ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

The Hopf algebra of uniform block permutations

Marcelo Aguiar1 and Rosa C. Orellana2
1Texas A\&M University Department of Mathematics College Station TX 77843 USA
2Dartmouth College Department of Mathematics Hanover NH 03755 USA

DOI: 10.1007/s10801-008-0120-9

Abstract

We introduce the Hopf algebra of uniform block permutations and show that it is self-dual, free, and cofree. These results are closely related to the fact that uniform block permutations form a factorizable inverse monoid. This Hopf algebra contains the Hopf algebra of permutations of Malvenuto and Reutenauer and the Hopf algebra of symmetric functions in non-commuting variables of Gebhard, Rosas, and Sagan. These two embeddings correspond to the factorization of a uniform block permutation as a product of an invertible element and an idempotent one.

Pages: 115–138

Keywords: keywords Hopf algebra; factorizable inverse monoid; uniform block permutation; set partition; symmetric functions; Schur-Weyl duality

Full Text: PDF

References

1. Aguiar, M., Mahajan, S.: Coxeter Groups and Hopf Algebras. Fields Institute Monographs, vol.
23. AMS, Providence (2006)
2. Aguiar, M., Sottile, F.: Structure of the Malvenuto-Reutenauer Hopf algebra of permutations. Adv. Math. 191(2), 225-275 (2005) J Algebr Comb (2008) 28: 115-138
3. Aldous, D., Diaconis, P.: Longest increasing subsequences: from patience sorting to the Baik-Deift- Johansson theorem. Bull. Am. Math. Soc. 36, 413-432 (1999)
4. Bergeron, N., Hohlweg, C., Rosas, M., Zabrocki, M.: Grothendieck bialgebras, partition lattices and symmetric functions in noncommutative variables. Electron. J. Comb. 13(1), 75 (2006) (electronic)
5. Bergeron, N., Zabrocki, M.: The Hopf algebras of symmetric functions and quasisymmetric functions in non-commutative variables are free and cofree. math.CO/0509265 (2005)
6. Chen, S.Y., Hsieh, S.C.: Factorizable inverse semigroups. Semigroup Forum 8(4), 283-297 (1974)
7. Clifford, A.H., Preston, G.B.: The Algebraic Theory of Semigroups, vol. I. Mathematical Surveys, vol.
7. American Mathematical Society, Providence (1961)
8. Clifford, A.H., Preston, G.B.: The Algebraic Theory of Semigroups, vol. II. Mathematical Surveys, vol.
7. American Mathematical Society, Providence (1967)
9. Easdown, D., East, J., FitzGerlad, D.G.: Presentations of factorizable inverse monoids (2004)
10. FitzGerald, D.G.: A presentation for the monoid of uniform block permutations. Bull. Austral. Math. Soc. 68, 317-324 (2003)
11. Gebhard, D.D., Sagan, B.E.: Sinks in acyclic orientations of graphs. J. Comb. Theory B 80, 130-146 (2000)
12. Gebhard, D.D., Sagan, B.E.: A chromatic symmetric function in noncommuting variables. J. Algebr. Comb. 13, 227-255 (2001)
13. Grood, C.: The rook partition algebra. J. Comb. Theory Ser. A 113(2), 325-351 (2006)
14. Halverson, T.: Representations of the q-rook monoid. J. Algebra 273(1), 227-251 (2004)
15. Halverson, T., Ram, A.: q-rook monoid algebras. Hecke algebras, and Schur-Weyl duality. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 283 (2001), Teor. Predst. Din. Sist. Komb. Algoritm. Metody. 6, 224-250, 262-263; translation in J. Math. Sci. (N.Y.) 121(3), 2419- 2436 (2004)
16. Jones, V.F.R.: The Potts model and the symmetric group. In: Subfactors: Proceedings of the Tanaguchi Symposium on Operator Algebras, Kyuzeso, 1993, pp. 259-267. World Scientific, River Edge (1994)
17. Kosuda, M.: Characterization for the party algebra. Ryukyu Math. J. 13, 7-22 (2000)
18. Kosuda, M.: Party algebra and construction of its irreducible representations. Paper presented at Formal Power Series and Algebraic Combinatorics (FPSAC01), Tempe, Arizona (USA), 20-26 May 2001
19. Kudryavtseva, G., Mazorchuk, V.: Schur-Weyl dualities for symmetric inverse semigroups, math.RT/0702864
20. Lawson, M.V.: Inverse Semigroups. The Theory of Partial Symmetries. World Scientific, River Edge (1998)
21. Malvenuto, C., Reutenauer, C.: Duality between quasi-symmetric functions and the Solomon descent algebra. J. Algebra 177(3), 967-982 (1995)
22. Martin, P.P.: Temperley-Lieb algebras for non-planar statistical mechanics-the partition algebra construction. J. Knot Theory Appl. 3(1), 51-82 (1994)
23. Rosas, M., Sagan, B.: Symmetric functions in non-commuting variables. Trans. Am. Math. Soc. 358(1), 215-232 (2006)
24. Sixdeniers, J.-M., Penson, K.A., Solomon, A.I.: Extended Bell and Stirling numbers from hypergeometric exponentiation. J. Integer Seq. 4, 01.1.4 (2001)
25. Sloane, N.J.A.: An on-line version of the encyclopedia of integer sequences. Electron. J. Comb. 1 (1994), Feature 1, approx. 5 pp. (electronic),
26. Solomon, L.: The Burnside algebra of a finite group. J. Comb. Theory 2, 603-615 (1967)
27. Solomon, L.: Representations of the rook monoid. J. Algebra 256(2), 309-342 (2002)
28. Steinberg, B.: Möbius functions and semigroup representation theory. J. Comb. Theory Ser. A 113(5), 866-881 (2006)
29. Steinberg, B.: Möbius functions and semigroup representation theory, II: character formulas and multiplicities. math.CO/0607564
30. Tanabe, K.: On the centralizer algebra of the unitary reflection group G(m, p, n). Nagoya Math. J.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition