput. 12(5), 671-717 (2002)
6. Duchamp, G., Klyachko, A., Krob, D., Thibon, J.-Y.: Noncommutative symmetric functions, III: deformations of Cauchy and convolution algebras, Lie computations. Discrete Math. Theor. Comput. Sci. 1(1), 159-216 (1997) 7. van den Essen, A.: Polynomial Automorphisms and the Jacobian conjecture. Progress in Mathematics, vol.
190. Birkhäuser, Basel (2000)
8. Foissy, L.: Les algèbres de Hopf des arbres enracinés décorés, I. Bull. Sci. Math. 126(3), 193-239 (2002)
9. Foissy, L.: Les algèbres de Hopf des arbres enracinés décorés, II. Bull. Sci. Math. 126(4), 249-288 (2002). See also math.QA/0105212
10. Gelfand, I.M., Krob, D., Lascoux, A., Leclerc, B., Retakh, V.S., Thibon, J.-Y.: Noncommutative symmetric functions. Adv. Math. 112(2), 218-348 (1995). See also hep-th/9407124
11. Gessel, I.: Multipartite P -partitions and inner products of skew Schur functions. Comtemp. Math. 34, 289-301 (1984)
12. Grossman, R., Larson, R.G.: Hopf-Algebraic structure of families of Trees. J. Algebra 126(1), 184- 210 (1989)
13. Hoffman, M.E.: Combinatorics of rooted trees and Hopf algebras. Trans. Am. Math. Soc. 355(9), 3795-3811 (2003). See also math.CO/0201253
14. Knutson, D.: λ-Rings and the Representation Theory of the Symmetric Groups. Lecture Notes in Mathematics, vol.
308. Springer, Berlin (1973)
15. Kreimer, D.: On the Hopf algebra structure of perturbative quantum field theories. Adv. Theor. Math. Phys. 2.2, 303-334 (1998). See also math.QA/9707029
16. Krob, D., Leclerc, B., Thibon, J.-Y.: Noncommutative symmetric functions, II: transformations of alphabets. Int. J. Algebra Comput. 7(2), 181-264 (1997)
17. Krob, D., Thibon, J.-Y.: Noncommutative symmetric functions, IV: quantum linear groups and Hecke algebras at q = 0 J. Algebr. Comb. 6(4), 339-376 (1997)
18. Krob, D., Thibon, J.-Y.: Noncommutative symmetric functions, V: a degenerate version of Uq (glN ). Int. J. Algebra Comput. 9(3-4), 405-430 (1999)
19. Macdonald, I.G.: Symmetric Functions and Hall Polynomials. With contributions by A. Zelevinsky, 2nd edn. Oxford Mathematical Monographs. Oxford Science Publications. Clarendon/Oxford University Press, New York (1995)
20. Malvenuto, C., Reutenauer, C.: Duality between quasi-symmetric functions and the Solomon descent algebra. J. Algebra 177(3), 967-982 (1995)
21. Montgomery, S.: Hopf Algebras and Their Actions on Rings. CBMS Regional Conference Series in Mathematics, vol.
82. American Mathematical Society, Providence (1993)
22. Shareshian, J., Wright, D., Zhao, W.: A new approach to order polynomials of labeled posets and their generalizations, math.CO/0311426
23. Stanley, R.P.: Enumerative Combinatorics I. Cambridge University Press, Cambridge (1997)
24. Stanley, R.P.: Enumerative Combinatorics II. Cambridge University Press, Cambridge (1999)
25. Thibon, J.-Y.: Lectures on noncommutative symmetric functions. In: Interaction of Combinatorics and Representation Theory. MSJ Memories, vol. 11, pp. 39-94. Math. Soc. Japan, Tokyo (2001)
26. Wright, D., Zhao, W.: D-log and formal flow for analytic isomorphisms of n-space. Trans. Am. Math. Soc. 355(8), 3117-3141 (2003). See also math.CV/0209274
27. Zhao, W.: A family of invariants of rooted forests. J. Pure Appl. Algebra 186(3), 311-327 (2004). See also math.CO/0211095
28. Zhao, W.: Noncommutative symmetric systems over associative algebras. J. Pure Appl. Algebra 210(2), 363-382. See also math.CO/0509133
29. Zhao, W.: Differential operator specializations of noncommutative symmetric functions. Adv. Math.
74. Cambridge University Press, Cambridge (1980)
2. Aguiar, M., Bergeron, N., Sottile, F.: Combinatorial Hopf algebras and generalized Dehn- Sommerville relations. Compos. Math. 142(1), 1-30 (2006). See also math.CO/0310016
3. Bass, H., Connell, E., Wright, D.: The Jacobian conjecture, reduction of degree and formal expansion of the inverse. Bull. Am. Math. Soc. 7, 287-330 (1982) J Algebr Comb (2008) 28: 235-260
4. Connes, A., Kreimer, D.: Hopf algebras, renormalization and noncommutative geometry. Commun. Math. Phys. 199(1), 203-242 (1998). See also hep-th/9808042
5. Duchamp, G., Klyachko, A., Hivert, H., Thibon, J.-Y.: Noncommutative symmetric functions. VI. Free quasi-symmetric functions and related algebras. Int. J. Algebra Comput. 12(5), 671-717 (2002)
6. Duchamp, G., Klyachko, A., Krob, D., Thibon, J.-Y.: Noncommutative symmetric functions, III: deformations of Cauchy and convolution algebras, Lie computations. Discrete Math. Theor. Comput. Sci. 1(1), 159-216 (1997) 7. van den Essen, A.: Polynomial Automorphisms and the Jacobian conjecture. Progress in Mathematics, vol.
190. Birkhäuser, Basel (2000)
8. Foissy, L.: Les algèbres de Hopf des arbres enracinés décorés, I. Bull. Sci. Math. 126(3), 193-239 (2002)
9. Foissy, L.: Les algèbres de Hopf des arbres enracinés décorés, II. Bull. Sci. Math. 126(4), 249-288 (2002). See also math.QA/0105212
10. Gelfand, I.M., Krob, D., Lascoux, A., Leclerc, B., Retakh, V.S., Thibon, J.-Y.: Noncommutative symmetric functions. Adv. Math. 112(2), 218-348 (1995). See also hep-th/9407124
11. Gessel, I.: Multipartite P -partitions and inner products of skew Schur functions. Comtemp. Math. 34, 289-301 (1984)
12. Grossman, R., Larson, R.G.: Hopf-Algebraic structure of families of Trees. J. Algebra 126(1), 184- 210 (1989)
13. Hoffman, M.E.: Combinatorics of rooted trees and Hopf algebras. Trans. Am. Math. Soc. 355(9), 3795-3811 (2003). See also math.CO/0201253
14. Knutson, D.: λ-Rings and the Representation Theory of the Symmetric Groups. Lecture Notes in Mathematics, vol.
308. Springer, Berlin (1973)
15. Kreimer, D.: On the Hopf algebra structure of perturbative quantum field theories. Adv. Theor. Math. Phys. 2.2, 303-334 (1998). See also math.QA/9707029
16. Krob, D., Leclerc, B., Thibon, J.-Y.: Noncommutative symmetric functions, II: transformations of alphabets. Int. J. Algebra Comput. 7(2), 181-264 (1997)
17. Krob, D., Thibon, J.-Y.: Noncommutative symmetric functions, IV: quantum linear groups and Hecke algebras at q = 0 J. Algebr. Comb. 6(4), 339-376 (1997)
18. Krob, D., Thibon, J.-Y.: Noncommutative symmetric functions, V: a degenerate version of Uq (glN ). Int. J. Algebra Comput. 9(3-4), 405-430 (1999)
19. Macdonald, I.G.: Symmetric Functions and Hall Polynomials. With contributions by A. Zelevinsky, 2nd edn. Oxford Mathematical Monographs. Oxford Science Publications. Clarendon/Oxford University Press, New York (1995)
20. Malvenuto, C., Reutenauer, C.: Duality between quasi-symmetric functions and the Solomon descent algebra. J. Algebra 177(3), 967-982 (1995)
21. Montgomery, S.: Hopf Algebras and Their Actions on Rings. CBMS Regional Conference Series in Mathematics, vol.
82. American Mathematical Society, Providence (1993)
22. Shareshian, J., Wright, D., Zhao, W.: A new approach to order polynomials of labeled posets and their generalizations, math.CO/0311426
23. Stanley, R.P.: Enumerative Combinatorics I. Cambridge University Press, Cambridge (1997)
24. Stanley, R.P.: Enumerative Combinatorics II. Cambridge University Press, Cambridge (1999)
25. Thibon, J.-Y.: Lectures on noncommutative symmetric functions. In: Interaction of Combinatorics and Representation Theory. MSJ Memories, vol. 11, pp. 39-94. Math. Soc. Japan, Tokyo (2001)
26. Wright, D., Zhao, W.: D-log and formal flow for analytic isomorphisms of n-space. Trans. Am. Math. Soc. 355(8), 3117-3141 (2003). See also math.CV/0209274
27. Zhao, W.: A family of invariants of rooted forests. J. Pure Appl. Algebra 186(3), 311-327 (2004). See also math.CO/0211095
28. Zhao, W.: Noncommutative symmetric systems over associative algebras. J. Pure Appl. Algebra 210(2), 363-382. See also math.CO/0509133
29. Zhao, W.: Differential operator specializations of noncommutative symmetric functions. Adv. Math.