On the decomposition map for symmetric groups
Karin Erdmann
Mathematical Institute 24-29 St. Giles Oxford OX1 3LB UK
DOI: 10.1007/s10801-008-0134-3
Abstract
Let R d be the \Bbb Z-module generated by the irreducible characters of the symmetric group S d {\mathcal{S}}_{d} . We determine bases for the kernel of the decomposition map. It is known that R d \otimes \Bbb Z F is isomorphic to the radical quotient of the Solomon descent algebra when F is a field of characteristic zero. We show that when F has prime characteristic and I br d is the kernel of the decomposition map for prime p then R d / I br d \otimes \Bbb Z F is isomorphic to the radical quotient of the p-modular Solomon descent algebra.
Pages: 219–229
Keywords: keywords representations of symmetric groups; decomposition map; characters: Brauer characters; symmetric functions; Solomon descent algebra
Full Text: PDF
References
1. Ariki, S., Nakajima, T., Yamada, H.F.: Reduced Schur functions and the Littlewood-Richardson coefficients. J. Lond. Math. Soc. 59, 396-406 (1999)
2. Atkinson, M.D., van Willigenburg, S.: The p-modular descent algebra of the symmetric group. Bull. Lond. Math. Soc. 29, 407-414 (1997)
3. Atkinson, M.D., Pfeiffer, G., van Willigenburg, S.: The p-modular descent algebra. Algebr. Represent. Theory 5, 101-113 (2002)
4. Blessenohl, D., Schocker, M.: Noncommutative Character Theory of the Symmetric Group. Imperial College Press, London (2005)
5. Donkin, S.: The q-Schur algebra. LMS Lecture Notes Series, vol.
253. Cambridge University Press, Cambridge (1998)
6. Donkin, S., Erdmann, K.: Tilting modules, symmetric functions and the module structure of the free Lie algebra. J. Algebra 203, 69-90 (1998)
7. Doty, S., Walker, G.: Modular symmetric functions and irreducible modular representations of general linear groups. J. Pure Appl. Algebra 82, 1-26 (1992)
8. Erdmann, K.: Decomposition numbers for symmetric groups and composition factors of Weyl modules. J. Algebra 180, 316-320 (1996)
9. Külshammer, B., Olsson, J.B., Robinson, G.R.: Generalized blocks for symmetric groups. Invent.
2. Atkinson, M.D., van Willigenburg, S.: The p-modular descent algebra of the symmetric group. Bull. Lond. Math. Soc. 29, 407-414 (1997)
3. Atkinson, M.D., Pfeiffer, G., van Willigenburg, S.: The p-modular descent algebra. Algebr. Represent. Theory 5, 101-113 (2002)
4. Blessenohl, D., Schocker, M.: Noncommutative Character Theory of the Symmetric Group. Imperial College Press, London (2005)
5. Donkin, S.: The q-Schur algebra. LMS Lecture Notes Series, vol.
253. Cambridge University Press, Cambridge (1998)
6. Donkin, S., Erdmann, K.: Tilting modules, symmetric functions and the module structure of the free Lie algebra. J. Algebra 203, 69-90 (1998)
7. Doty, S., Walker, G.: Modular symmetric functions and irreducible modular representations of general linear groups. J. Pure Appl. Algebra 82, 1-26 (1992)
8. Erdmann, K.: Decomposition numbers for symmetric groups and composition factors of Weyl modules. J. Algebra 180, 316-320 (1996)
9. Külshammer, B., Olsson, J.B., Robinson, G.R.: Generalized blocks for symmetric groups. Invent.