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Abstract We introduce the matroid-minor coalgebra C, which has labeled matroids
as distinguished basis and coproduct given by splitting a matroid into a submatroid
and complementary contraction in all possible ways. We introduce two new bases
for C; the first of these is related to the distinguished basis by Möbius inversion
over the rank-preserving weak order on matroids, the second by Möbius inversion
over the suborder excluding matroids that are irreducible with respect to the free
product operation. We show that the subset of each of these bases corresponding
to the set of irreducible matroids is a basis for the subspace of primitive elements
of C. Projecting C onto the matroid-minor Hopf algebra H , we obtain bases for the
subspace of primitive elements of H .
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Many of the Hopf algebras now of central importance in algebraic combinatorics
share certain striking features, suggesting the existence of a natural, yet-to-be-
identified, class of combinatorial Hopf algebras. These Hopf algebras are graded and
cofree, each has a canonical basis consisting of, or indexed by, a family of (equiva-
lence classes of) combinatorial objects that is equipped with a natural partial ordering,
and in each case the algebraic structure is most clearly understood through the intro-
duction of a second basis, related to the canonical one by Möbius inversion over the
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partial ordering. Indeed, in a number of key examples cofreeness becomes apparent
once the coproduct is expressed in terms of the second basis, and this basis con-
tains, as an easily recognizable subset, a basis for the subspace of primitive elements.
The significance of primitive elements in this context was established by Loday and
Ronco in [9], where they proved a Milnor–Moore type theorem characterizing cofree
Hopf algebras in terms of their primitive elements.

Examples of such Hopf algebras include the algebra of quasisymmetric functions,
introduced by Gessel in [6], the Hopf algebra structure of which was determined
by Malvenuto in [10], the Malvenuto–Reutenauer Hopf algebra of permutations
[10, 11], the Loday–Ronco Hopf algebra of planar binary trees [8], and, most re-
cently, the Hopf algebra of uniform block partitions, due to Aguiar and Orellana [1].
Recent work by Tasķin [15] on various partial orderings of standard Young tableaux
suggest that the Poirier–Reutenauer Hopf algebra of tableaux [12] also belongs to this
class.

The canonical basis for quasisymmetric functions is indexed by compositions of
nonnegative integers, whose natural partial ordering, given by refinement, is a dis-
joint union of Boolean algebras. In [2], Aguiar and Sottile use the weak order on
the symmetric groups to elucidate the structure of the Malvenuto–Reutenauer Hopf
algebra, and in [3] they use the Tamari order on planar binary trees in an analogous
fashion to study the Loday–Ronco Hopf algebra. Furthermore, through the use of Ga-
lois connections between each pair of the aforementioned partial orders, they exhibit
the myriad relationships among these Hopf algebras in a completely unified manner.

In this article, we use similar techniques to study a seemingly unrelated Hopf al-
gebra, based on matroids. The matroid-minor Hopf algebra, introduced in [14], has
as canonical basis the set of all isomorphism classes of matroids, with product in-
duced by the direct sum operation, and coproduct of the isomorphism class eM of
a matroid M = M(S) given by

∑
A⊆S eM|A ⊗ eM/A, where M|A is the submatroid

obtained by restriction to A and M/A is the complementary contraction. The current
authors showed in [5] that this Hopf algebra is cofree, and that its subspace of prim-
itive elements has a basis indexed by those isomorphism classes of matroids that are
irreducible with respect to the free product operation [4]. We approach the matroid-
minor Hopf algebra here by first lifting to the matroid-minor coalgebra, which has
as canonical basis the set of all labeled matroids whose underlying sets are subsets
of some given infinite set. The coproduct of a matroid M(S) in the matroid-minor
coalgebra is given by

∑
A⊆S M|A⊗M/A, so the natural projection, taking a matroid

to its isomorphism class, is a coalgebra map. The set of labeled matroids is partially
ordered by the (rank-preserving) weak order, under which M ≥ N means that M and
N have the same underlying set, and each basis for N is also a basis for M . We in-
troduce two new bases for the matroid-minor coalgebra, both related to the canonical
basis by Möbius inversion; the first over the full weak order and the second over a
suborder that excludes matroids which are irreducible with respect to free product.
The subset of each of these new bases corresponding to the irreducible matroids is a
basis for the subspace of primitive elements. Applying the projection map, we obtain
bases for the subspace of primitive elements of the matroid-minor Hopf algebra, one
of these is the basis previously identified in [5].

We note that it is not possible to extend the matroid-minor coalgebra to a Hopf
algebra that maps onto the matroid-minor Hopf algebra without using equivalence
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classes of matroids, rather than labeled matroids, as basis elements. In order for the
algebra to most directly reflect the underlying combinatorics, we work with labeled
matroids, and thus only a coalgebra, rather than Hopf algebra, of matroids.

1 Posets and Möbius functions

In this section we gather together for later use some basic facts about partially ordered
sets and their Möbius functions. Of the four results given here, two (Theorems 1.1
and 1.2) are classical, and stated without proof, one (Proposition 1.4) is apparently
new, and one (Proposition 1.6) is trivial, but nonetheless useful to have on hand.

We assume that all partially ordered sets, or posets, for short, are locally finite,
that is, given x ≤ z in a poset P , the interval [x, z] = {y ∈ P : x ≤ y ≤ z} is finite.
The Möbius function μ = μP of a poset P is the integer-valued function having the
set of intervals in P as domain, defined by μ(x, x) = 1, for all x ∈ P , and

μ(x, z) = −
∑

x≤y<z

μ(x, y) = −
∑

x<y≤z

μ(y, z),

for all x < z in P .
A closure operator on a poset P is an idempotent, order-preserving map

ϕ : P → P such that x ≤ ϕ(x), for all x ∈ P . Given a closure operator ϕ on P ,
we write Pϕ for the subposet imϕ = {x ∈ P : x = ϕ(x)} of closed elements of P . An
essential ingredient in the proofs of our main results, Theorems 4.10 and 4.11, is the
following well-known theorem, due to Rota [13], that expresses the Möbius function
of Pϕ in terms of that of P .

Theorem 1.1 If ϕ is a closure operator on a poset P , then for all a ≤ b in P ,

∑

x : ϕ(x)=b

μ(a, x) =
{

μϕ(a, b) if a, b ∈ Pϕ,

0 otherwise,

where μ and μϕ denote the Möbius functions of P and Pϕ , respectively.

Given x ≤ z in a poset P , a chain from x to z is a sequence C = (x0, . . . , xk)

of elements of P such that x = x0 < · · · < xk = z. The length �(C) of a chain C

is |C| − 1. The following theorem, due to Philip Hall [7], provides an alternative
definition of Möbius function that allows us to give a short proof of Proposition 1.4
below.

Theorem 1.2 If x ≤ z in a poset P , then μP (x, z) = ∑
(−1)�(C), where the sum is

over all chains C from x to z in P .

Suppose that P is a poset and Q ⊆ P . Given x ≤ z in P , we denote by [x, z]Q
the subposet {x, z} ∪ ([x, z] ∩ Q) of [x, z], and we write [x, z)Q for [x, z]Q\{z}. We
extend the definition of the Möbius function of Q to all intervals in P by setting

μQ(x, z) = μ[x,z]Q(x, z), (1.3)

for all x < z in P .
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Proposition 1.4 Suppose that P is a poset, Q ⊆ P and R = P \Q. Then

μP (x, z) =
∑

y∈[x,z)Q

μP (x, y)μR(y, z), (1.5)

for all x < z in P .

Proof For each y ∈ [x, z)Q, let Cy denote the set of all chains C from x to z in P

such that max(C ∩ [x, z)Q) = y. From Theorem 1.2, we then have

μP (x, y)μR(y, z) =
∑

C∈Cy

(−1)�(C),

for each such y. Since {Cy : y ∈ [x, z)Q} is a partition of the set of all chains from x

to z in P , Eq. 1.5 thus follows from Theorem 1.2. �

Proposition 1.6 Suppose that P is a poset with minimum element x, and let P̂ =
{y ∈ P : μP (x, y) 
= 0}. Then μP̂ (x, z) = μP (x, z), for all z ∈ P̂ .

Proof The proof is immediate from the recursive definition of Möbius function. �

2 The free product of matroids

We write M(S) to indicate that M is a matroid with underlying set S. We denote by
ρM the rank function of M(S), and write ρ(M) for the rank ρM(S) of M . The free
product of matroids M(S) and N(T ) on disjoint sets S and T is the matroid M �N

on the union S ∪T whose bases are those sets B ⊆ S ∪T of cardinality ρ(M)+ρ(N)

such that B ∩S is independent in M and B ∩T spans N .1 The free product operation
was introduced by the current authors in [4], where it was used to prove the conjecture
of Welsh [16] that fn+m ≥ fn · fm, where fn is the number of distinct isomorphism
classes of matroids on an n-element set. In [5], we studied the free product in detail;
in particular we showed that this operation, which is noncommutative, is associative,
and respects matroid duality in the sense that (M �N)∗ = N∗

�M∗, for all matroids
M and N . We also characterized, in terms of cyclic flats, those matroids which are
irreducible with respect to free product, and proved the following unique factorization
theorem:

Theorem 2.1 If M1� · · ·�Mk
∼= N1� · · ·�Nr , where each Mi and Nj is irreducible

with respect to free product, then k = r and Mi
∼= Ni , for 1 ≤ i ≤ k.

We gave in [5] a number of cryptomorphic definitions of free product, one of the
most useful of which is the following proposition.

1This elegant characterization of free product in terms of bases is due to one of the referees of our paper [5].
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Proposition 2.2 The rank function of M(S)�N(T ) is given by

ρM�N(A) = ρM(A ∩ S) + ρN(A ∩ T ) + min{ρM(S) − ρM(A ∩ S), νN(A ∩ T )},
for all A ⊆ S ∪ T .

It is worth contrasting the above formula with that for the rank function of the
direct sum M(S) ⊕ N(T ):

ρM⊕N(A) = ρM(A ∩ S) + ρN(A ∩ T ), (2.3)

for all A ⊆ S ∪ T .
We refer to a matroid as irreducible if it is irreducible with respect to free product,

and reducible, otherwise.

Example 2.4 We denote by Z(a) and I (a), respectively, the matroids consisting of a
single loop and single isthmus on {a}. For any set S = {a1, . . . , an}, and 0 ≤ r ≤ n,
the free product Z(a1)� · · ·�Z(an−r )�I (an−r+1)� · · ·�I (an) is equal to Z(a1)⊕
· · ·⊕Z(an−r )⊕ I (an−r+1)⊕· · ·⊕ I (an), the direct sum of n− r loops and r isthmi,
while I (a1)� · · ·� I (ar)�Z(ar+1)� · · ·�Z(an) is the uniform matroid Ur,n(S) of
rank r on S. The matroid I (a)�Z(b) � I (c)�Z(d) is a three-point line, with one
point, ab, doubled.

Example 2.5 A matroid consisting of a single loop or isthmus is irreducible, and no
matroid of size two or three is irreducible. Up to isomorphism, the unique irreducible
matroid on four elements is the pair of double points U1,2 ⊕U1,2, and on five elements
the only irreducibles are U1,3 ⊕ U1,2 and its dual U2,3 ⊕ U1,2.

For any finite set S, we denote by WS the collection of all matroids having S as
ground set. The set WS is partially ordered by the (rank-preserving) weak order, in
which M ≤ N means that every basis for M is also a basis for N or, equivalently, M

and N have the same rank and the identity map on S is a weak map from N to M .
The second inequality of the following result was Proposition 4.2 in [5].

Proposition 2.6 For all matroids M(S), and all U ⊆ S, the relation

M|U ⊕ M/U ≤ M ≤ M|U �M/U

holds in WS .

Proof Let V = S\U . The bases of M|U ⊕ M/U are those subsets B of S such that
B ∩U is a basis for M|U and B ∩V is a basis for M/U , which is the case if and only
if B is a basis for M such that B ∩ U spans M|U . Hence any basis for M|U ⊕ M/U

is also a basis for M , and so M|U ⊕ M/U ≤ M .
By definition of free product, B ⊆ S is a basis of M|U � M/U if and only if

|B| = ρ(M), the set B ∩ U is independent in M and B ∩ V spans M/U . Now
ρM/U(B ∩ V ) = ρM(B ∪ U) − ρM(U) and ρ(M/U) = ρ(M) − ρM(U), so B ∩ V
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spans M/U if and only ρM(B ∪ U) = ρ(M), that is, if and only if B ∪ U spans M .
Hence any basis for M is also a basis for M|U �M/U , and so M ≤ M|U �M/U . �

The following result is one of the keys to understanding the coproduct, and thus
the primitive elements, of the matroid-minor coalgebra.

Proposition 2.7 For all matroids M(S) and N(T ), with S and T disjoint, the set
{L : L|S = M and L/S = N} is equal to the interval [M ⊕ N,M �N ] in WS∪T .

Proof If L(S ∪ T ) is such that L|S = M and L/S = N then, by Proposition 2.6,
L ∈ [M ⊕ N,M � N ]. Conversely, suppose that L ∈ [M ⊕ N,M � N ], so that
ρM⊕N(A) ≤ ρL(A) ≤ ρM�N(A), for all A ⊆ S ∪ T . If A ⊆ S then, ρN(A ∩ T ) =
νN(A ∩ T ) = 0, and so by Proposition 2.2 and Eq. 2.3, we have ρM⊕N(A) =
ρM�N(A) = ρM(A). Hence ρL|S(A) = ρL(A) = ρM(A), and therefore L|S = M .

Now if A ⊆ T , then ρM⊕N(A ∪ S) = ρM�N(A ∪ S) = ρM(S) + ρN(A), and thus
ρL(A ∪ S) = ρM(S) + ρN(A). Since ρL/S(A) = ρL(A ∪ S) − ρL(S), and ρL(S) =
ρM(S), it follows that ρL/S(A) = ρN(A). Hence L/S = N . �

3 The matroid-minor coalgebra

Let U be the set of all finite subsets of some fixed infinite set, and let K be a field.
Denote by W the set of all matroids M(S) whose ground set S belongs to U , and
denote by W+ the set of all nonempty M ∈ W . We give W the (rank-preserving)
weak order, in which M ≤ N means that M and N have the same ground set S and
M ≤ N in WS ; hence W is the disjoint union of the posets WS , for S ∈ U . For sets
S, U and V , we write U + V = S to indicate that U ∪ V = S and U ∩ V = ∅.

Let K{W} denote the free K-vector space having basis W . Since {WS : S ∈ U} is
a partition of W , we have the direct sum decomposition

K{W} =
⊕

S∈U
K{WS};

hence the vector space W is graded by the set U , with each homogeneous component
K{WS} finite-dimensional.

We define a pairing 〈·, ·〉 on K{W} by setting 〈M,N〉 equal to the Kronecker delta
δM,N , for all M,N ∈ W , and thus identify K{W} with the graded dual space

K{W}∗ =
⊕

S∈U
K{WS}∗.

Let C be the K-coalgebra on K{W} with coproduct δ and counit ε determined by

δ(M) =
∑

A⊆S

M|A ⊗ M/A and ε(M) =
{

1, if S = ∅,

0, otherwise,
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for all M(S) ∈ W . Let C∗ be the K-algebra on K{W} dual to C; the product of C∗
is thus determined by

〈P · Q,M〉 = 〈δ(M),P ⊗ Q〉,
for all M,P,Q ∈ W , and the unit element of C∗ is ε. We remark that, even though
the underlying vector space of C∗ is the graded dual of that of C, we do not refer
to C∗ as the graded dual algebra of C, because C is not U -graded as a coalgebra.
In fact, since U has no given monoid structure, the concept of U -graded coalgebra is
meaningless.

Proposition 3.1 In the algebra C∗, the product of matroids M and N on disjoint
ground sets is given by

M · N =
∑

M ⊕ N ≤ L ≤ M �N

L.

If M and N are not disjoint, then M · N = 0 in C∗.

Proof First, observe that

M · N =
∑

L∈W
〈M · N,L〉L

=
∑

L∈W
〈M ⊗ N, δ(L)〉L.

If M and N are not disjoint, the latter sum is empty, and hence M · N = 0. If M

and N are disjoint then, by Proposition 2.7, 〈M ⊗ N,δ(L)〉 is equal to one whenever
M ⊕ N ≤ L ≤ M �N in W , and is zero otherwise. �

More generally, the product of matroids M1, . . . ,Mk in C∗ is equal to

∑

M1 ⊕ · · · ⊕ Mk ≤ L ≤ M1 � · · ·�Mk

L, (3.2)

if the set {M1, . . . ,Mk} is pairwise disjoint and is zero otherwise. For all S ∈ U , we let
πS : K{W} → K{WS} denote the natural projection, and for any subset X of K{W},
we write XS for πS(X). In particular, we write CS for K{WS} when viewed as a
subspace of the coalgebra C, and similarly for the algebra C∗.

Proposition 3.3 The coproduct δ of C satisfies

δ(CS) ⊆
⊕

U + V = S

CU ⊗ CV ,

for all S ∈ U .

Proof The result follows immediately from the definition of δ. �
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We remark that Proposition 3.3 may be stated alternatively as

δ(πS(x)) =
∑

U + V = S

(πU ⊗ πV )δ(x) (3.4)

for all x ∈ C and S ∈ U .
Proposition 3.3, together with the fact that ε(CS) = 0, for all S 
= ∅ says that C

is something very much like a U -graded coalgebra; the problem, as we indicated
above, is that the disjoint union operation + is only partially defined on U and so
does not equip U with a monoid structure. To make precise the sense in which C is
a “generalized graded” coalgebra, consider the partial monoid algebra K{U}, with
product determined by

ST =
{

S ∪ T if S ∩ T = ∅,

0 otherwise,

and coproduct δ(S) = S ⊗ S, for all S,T ∈ U . Then K{U} is a Hopf algebra, and the
map ψ : C → K{U} ⊗ C, determined by x �→ S ⊗ x, for all x ∈ CS , is a coaction,
making C a K{U}-comodule coalgebra. In the following situation: U a monoid, CS a
subspace of a coalgebra C, for all S ∈ U and K{U} the monoid (Hopf) algebra of U ,
the above map ψ being well-defined and making C a K{U}-comodule coalgebra is
equivalent to C being U -graded as a coalgebra, with homogeneous components CS ,
for all S ∈ U .

4 Primitive elements in the matroid-minor coalgebra

We denote by I and R, respectively, the collections of all irreducible and all reducible
matroids belonging to W . For any M ∈ W , we denote by WM the order filter {N ∈
W : N ≥ M} of W and define the following subposets of WM :

IM = (I ∩WM) ∪ {M} and RM = (R∩WM) ∪ {M}.
For any S ∈ U , we set

IS = I ∩WS and RS = R∩WS.

Let C+ = ker ε, and let δ̄ : C+ → C+ ⊗ C+ be the map determined by δ(x) =
1 ⊗ x + x ⊗ 1 + δ̄(x), for all x ∈ C+, where 1 denotes the empty matroid. Then C+
has basis W+, and δ̄(x) satisfies

δ̄(M) =
∑

A⊆S
A
=∅,S

M|A ⊗ M/A,

for all M ∈ W+. We write P(C) for the subspace of primitive elements of C; hence
P(C) = {x ∈ C+ : δ̄(x) = 0}.



J Algebr Comb (2008) 28: 43–64 51

Proposition 4.1 The space of primitive elements P(C) respects the grading of C by
U , that is,

P(C)S = P(C) ∩ CS,

for all S ∈ U .

Proof For any S ∈ U we have P(C) ∩ CS = πS(P (C) ∩ CS) ⊆ P(C)S . On the other
hand, if x ∈ P(C)S , then x = πS(y) for some y ∈ P(C) and thus, by Eq. 3.4,

δ(x) =
∑

U + V = S

(πU ⊗ πV )δ(y)

=
∑

U + V = S

(πU(y) ⊗ πV (1) + πU(1) ⊗ πV (y)) .

Since

πV (1) =
{

1 if V = ∅,

0 otherwise,

we thus have

δ(x) = πS(y) ⊗ 1 + 1 ⊗ πS(y)

= x ⊗ 1 + 1 ⊗ x.

Hence P(C)S ⊆ P(C) ∩ CS . �

An alternative way of stating Proposition 4.1 is the following:

P(C) =
⊕

S∈U
P(C) ∩ CS. (4.2)

Denote by C∗+ the ideal in C∗ consisting of all elements x such that 〈x ,1〉 = 0.
Note that C∗+ has basis W+, and that the ideal (C∗+)2 of C∗ is spanned by the set of
all products P ·Q such that P,Q ∈W+. For any subset X of K{W}, we define X⊥ =
{y ∈ K{W} : 〈y, x〉 = 0, for all x ∈ X}. The following proposition is a standard result
about connected coalgebras.

Proposition 4.3 The subspace of primitive elements of C is given by P(C) = C+ ∩
[(C∗+)2]⊥.

Proof An element x of C belongs to P(C) if and only if ε(x) = 0 and δ̄(x) = 0,
that is, if and only if x ∈ C+ and 〈P ⊗ Q, δ̄(x)〉 = 0, for all P,Q ∈ W+. But, for
nonempty P and Q, we have

〈P ⊗ Q, δ̄(x)〉 = 〈P ⊗ Q, δ(x)〉
= 〈P · Q, x〉.

Hence, the condition that 〈P ⊗ Q, δ̄(x)〉 = 0, for all P,Q ∈ W+, is equivalent to x

belonging to [(C∗+)2]⊥. �
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Corollary 4.4 For all nonempty S ∈ U we have

P(C)S = ([(C∗+)2]S)⊥,

while P(C)∅ = {0}.

Proof The result follows directly from Proposition 4.3 and the direct-sum decompo-
sition (4.2). �

Untangling the notation of Corollary 4.4, we see that P(C)S consists of all x ∈ CS

such that 〈x,P · Q〉 = 0, for all matroids P(U) and Q(V ) with U and V nonempty
and U + V = S.

The following result streamlines the brute-force method of finding primitive ele-
ments in C.

Proposition 4.5 The ideal (C∗+)2 of C∗ is spanned by the set P of all products P ·Q
such that P is irreducible (with respect to free product) and Q is nonempty.

Proof We prove the result by using (weak order) induction on P to show that if
P · Q ∈ (C∗+)2, then P · Q ∈ K{P}.

For the base case, suppose that P ·Q ∈ (C∗+)2 and that P = P(S) is minimal in the
weak order. Then P is the direct sum of k loops and r isthmi, where k is the nullity
and r is the rank of P , and so, in the notation of Example 2.4, we have

P(S) = Z(a1) ⊕ · · · ⊕ Z(ak) ⊕ I (ak+1) ⊕ · · · ⊕ I (ak+r )

= Z(a1)� · · ·�Z(ak)� I (ak+1)� · · ·� I (ak+r ),

which, by (3.2), implies that P is equal to the product

Z(a1) · · ·Z(ak) · I (ak+1) · · · I (ak+r ),

in C∗. Hence P · Q ∈ K{P}.
Now suppose that P · Q ∈ (C∗+)2, and that L · Q ∈ K{P}, for all L < P . If P is

irreducible, we are done; otherwise, write P as M � N , where M is irreducible. By
Proposition 3.1, we have

M · N · Q =
∑

M ⊕ N ≤ L ≤ P

L · Q,

and hence

P · Q = M · N · Q −
∑

M ⊕ N ≤ L < P

L · Q,

which, by induction, belongs to K{P}. �

Of course, the “right-handed” version of Proposition 4.5 also holds: the ideal
(C∗+)2 of C∗ is spanned by the set of all products Q ·P such that P is irreducible and
Q is nonempty.



J Algebr Comb (2008) 28: 43–64 53

Proposition 4.6 The inequality dimP(C)S ≤ |IS | holds for all S ∈ U .

Proof Define a map α : K{RS} → (C∗+)2 as follows: for each reducible M(S),
choose a sequence of irreducible matroids M1, . . . ,Mk such that M = M1 � · · ·�Mk

(recall that the sequence M1, . . . ,Mk is uniquely determined by M only up to iso-
morphism), then set α(M) equal to the product M1 · · ·Mk in C∗. Clearly imα ⊆
[(C∗+)2]S . By Proposition 3.1, we know that α(M) is equal to M plus matroids
that are less than M in the weak order. It follows that α is injective, and so
|RS | ≤ dim[(C∗+)2]S . Hence, by Corollary 4.4, we have

dimP(C)S = dim([(C∗+)2]S)⊥

= |WS | − dim[(C∗+)2]S
≤ |WS | − |RS |
= |IS |. �

We will see shortly, in Theorem 4.10, that the inequality in the above proposition
is in fact an equality. Recall that a free separator of a matroid M(S) is a subset U of
S such that M factors as M = M|U �M/U .

Proposition 4.7 For all S ∈ U and U ⊆ S, the map ϕU : WS → WS given by

ϕU (M) = M|U �M/U,

for all M ∈ WS , is a closure operator. A matroid M is ϕU -closed if and only if U is
a free separator of M .

Proof Let M be a matroid on S, and U ⊆ S. It is immediate from the definitions
that U is a free separator of M if and only if M = ϕU (M). To show that ϕU is
a closure operator, we first note that, since U is a free separator of ϕU (M), we
have ϕU (ϕU (M)) = ϕU (M); also, the inequality M ≤ ϕU (M) follows from Propo-
sition 2.6. It remains to show that, if M ≤ N in WS , then ϕU (M) ≤ ϕU (N). As we
noted in the proof of Proposition 2.6, The bases of M|U � M/U are those subsets
B of S with |B| = ρ(M) such that B ∩ U is independent in M and B ∪ U spans M .
Now if N ≥ M and B ∩ U is independent in M , then it is also independent in N ;
since ρ(N) = ρ(M), it thus follows that any basis for M|U � M/U is also a basis
for N |U �N/U , that is, ϕU (M) ≤ ϕU (N). �

Lemma 4.8 For all matroids P(U), Q(V ) and M(S), with S = U + V , we have
ϕU (M) = P �Q if and only if P ⊕ Q ≤ M ≤ P �Q in WS .

Proof Since (P �Q)|U = P and (P �Q)/U = Q, for all matroids P(U) and Q(V ),
it follows that P(U)�Q(V ) = ϕU (M) = M|U �M/U if and only if M|U = P and
M/U = Q. By Proposition 2.7 this is the case if and only if P ⊕Q ≤ M ≤ P �Q. �
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We define bases {wM : M ∈ W} and {rM : M ∈W} for the matroid-minor coalge-
bra C by setting

wM =
∑

N∈WM

μW (M,N)N and rM =
∑

N∈RM

μR(M,N)N,

for all M ∈ W . We have written here μR for the Möbius function of the poset
RM ; equivalently, we are using the convention (1.3) to extend the definition of the
Möbius function of R to arbitrary intervals in W . Note that {wM : M ∈ W} and {rM :
M ∈ W} are indeed bases for C since, by Möbius inversion, we have

M =
∑

N∈WM

wN =
∑

N∈RM

rN ,

for all M ∈ W . The following proposition shows us how to change between the bases
{wM : M ∈ W} and {rM : M ∈ W}.

Proposition 4.9 For all M ∈W

wM =
∑

N∈IM

μW (M,N) rN and rM = wM −
∑

N∈IM\M
μR(M,N)wN .

Proof By definition of rN , wM , and Proposition 1.4, we have

∑

N∈IM

μW (M,N) rN =
∑

N∈IM

∑

Q∈RN

μW (M,N)μR(N,Q)Q

= M +
∑

Q∈IM\M
μW (M,Q)

+
∑

Q∈RM\M

∑

N∈[M,Q)I

μW (M,N)μR(N,Q)Q

=
∑

Q∈WM

μW (M,Q)Q

= wM,
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thus establishing the first equality. For the second, we compute

rM =
∑

N∈RM

μR(M,N)N

=
∑

N∈RM

∑

Q∈WN

μR(M,N)wQ

= wM +
∑

Q∈RM\M

∑

N∈[M,Q]R
μR(M,N)wQ +

∑

Q∈IM\M

∑

N∈[M,Q)R

μR(M,N)wQ.

By the recursive definition of Möbius function it follows that

∑

N∈[M,Q]R
μR(M,N) = 0 and

∑

N∈[M,Q)R

μR(M,N) = −μR(M,Q),

for all Q > M in W ; thus the result follows. �

We now come to the first of our main results.

Theorem 4.10 The set {wM : M ∈ I} is a homogeneous basis for P(C).

Proof It is clear from the definition that the wM are homogeneous with respect to the
U -grading of C. Now, if M is irreducible, then it is nonempty and thus ε(wM) = 0.
Suppose that M(S) is irreducible and that P(U) and Q(V ) are nonempty matroids.
By Proposition 3.1, we have

〈P · Q,wM 〉 =
∑

N∈WM
P⊕Q≤N≤P�Q

μW (M,N).

If it is not the case that M ≤ P �Q, then the sum is empty; otherwise, according to
Lemma 4.8, it is given by

∑

N∈WM
ϕU (N)=P�Q

μW (M,N).

Since U is a nonempty proper subset of S and M is irreducible, U is not a free
separator of M , and so M is not ϕU -closed. Thus, by Theorem 1.1, the above sum is
zero, and so it follows from Proposition 4.3 that wM is primitive in C.

Since {wM : M ∈ W} is a basis for C, the set {wM : M ∈ IS} is linearly indepen-
dent in P(C)S and thus, by Proposition 4.6, is a basis for P(C)S . It follows from the
direct-sum decomposition (4.2) that {wM : M ∈ I} is a basis for P(C). �

Theorem 4.11 The set {rM : M ∈ I} is a homogeneous basis for P(C). Furthermore,
if an element x of P(C) has the form M + y, where M is an irreducible matroid and
y is a linear combination of reducible matroids, the x = rM .
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Proof Observe that, for any M(S), and U ⊆ S, the closure operator ϕU on WM

satisfies ϕU (RM) ⊆ RM , and thus restricts to a closure operator on RM . The proof
that {rM : M ∈ I} is a basis for P(C) thus parallels that of Theorem 4.10, with the
poset RM used in place of WM . Uniqueness follows immediately from the fact that
the set I of irreducible matroids is linearly independent in C. �

Example 4.12 Consider the irreducible matroid D = U1,2(a, b) ⊕ U1,2(c, d), con-
sisting of two double points ab and cd . The poset WD consists of D, the four-point
line Q = U2,4(a, b, c, d), and the matroids P1 = I (a) � Z(b) � I (c) � Z(d) and
P2 = I (c) � Z(d) � I (a) � Z(b) (see Example 2.4), with D ≤ P1,P2 ≤ Q, and P1

and P2 are incomparable. Since WD contains no irreducible matroids other than D,
we have WD = RD ; hence, by Theorem 4.10,

wD = rD = D − P1 − P2 + Q

is primitive in C.

Fig. 1 The poset WM =RM , for M = U2,3(a, b, c) ⊕ U1,2(d, e)
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Example 4.13 The Hasse diagram of the poset WM , where M is the direct sum of the
three-point line abc and the double point de, is shown in Fig. 1. Since WM contains
no irreducible matroids other than M , we have WM = RM . Each matroid N shown
in the diagram is labeled by the Möbius function value μW (M,N), so the primitive
element

rM = wM = − 1 − 1 + · · · + 2 − 2

can be read from the diagram.

Example 4.14 Suppose that M is the matroid shown below.

The Hasse diagram of the poset R̂M = {N ∈ RM : μR(M,N) 
= 0} is shown in
Fig. 2. The matroids belonging to the set RM\R̂M = {N ∈ RM : μR(M,N) = 0}
are shown below.

Each matroid N in the Hasse diagram is labeled by the Möbius function value
μR̂(M,N), which is equal to μR(M,N), by Proposition 1.6. Hence the primitive
element

rM = − 1 + · · · + 2 + 1

can be read from the diagram. In contrast to the situation in Examples 4.12 and 4.13,
we have WM 
= RM here. The set WM\RM consists of 15 matroids, namely, the
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Fig. 2 The poset R̂M , for M the matroid of Example 4.14

following four
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together with 11 others, one of which is isomorphic to the second of these, and five
isomorphic to each of the last two.

5 The matroid-minor Hopf algebra

We now turn our attention to the matroid-minor Hopf algebra, which has distin-
guished basis consisting of isomorphism classes of matroids, rather than labeled ma-
troids as we have been considering up to now. We denote by M and MI , respectively,
the set of all isomorphism classes of matroids and the set of all isomorphism classes
of irreducible matroids. (Recall that irreducible here means irreducible with respect
to free product.) We write eM for the isomorphism class of a matroid M , and note that
M = {eM : M ∈ W}. The (rank-preserving) weak order on M is the coarsest order
relation such that the map W →M, taking a matroid to its isomorphism class, is or-
der preserving; thus eM ≤ eN in M if and only if there exist representatives M ′ ∈ eM

and N ′ ∈ eN such that M ′ ≤ N ′ in W .
The matroid-minor Hopf algebra H , first defined in [14], is the free vector space

K{M}, with product induced by direct sum, that is, eMeN = eM⊕N , for all matroids
M and N , and with coproduct δH and counit ε determined by

δH (eM) =
∑

A⊆S

eM|A ⊗ eM/A and ε(eM) =
{

1, if S = ∅,

0, otherwise,

for all M . Note that, as an algebra, H is free commutative, generated by the set
Mc of isomorphism classes of connected matroids, that is, H is isomorphic to the
polynomial algebra K[Mc].

As a means of determining the coalgebra structure of H , we first introduce a coal-
gebra, L, whose underlying vector space is also K{M}, but with coproduct dual to the
product on K{M} induced by the free product operation; that is, for all matroids M ,

δL(eM) =
∑

eP ⊗ eQ,

where the sum is over all pairs (eP , eQ) ∈M×M such that P �Q ∼= M . The counit
of L is equal to that of H . Associativity of free product implies that δL is coassocia-
tive. By Theorem 2.1, for every eM ∈M, there is a unique sequence (eM1 , . . . , eMk

),
for some k ≥ 0, with each Mi irreducible, such that M ∼= M1 � · · ·�Mk . Denoting,
for the moment, each element of M by its corresponding sequence, or word, we see
that the coalgebra L has as basis all words on the set MI of isomorphism classes of
irreducible matroids, and its coproduct can be written

δL(eM1 , . . . , eMk
) =

k∑

i=0

(eM1, . . . , eMi
) ⊗ (eMi+1 , . . . , eMk

). (5.1)

Hence L is cofree, and MI is a basis for the space of primitive elements P(L).
Our next result is a theorem from [5] which shows that H and L are isomor-

phic coalgebras, if the field K has characteristic zero. In the proof we give here,
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which is dual to the one given in that article, we use the following notation and
terminology: If M(S) is a matroid, and A ⊆ B ⊆ S, we denote by M(A,B) the
minor (M|B)/A = (M/A)|(B\A) of M determined by the interval [A,B] in the
Boolean algebra of subsets of S. For any set S, an S-chain is a sequence of sets
(S0, . . . , Sk) such that Si−1 is strictly contained in Si , for 1 ≤ i ≤ k. Given S-chains
C = (S0, . . . , Sk) and D = (T0, . . . , T�) such that Sk = T0, we write CD for the
S-chain (S0, . . . , Sk = T0, . . . , T�). If S and T are disjoint sets, C = (S0, . . . , Sk) an
S-chain and D = (T0, . . . , T�) a T -chain with T0 = ∅, we denote by C ·D the (S ∪T )-
chain (S0, . . . , Sk = T0 ∪ Sk, . . . , T� ∪ Sk). Given a matroid M(S) and S-chain C =
(S0, . . . , Sk), we write M(C) for the free product M(S0, S1) � · · · � M(Sk−1, Sk).
We refer to an S-chain C as M-irreducible if S0 = ∅, Sk = S and each of the minors
M(Si−1, Si) is irreducible with respect to free product. We write IC(M) for the set of
all M-irreducible S-chains.

Theorem 5.2 [5] If the field K has characteristic zero, then the map ϕ : H → L,
determined by

ϕ(eM) =
∑

C ∈ IC(M)

eM(C),

for all M , is a coalgebra isomorphism.

Proof We compute, for M = M(S),

δL(ϕ(eM)) =
∑

C ∈ IC(M)

δL(eM(C))

=
∑

C ∈ IC(M)

∑

C1C2 = C

eM(C1) ⊗ eM(C2),

and

(ϕ ⊗ ϕ)δH (eM) =
∑

A ⊆ S

ϕ(M|A) ⊗ ϕ(M/A)

=
∑

A ⊆ S

∑

D ∈ IC(M|A)

E ∈ IC(M/A)

eM(D) ⊗ eM(E).

It is readily verified that the map

⋃

A⊆S

IC(M|A) × IC(M/A) → {(C,A): C ∈ IC(M) and A ∈ C},

given by (C1,C2) �→ (C1 · C2,A), for all A ⊆ S and (C1,C2) ∈ IC(M|A) ×
IC(M/A), is a bijection. It thus follows from the above computation that δL(ϕ(eM)) =
(ϕ ⊗ ϕ)δH (eM), and so ϕ is a coalgebra map.

Proposition 2.6 implies that eM ≤ eM(C) in M, for all C ∈ IC(M); since K has
characteristic zero, it thus follows that ϕ is a bijective and thus an isomorphism. �
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For all M ∈M, we write pM for ϕ−1(eM) ∈ H .

Theorem 5.3 [5] If the field K has characteristic zero, then the matroid-minor Hopf
algebra H is cofree, with {pM : eM ∈ MI } a basis for the space P(H) of primitive
elements of H .

Proof The result follows immediately from Theorem 5.2 and the preceeding discus-
sion of the coalgebra L. �

Observe that, since eM ≤ eM(C), for all matroids M and chains C ∈ IC(M), we
may write

ϕ(eM) =
∑

eN≥eM

c(eM, eN) eN ,

where c(eM, eN) is the cardinality of the set {C ∈ IC(M) : M(C) ∼= N}. Hence we
may compute pM = ϕ−1(eM) by computing the inverse of the matrix whose entries
are the numbers c(eP , eQ), for all P ≤ Q in WM .

Example 5.4 Suppose that M is the 5-element matroid of Example 4.13. The isomor-
phism classes of matroids in WM are the following

We refer to these isomorphism classes, in the order shown here, as e1, . . . , e5. Note
that we have the following factorizations into irreducibles: e1 = eM is irreducible,
e2 = IZIIZ, e3 = ID, e4 = IIZIZ and e5 = U3,5 = IIIZZ, where we have writ-
ten I and Z for the isomorphism classes of the single point and loop, and D for
the irreducible isomorphism class U1,2 ⊕ U1,2 consisting of two double-points (see
Example 4.12), and we have suppressed the symbol � in writing free products of
isomorphism classes. Denoting by � the matrix whose entry in position (i, j) is
c(ei, ej ), for 1 ≤ i ≤ j , we have

� =

⎛

⎜
⎜
⎜
⎜
⎝

1 12 3 36 72
0 12 0 24 84
0 0 1 24 96
0 0 0 12 108
0 0 0 0 120

⎞

⎟
⎟
⎟
⎟
⎠

and �−1 =

⎛

⎜
⎜
⎜
⎜
⎝

1 −1 −3 5 −2
0 1

12 0 − 1
6

11
120

0 0 1 −2 1
0 0 0 1

12 − 3
40

0 0 0 0 1
120

⎞

⎟
⎟
⎟
⎟
⎠

.

It follows that the basis element pM = ϕ−1(eM) of P(H) is given by

pM = − 1 − 3 + 5 − 2 (5.5)

The following result, which is analogous to Theorem 4.11, characterizes the basis
elements pM of P(H).



62 J Algebr Comb (2008) 28: 43–64

Lemma 5.6 Suppose that x ∈ P(H) is of the form x = eM + ∑
N aN eN , where M

is irreducible and each N appearing in the sum is reducible. Then x = pM .

Proof For any matroid M , we have ϕ(eM) = ∑
eN≥eM

c(eM, eN)eN , where all iso-
morphism classes strictly greater than eM appearing in the sum are reducible. If M

is irreducible then c(eM, eM) = 1, and thus it follows that pM = ϕ−1(eM) is equal
to eM plus a linear combination of reducible isomorphism classes of matroids. Since
the set MI of irreducible isomorphism classes is linearly independent in H , and
{pM : M ∈ MI } is a basis for H , the result follows. �

Theorem 5.7 The basis elements pM for P(H) are given by

pM =
∑

N∈RM

μR(M,N)eN,

for all irreducible matroids M .

Proof The natural surjection π : C → H , from the matroid-minor coalgebra onto
the matroid-minor Hopf algebra, taking a matroid M to its isomorphism class eM ,
is clearly a coalgebra map, and so maps primitives to primitives. Thus, if M is irre-
ducible, it follows from Theorem 4.11 that

∑
N∈RM

μR(M,N)eN = π(rM) belongs
to P(H), and hence, by Lemma 5.6,

∑
N∈RM

μR(M,N)eN = pM . �

Example 5.8 Applying the projection π to the primitive element rM ∈ P(C) of Ex-
ample 4.13, we obtain the primitive element pM ∈ P(H) given by Eq. 5.5.

Example 5.9 Applying π to the primitive element rM of Example 4.14, we obtain
the primitive element

pM = − 3 − 1 − 1 + 2 − 3

+ 4 + 1 − 2 − 2 + 3 + 1

of H . This example exhibits the following curious phenomenon: the isomorphism
class of the three coatoms of the poset R̂M does not appear in pM , since these ma-
troids are the only elements of their isomorphism class belonging to R̂M and the sum
of their Möbius function values is zero. We thus have a situation in which certain
matroids are needed in order to provide all the requisite cancellations so that rM is
primitive in the matroid-minor coalgebra, while the isomorphism class of these ma-
troids is not required in order to make pM = π(rM) primitive in the matroid-minor
Hopf algebra.

6 Further work

One line of inquiry clearly suggested by the results of the last two sections is
that of developing techniques for computing the Möbius functions of the posets
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WM and RM . Due to the complexity of these posets, and the fact that so little is
known about them, this is likely to be very difficult. A more modest, but still worth-
while, goal would be to characterize the matroids belonging to R̂M = {N ∈ RM :
μR(M,N) 
= 0}. For M irreducible this amounts to identifying precisely those ma-
troids appearing with nonzero coefficient in the expression for the primitive element
rM in terms of the basis W of matroids.

A related problem, suggested by phenomenon of “disappearing” matroids ob-
served in Example 4.14, is to characterize those matroids appearing with nonzero
coefficient in rM whose isomorphism classes have zero coefficient in π(rM), where
π : C → H is the natural projection mapping a matroid to its isomorphism class. In
other words, we wish to find those matroids N in R̂M such that

∑
μR(M,N ′) = 0,

where the sum is over all N ′ ∈ R̂M such that N ′ ∼= N . Once we have a characteri-
zation of the matroids belonging to R̂M , a solution to this problem would provide
a characterization of the isomorphism classes that appear with nonzero coefficient
in pM .

We showed in Sect. 4 that rM and wM are primitive elements of C whenever M

is irreducible (and the results of that section imply that the converse is also true; if
M is reducible, then rM and wM are not primitive). The more general problem of
expressing the coproduct of C in terms of the bases {rM : M ∈ W} and {wM : M ∈
W} remains open. Examples we have looked at so far suggest that such expressions
will not be straightforward formulas along the lines of Eq. 5.1 but, rather, will involve
some form of Möbius inversion and rely on the fairly subtle interplay between the free
product operation and the weak order on matroids. We also note that C is not cofree
(since it follows from Proposition 3.1 that the dual algebra C∗ is not free), and thus
the coproduct of C cannot take the precise form of Eq. 5.1.

According to Theorem 5.2 and Eq. 5.1, the coproduct of H , expressed in terms of
the basis {pM : M ∈M} has the form

δ(pM) =
k∑

i=0

pM1 � · · ·�Mi
⊗ pMi+1 � · · ·�Mk

,

whenever M = M1 � · · · � Mk , with all Mi irreducible. Thus, in terms of this basis
(and keeping in mind unique factorization, Theorem 2.1), the cofreeness of H be-
comes apparent. We showed in Theorem 5.7 that the basis element rM of C maps to
pM under the projection π : C → H , for irreducible M , thus giving, in this case, a
combinatorial interpretation for the coefficients of pM , as sums of Möbius function
values. The result does not hold for general M , however; indeed, the coefficients of
isomorphism classes appearing in pM are not even necessarily integers when M is
reducible (see Example 5.4). It would be of interest to find a generalization of The-
orem 5.7 that holds for all matroids. This would amount to determining elements
of C, expressed in terms of the basis {rN : N ∈ W} (or perhaps in terms of the basis
{wN : N ∈ W}) that project to pM , for all matroids M . A combinatorial description
of such elements would provide, in turn, a combinatorial interpretation of all coeffi-
cients of the basis elements pM .

Our proof of Theorem 5.7 is quite indirect, relying on the uniqueness assertions of
Theorem 4.11 and Lemma 5.6, then using only the fact that rM and pM are primitive,
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for M irreducible. A direct proof of this result might reveal useful information about
the relationship between the posets RM and {eN : eN ≥ eM in M}.

We mention finally the project of determining the precise manner in which the
matroid-minor Hopf algebra and coalgebra fit into the framework developed by
Aguiar and Sottile in [3] and [2]. A first step is to look for natural mappings be-
tween H , and/or C, and the Hopf algebras of symmetric functions, permutations, and
planar binary trees.
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