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Abstract A few years ago Kramer and Laubenbacher introduced a discrete notion of
homotopy for simplicial complexes. In this paper, we compute the discrete fundamen-
tal group of the order complex of the Boolean lattice. As it turns out, it is equivalent
to computing the discrete homotopy group of the 1-skeleton of the permutahedron.
To compute this group we introduce combinatorial techniques that we believe will be
helpful in computing discrete fundamental groups of other polytopes. More precisely,
we use the language of words, over the alphabet of simple transpositions, to obtain
conditions that are necessary and sufficient to characterize the equivalence classes of
cycles. The proof requires only simple combinatorial arguments. As a corollary, we
also obtain a combinatorial proof of the fact that the first Betti number of the com-
plement of the 3-equal arrangement is equal to 2n−3(n2 − 5n + 8) − 1. This formula
was originally obtained by Björner and Welker in 1995.

Keywords Permutahedron · Boolean lattice · Homotopy groups · A-theory ·
Subspace arrangements · Symmetric group

1 Introduction

In this paper we give an application of a discrete notion of homotopy theory (A-theory
hereafter) to subspace arrangements, which yields an unexpected connection between
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word problems on the symmetric group and the computation of the first Betti number
of the k-equal arrangement in R

n. More importantly, in order to compute those Betti
numbers we were led to introduce new combinatorial techniques for evaluating the
rank of the discrete fundamental group of the 1-skeleton of the permutahedron. It is
those techniques that we believe will be useful for computing the discrete fundamen-
tal group of the 1-skeleton of other polytopes.

Since the early 1980’s, subspace arrangements have been extensively studied both
by topologists and combinatorialists. One of the reasons for such activities is the
fact that certain complexity theory problems arising in computer science have a re-
formulation in terms of subspace arrangements, thus yielding a beautiful interaction
between combinatorics, topology, geometry, and complexity theory. Björner gives a
nice account of this interaction in [6] and [7].

On the other hand, A-theory is a recently introduced notion of discrete homo-
topy theory for graphs and simplicial complexes that was originally developed, in the
mid 90’s, in the context of social and technological networks. See [3] for a survey of
this topic, and [4, 12–15], for applications. More recently, Dochtermann introduced
a different notion of homotopy of graph maps. His notion is based on the categori-
cal product of graphs rather than on the Cartesian product. For a nice account of the
relation between these two notions of homotopy see [10] and [11].

In 2001, Babson [3] (and independently Björner [5]) proved that the discrete fun-
damental A-group, An−3

1 (�(Bn)), of the order complex of the boolean lattice is iso-
morphic to the fundamental group, π1(Mn,3), of the complement, Mn,3, of the real
3-equal arrangement. Namely,

An−3
1 (�(Bn)) � π1(Mn,3), (1)

where Mn,3 = R
n − Vn,3 with

Vn,3 = {(x1, x2, . . . , xn) ∈ R
n|xi1 = xi2 = xi3, for some 1 ≤ i1 < i2 < i3 ≤ n}.

In [9], Björner and Welker showed that in fact the cohomology groups, Hi(Mn,k),
of the complement of the k-equal arrangements are free. Furthermore, they give for-
mulae for some of the non-vanishing rank of the cohomology groups. From these
formulae one can deduce that the first Betti number for the (real) complement of the
3-equal arrangement is equal to

rank H 1(Mn,3) = 2n−3(n2 − 5n + 8) − 1.

Their proof is quite intricate and relies on the Goresky-MacPherson and the Ziegler-
Živaljević formulae and on some combinatorial methods for computing the homotopy
type of partially ordered sets. A different approach, based on non-pure shellability of
the lattice πn,k (the lattice of intersections of the subspaces associated with the k-
equal arrangement) can be found in [8].

Because of the above isomorphism (1), one realizes that computing the rank of
the abelianization of An−3

1 (�(Bn)) will also yield the first Betti number of Mn,3. We
show here how to compute this rank using only combinatorial arguments on �(Bn),
the 1-skeleton of the permutahedron, a graph that A-theory associates with �(Bn).
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As it turns out, every discrete homotopy argument can be reformulated in terms of
word problems for the symmetric group Sn, making the arguments simple and, we
hope, shedding new light on the theory of subspace arrangements.

In Section 2, we review the fundamental notions of A-theory that are needed
throughout this article. In a nutshell, the discrete fundamental group, Aq

1(�) of a sim-
plicial complex � is a certain quotient of its (classical) fundamental group, π1(�).
In order to compute the rank of this group a graph �� is constructed. Next, view-
ing �� as a 1-dimensional simplicial complex, one attaches 2-cells to all of its 3
and 4-cycles, after which it suffices to compute the fundamental group of this 2-cell
complex. In practice, one is left to count the number of equivalence classes (under an
appropriate equivalence relation) of cycles of �� of length at least 5, which is equal
to rank A

q

1(�)ab when the group is free.
In the case of the order complex of the boolean lattice, �(Bn), the associated graph

is �(Bn). The n! vertices of �(Bn) can be identified with the permutations of the sym-
metric group Sn, and there is an edge between two permutations σ and τ if there exists
a simple transposition, si = (i i + 1), such that σ = τsi . Note, we multiply permuta-
tions from right to left. Moreover, in order to compute the rank of An−3

1 (�(Bn))
ab it

will suffice to find the number of equivalence classes of 6-cycles in �(Bn). Note that
in �(Bn) every primitive 6-cycle (one that is not the concatenation of two 4-cycles)
can be associated with a pair of consecutive simple transpositions si and si+1. While
the permutahedron is a well studied polytope (see for e.g. [18]), some of the prop-
erties needed to compute the above mentioned rank come to light when we realize
that �(Bn) can be obtained by taking the Cartesian product of smaller graphs and
then removing some of the edges. The crux of the argument relies on the fact that the
maximal chains of the direct product of two graded posets L1, L2 can be expressed
as a shuffle of maximal chains from L1 and L2. The various constructions involved
are described in Sections 3 and 4. For greater details the interested reader may wish
to consult the second author’s Ph.D. thesis [16].

Section 5 contains the main theorem of this paper. Namely, (and somewhat infor-
mally) two 6-cycles, C1 and C2 of �(Bn) associated with the simple transpositions si
and si+1 are in the same equivalence class if and only if there exists an integer k ≥ 1
such that

C2 = C1τ1 . . . τk

where the τj are transpositions disjoint from si and si+1. From this result it is rela-
tively easy to compute the total number of equivalence classes of 6-cycles, that is

rank An−3
1 (�(Bn))

ab = rank H 1(Mn,3) = 2n−3(n2 − 5n + 8) − 1.

In order to prove the main theorem we translate the notion of G-homotopic loops
in �(Bn) to an equivalent notion on a set of words (on the alphabet S of all sim-
ple transpositions of Sn) that are naturally associated to the loops in �(Bn). Two
words are equivalent if one can be obtained from the other by a series of transforma-
tions involving only operations of the form s2

j = 1 and sksj = sj sk for |k − j | ≥ 2.
This translation facilitates the burden of the proof of the main result. In this paper,
all transpositions are simple, and thus we shall write transposition in lieu of simple
transposition.
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2 Discrete homotopy theory for graphs and simplicial complexes

In this section we briefly review some of the basic concepts of discrete homotopy
that will be needed throughout the rest of this paper. All details can be found in [2]
and [1].

Definition 2.1 Let � = (V ,E) and �′ = (V ′,E′) be simple graphs, with no loops or
parallel edges.

(1) A graph map f : � → �′ is a set map V → V ′ that preserves adjacency, that is, if
vw ∈ E, then either f (v) is adjacent to f (w) in �′, denoted by f (v) ∼�′ f (w),
or f (v) = f (w).

(2) Let v ∈ V and v′ ∈ V ′ be distinguished vertices. A based graph map is a graph
map f : (�, v) → (�′, v′) such that f (v) = v′.

We note that if � is connected, then the image of f is a connected subgraph of �′.

Definition 2.2 The Cartesian product ���′ of two graphs, � and �′, is the graph
with vertex set V × V ′ and an edge between (v, v′) and (w,w′) if either

(1) v = w and v′ ∼�′ w′, or
(2) v ∼� w and v′ = w′.

Let In be the path on n+ 1 vertices, with vertices labeled from 0 to n, and let I be
the infinite path with vertices labeled 0,1,2, . . . . Two based graph maps f,g : � →
�′ of simple graphs are G-homotopic (written f �G g) relative to v′

0 and v′
1, if there

is an integer n and a graph map F : ��In → �′ such that

(1) F(v,0) = f (v) and F(v,n) = g(v) for all v ∈ V

(2) F(v0, j) = v′
0 and F(v1, j) = v′

1 for 0 ≤ j ≤ n.

Given a simple graph � with distinguished vertex v0, let AG
1 (�, v0) be the set of all

equivalence classes of based graph maps f : I → � such that f (0) = v0 and f (m) =
v0 for all m ≥ Nf , where Nf is a positive integer that depends on f . Concatenation
of loops is well-defined on this set and it is easy to show that AG

1 (�, v0) is indeed
a group. As in classical topology, if � is connected, the discrete fundamental group
AG

1 (�, v0) is independent of the choice of base vertex. In this case, we refer to AG
1 (�)

simply as the A1-group of �.
Figure 1 shows an example of two G-homotopic graph maps, f,g : I → � where

� is a cycle of length 4. Graph map f corresponds to going around the 4-cycle once,
while g is the constant map v0. The vertices of the graph (grid) I�I2 are labeled with
the image of a G-homotopy from f to g. The G-homotopy F is itself a graph map,
and as such must preserve all adjacencies. Thus for each horizontal or vertical edge
(vi, vj ) in the grid, we must have either (vi, vj ) is an edge of �, or vi = vj .

Furthermore, it is straightforward to show that any based graph map from I to the
4-cycle is G-homotopic to the constant map g, so the A1-group of the 4-cycle, and
similarly of the 3-cycle, is trivial. However, a graph map that maps onto a cycle of
length ≥ 5 is not G-homotopic to the constant map. In fact, it can be shown that if �

is a cycle of length at least 5, then AG
1 (�) � Z.
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Fig. 1 A G-homotopy from f to g

In [2], Barcelo et al. also show that AG
1 (�, v) � π1(�, v)/N , where π1(�, v) is the

classical fundamental group of � when viewed as a 1-dimensional simplicial complex
and N is the normal subgroup generated by 3- and 4-cycles. Thus, computing the
AG

1 -group of a graph is equivalent to attaching 2-cells to the 3- and 4-cycles of the
graph and computing the classical fundamental group of the resulting 2-cell complex.

There is an equivalent definition of discrete homotopy for simplicial complexes
which includes a graded version of the discrete fundamental group, related to the di-
mension of the intersection of simplices. Let � be a simplicial complex of dimension
d, let 0 ≤ q ≤ d be a fixed integer, and let σ0 ∈ � be a maximal simplex (with respect
to inclusion) of dimension at least q . A q-chain in � is a sequence of simplices (not
necessarily distinct),

σ,σ1, σ2, . . . , σn, τ,

such that any two consecutive simplices share a q-face. A q-loop in � based at σ0
is a q-chain beginning and ending at σ0. Two such loops are equivalent if they can
be deformed into each other without breaking any q-dimensional connections. More
precisely, the equivalence relation, �A, on the collection of q-loops in �, based at σ0,
is generated by the following two conditions.

(1) The q-loop

(σ ) = (σ0, . . . , σi, σi+1, . . . , σn, σ0)

is equivalent to the q-loop

(σ ′) = (σ0, . . . , σi, σi, σi+1, . . . , σn, σ0).

That is, we can “stretch” loops by repeating a simplex without changing its equiv-
alence class.
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Fig. 2 Equivalent q-loops

(2) Suppose that (σ ) and (τ ) have the same length. They are equivalent if there is a
diagram as in Fig. 2. The diagram is to be interpreted as follows. A horizontal
or vertical edge between two simplices indicates that they share a q-face. Each
horizontal row in the diagram is a q-loop based at σ0. Thus, (σ ) is equivalent to
(τ ) if there is a sequence of q-loops based at σ0 connecting them.

This equivalence relation is called A-homotopy, and its ensuing set of equivalence
classes is denoted by A

q

1(�,σ0). Concatenation of q-loops yields a group structure
on A

q

1(�,σ0). In [2], it was shown that in fact A
q

1(�,σ0) ∼= π1(�
q
�, v0)/N , where �

q
�

is the graph whose vertices correspond to all maximal simplices of � of dimension at
least q . Two vertices vσ and wτ in �

q
� are adjacent if and only if the corresponding

simplices σ and τ share (at least) a q-face, and v0 is the distinguished vertex of �
q
�

corresponding to σ0. One sees that there is a close relation between the AG
1 -groups

defined for graphs, and the A
q

1 -groups defined for simplicial complexes. Indeed the
relation is given by

A
q

1(�,σ0) ∼= AG
1 (�

q
�, v0),

thus G-homotopy and A-homotopy are equivalent concepts.

3 The product of lattices

Recall that one of our goals is to use the techniques of A-theory to compute the first
Betti number of Mn,3, the complement of the 3-equal arrangement. As mentioned in
the introduction, in [3] it was shown that

An−3
1 (�(Bn)) � π1(Mn,3),

where �(Bn) is the order complex of the boolean lattice, Bn − {0̂, 1̂}. Thus to find
rank H 1(Mn,3) we will need to count the number of distinct equivalence classes of
cycles, [C], in the graph �n−3

�(Bn). From here on, for any poset L of rank r , we will

only be interested in its top A
q

1(�(L)), which is Ar−3
1 (�(L)), and thus we shall

write �(L) in lieu of �
q

�(L). The vertices of �(Bn) correspond to the maximal faces

of �(Bn), which are the maximal chains in Bn − {0̂, 1̂}, which further correspond
to the permutations of Sn. Two vertices in �(Bn) are adjacent if the two maximal
chains C1 and C2 differ in precisely one element, in which case we also say that
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Fig. 3 The 1-skeleton of the
permutahedron P3

the chains are adjacent, C1 ∼ C2. Equivalently, the associated permutations differ by
multiplication on the right by a (simple) transposition si for some 1 ≤ i ≤ n − 1.

We note that �(Bn) is the 1-skeleton of the permutahedron Pn−1 [18]; Fig. 3
represents �(B4). Any path in �(Bn) corresponds to a product of transpositions,
si1, . . . sip = w. We view w both as a word in the alphabet S, as well as an element of
the symmetric group Sn. Thus any cycle is a representation of the identity as a prod-
uct of transpositions. We can see that if we attach 2-cells to the 4-cycles in �(B4), we
are left with eight 6-cycles. In general, in order to compute the rank of AG

1 (�(Bn))
ab ,

we will need to count the distinct equivalence classes of cycles, with primitive 6-
cycles as representatives. Moreover, AG

1 (�(B4))
ab is a free group (see [3]) on seven

generators, not eight, so unfortunately simply counting 6-cycles will not suffice.
The breakthrough that allows us to understand the G-homotopy relation on �(Bn)

is the simple observation that Bn can be viewed as the direct product of smaller
boolean lattices; in fact, Bn � Bn

1 . It is useful to express this isomorphism as
Bn � Bn−1 × B1, because the graph �(B1) is a single vertex corresponding to the
empty chain. However, clearly �(Bn) 	� �(Bn−1)��(B1), since �(Bn) has n! ver-
tices, compared to (n − 1)! vertices in �(Bn−1)��(B1). In general, �(L1 × L2) 	�
�(L1)��(L2) for nontrivial posets L1 and L2, nevertheless, there is a relationship
between the graphs. We now introduce a method to obtain �(L1 × L2) from �(L1)

and �(L2).
Each maximal chain in L1 ×L2, may be viewed as a combination of one maximal

chain from each of L1 and L2; however, those two chains can be combined in more
than one way (for more details on product of posets, see [17]). Thus, �(L1)��(L2)

is a subgraph of �(L1 × L2), but we must also find a way to reflect the various
combinations of chains that are possible.

To remedy this problem, we first introduce a new graph, the shuffle graph,
with vertices corresponding to each possible shuffle of a pair of maximal chains
from L1 and L2. Next, we construct the Cartesian product of the shuffle graph with
�(L1)��(L2). This solves the problem of too few vertices, but replaces it with a new
obstacle of too many edges. Finally, we determine which edges are superfluous and
remove them so that the resulting graph is the desired �(L1 × L2). In the following
section, we then apply this construction to Bn−1 × B1 to create a representation of
the permutahedron, �(Bn), where we can better understand its structure.
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Fig. 4 The shuffle of C1
and C2 associated with the
3-sequence (1,2,2) and
2-sequence (0,1)

Step 1: The shuffle graph, �
k,l
shuffle

To construct �(L1 × L2), we begin by considering the ways in which the edges of
chains from L1 and L2 may be combined to create a new chain. Let C1 and C2

be maximal chains in two graded posets L1 and L2 of rank k and l, respectively.
A shuffle of the edges of C1 and C2 creates a maximal chain C in L1 × L2. In C,
label each edge from C1 with the number of edges from C2 below it in the shuffle.
The ordered, weakly increasing collection of labels, κ = (a1, a2, . . . , ak), is the k-
sequence associated with that shuffle. Similarly, label each edge from C2 with the
number of edges from C1 below it in the shuffle and the ordered collection of labels
is an l-sequence, λ.

We now introduce the shuffle graph, �k,l
shuffle, from which we will construct �(L1 ×

L2). The vertices of �
k,l
shuffle correspond to the

(
k+l
k

)
shuffles of chains of L1 and L2 of

length k and l respectively. Label each vertex with the pair (κ , λ) that corresponds to
each shuffle. A shuffle is uniquely determined by either its k-sequence or l-sequence,
but both will be useful later in the construction of �(L1 × L2).

Definition 3.1 Two k-sequences, κ = (a1, . . . ak) and κ ′ = (a′
1, . . . a

′
k) are adjacent,

κ ∼ κ ′, if and only if

(1) ai = a′
i ± 1 for some 1 ≤ i ≤ k, and

(2) aj = a′
j ∀j 	= i.

Two shuffles of �
k,l
shuffle are said to be adjacent if their k-sequences are adjacent,

κ ∼ κ ′.

We note that if two k-sequences are adjacent then the associated l-sequences are
also adjacent, so we only need to refer to one of the sequences when determining
if two shuffles are adjacent. A pair of chains in L1 × L2 resulting from the use of
adjacent shuffles differ by a diamond (formed where the order of the pair of edges
is reversed), as shown in Fig. 5. Figure 6 shows �

3,2
shuffle with sequences for the ten

possible shuffles of C1 and C2 from Fig. 5.
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Fig. 5 Chains C1 and C2 combined using adjacent shuffles with 3-sequences (1,2,2) and (1,1,2)

Fig. 6 �
3,2
shuffle labeled with

3-sequences and 2-sequences

Step 2: The intermediate graph �̃(L1 × L2)

Let �̃(L1 ×L2) = �(L1)��(L2)��
k,l
shuffle. Label each vertex of �̃(L1 ×L2) with the

ordered triple (C1,C2, (κ, λ)), for all maximal chains Ci ∈ Li , i = 1,2 and for all
possible shuffles (κ,λ). The set of vertices of �̃(L1 ×L2) corresponds to all possible
shuffles of pairs of maximal chains from L1 and L2, thus there is a one-to-one corre-
spondence between the vertices of �̃(L1 × L2) and the maximal chains of L1 × L2.
From the definition of a Cartesian product of graphs, two vertices in �̃(L1 × L2),
(C1,C2, (κ, λ)) and (C′

1,C
′
2, (κ

′, λ′)), are adjacent if they satisfy precisely one of the
following conditions:

(1) C1 = C′
1, C2 = C′

2, and κ ∼ κ ′

(2) C1 = C′
1, C2 ∼ C′

2 in L2, and κ = κ ′

(3) C1 ∼ C′
1 in L1, C2 = C′

2, and κ = κ ′.

While �̃(L1 × L2) has the right number of vertices, it has too many edges. For
example, Fig. 7 shows the possible result of shuffling C1 with adjacent chains C2
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Fig. 7 Combining C1 with C2 and C′
2 using two different shuffles

and C′
2. In one case, the shuffle results in a pair of adjacent chains in L1 × L2. How-

ever, using another shuffle results in chains that differ at three ranks in L1 × L2. This
difficulty is easily remedied in Step 3 by removing a well-defined set of edges, de-
termined by the rank where a pair of adjacent chains in one poset differs, along with
the k- and l-sequences of the shuffle used.

Step 3: Removing edges from �̃(L1 × L2)

Each edge in �̃(L1 × L2) can be classified as Type 1, 2, or 3, according to which of
the above conditions is satisfied by (C1,C2, (κ, λ)) and (C′

1,C
′
2, (κ

′, λ′)). The next
step in the process of constructing �(L1 × L2) is to examine each type of edge in
�̃(L1 ×L2), to determine which ones are between a pair of adjacent chains in L1 ×L2

and which are not. Once edges corresponding to pairs of non-adjacent chains have
been removed from the graph, the result will be the desired final graph �(L1 × L2).

Type 1 edges. C1 = C′
1, C2 = C′

2, and κ ∼ κ ′. It is easy to see that none of these
edges need to be removed. See Fig. 5 for an example of this type.

Type 2 edges. C1 = C′
1, C2 ∼ C′

2 in L2, and κ = κ ′. The diagram of C2 and C′
2

contains a diamond in L2 at some rank i where the two chains differ. When we shuffle
C2 and C′

2 with C1, this diamond may be stretched by the insertion of edges from C1,
depending on which shuffle is used. If i /∈ κ then the resulting chains are adjacent;
but if i ∈ κ then the resulting chains are not adjacent and the edge must be removed.
Figure 7 shows the result of combining C1 with both C2 and C′

2 using the shuffles
associated with 3-sequences (0,2,2) and (0,1,1). Chains C2 and C′

2 differ at rank 1,
but (0,2,2) does not contain an element 1, so the shuffle does not stretch the diamond
and the resulting chains are adjacent in L1 ×L2. However, the shuffle associated with
(0,1,1) stretches the diamond by inserting two edges from C1, so this Type 2 edge
must be removed from �̃(L1 × L2).

Type 3 edges. C1 ∼ C′
1 in L1, C2 = C′

2, and κ = κ ′. As in the previous case, we
must first identify the rank i where C1 and C′

1 differ. If i ∈ λ then the chains are not
adjacent in L1 × L2 and the edge is removed from �̃(L1 × L2).

This completes the determination of which edges to remove from �̃(L1 × L2),
resulting in the final graph �(L1 × L2).
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4 The Boolean lattice

While in [2], it was shown that for any connected graphs �1 and �2, we have
that AG

1 (�1��2) ∼= AG
1 (�1) × AG

1 (�2), it is not immediately clear from the con-
struction of �(L1 × L2) if there is an easily defined relationship between the
groups AG

1 (�(L1)), AG
1 (�(L2)), and AG

1 (�(L1 × L2)). However, applying the con-
struction defined in the previous section to Bn leads to a better understanding of
�(Bn) that allows us to use combinatorial methods to compute the abelianization
of its A1-group. We now reconstruct �(Bn) and characterize all of its primitive 6-
cycles.

In Fig. 8, the vertices of �(B3) and �̃(B4) are labeled with permutations writ-
ten in one line notation. The graph �(B1) consists of a single vertex, thus there are
no Type 2 edges in �̃(Bn) and we can simply consider the 1-sequences of �

3,1
shuffle.

Labeling �(B1) with the element 4 enables us to see the relationship between the
1-sequences labeling the shuffle graph and the position of 4 in the resulting permuta-
tions in S4.

The graph in Fig. 9 is another representation of the permutahedron we saw in
Fig. 3. The vertices are labeled with permutations of S4, written in one line notation,
and each edge corresponds to a (simple) transposition. �(B4) illustrates the following
(most of them well-known) properties of �(Bn). All properties easily follow from the
definition of the graph.

Fig. 8 The intermediate
graph �̃(B4)
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Fig. 9 The final graph �(B4),
which corresponds to the
1-skeleton of the
permutahedron P3

Properties of �(Bn)

(1) The graph �(Bn) is (n − 1)-regular, with each vertex incident to precisely one
edge for each of the n − 1 transpositions si ∈ S, 1 ≤ i ≤ n − 1. Label each edge
with its associated transposition.

(2) Let level i be the set of all permutations σ ∈ Sn such that σ−1(n) = i. The graph
has n levels, and each level was initially a copy of �(Bn−1) before we removed
edges from �̃(Bn).

(3) The graph �(Bn) is bipartite, with vertices partitioned into even and odd permu-
tations, and all cycles in the graph are of even length.

(4) The sequence of transpositions labeling the edges of a cycle in �(Bn) form a
representation of the identity in Sn. Each 4-cycle in the graph corresponds to
(sksj )

2 for some 1 ≤ k, j ≤ n − 1, where |j − k| ≥ 2. Each primitive 6-cycle
corresponds to (sj sj+1)

3 for some 1 ≤ j ≤ n − 2.

Due to the structure of Sn, all other cycles of length ≥ 8 can be expressed as the
concatenation of 4- and 6-cycles; we can therefore limit our investigation to prim-
itive 6-cycles. We want to count the G-homotopy equivalence classes of 6-cycles
in Bn, which yields the rank of AG

1 (�(Bn))
ab . The following definition gives us an

additional description of edges and cycles in �(Bn) that will help us determine equiv-
alence classes of 6-cycles.

Definition 4.1

(1) An edge in �(Bn) between σ and τ is horizontal if σ−1(n) = τ−1(n), or vertical
if σ−1(n) = τ−1(n) ± 1.

(2) All vertices in a horizontal 6-cycle are at the same level. A vertical 6-cycle con-
tains two vertices in each of three consecutive levels.
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We note that all vertical edges between levels i and i + 1 are labeled with si .
We identify each vertical 6-cycle with the middle of its three levels. For example,
1243-2143-2413-4213-4123-1423 is a vertical 6-cycle at level 2 in �(B4), and its
edges are labeled with s1 and s2.

Let C be a cycle in �(Bn−1). There are n copies of C in �̃(Bn), one in each level
of the graph. Each copy of C in �̃(Bn) is a horizontal cycle that is connected to
the copies in neighboring levels by vertical edges, forming a net of vertical 4-cycles
connecting all of the copies. For example, we see in Fig. 8 that the 6-cycles forming
levels 1 and 4 are connected by such a net. Removing vertical edges from �̃(Bn) to
form �(Bn) may remove edges from this net, however, it is easy to see that the copies
of C remain connected by a net of vertical 4- and 6-cycles, as seen in Fig. 9.

5 Equivalence classes

In this section, we describe how to distinguish between different G-homotopy equiv-
alence classes in �(Bn) so that we may count them. Specifically, we consider graph
maps whose images in �(Bn) are primitive 6-cycles connected to the base vertex
by a path, and we determine when they are G-homotopic to one another. We denote
this relationship by C1 �G C2, referring to the 6-cycles in the images rather than the
graph maps themselves.

First, we show that if two 6-cycles are in the same equivalence class then they
are associated with the same pair of transpositions, si and si+1, for some i, 1 ≤
i ≤ n − 1. We then prove a stronger theorem: 6-cycles C1 and C2 are in the same
equivalence class if and only if they differ by a sequence of transpositions disjoint
from si and si+1. This theorem, when combined with our new understanding of the
structure of �(Bn), gives us the means to describe the equivalence classes, and to find
a formula for the rank of AG

1 (�(Bn))
ab .

Let C1 and C2 be distinct primitive 6-cycles in �(Bn). Let σ0 be the base per-
mutation and let P1 and P2 be paths from σ0 to C1 and C2, respectively. Then by
definition C1 �G C2 if and only if there exists a G-homotopy grid such that the first
row is P1C1P

−1
1 and the last row is P2C2P

−1
2 .

Suppose that C1 �G C2 and we have a G-homotopy grid from P1C1P
−1
1 to

P2C2P
−1
2 . We label each vertex in the grid with the corresponding permutation in Sn.

Recall that a G-homotopy is itself a graph map that preserves adjacency, thus two
vertices, σ1 and σ2, are adjacent in the grid if and only if σ1 = σ2, or σ2 = σ1si for
some si , 1 ≤ i ≤ n − 1. If σ2 = σ1si , then we label the edge with si ; if σ1 = σ2 the

Fig. 10 Two 6-cycles based
at v0
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edge remains unlabeled. Each row in the grid is a loop based at σ0, to which we asso-
ciate a word in Sn formed by the sequence of transpositions labeling the edges from
left to right in the row. Let

W1 = si1si2 . . . sim(sisi+1)
3sim . . . si2si1 and

W2 = s′
i1
s′
i2

. . . s′
in
(sj sj+1)

3s′
in

. . . s′
i2
s′
i1

be the words associated with P1C1P
−1
1 and P2C2P

−1
2 , respectively. We note that

each word is a non-reduced representation of the identity and σ0W1 and σ0W2 are
based words. Thus a G-homotopy between primitive 6-cycles C1 and C2 corresponds
to a sequence of operations that transform W1 into W2.

We now consider the possible changes that we may make from one row to the
next which preserve the G-homotopy relation, and describe each change in terms of
operations on the associated words. Two graph maps are G-homotopic if they differ
by 3- and 4-cycles, however, �(Bn) contains no 3-cycles. Furthermore, we saw in
Fig. 1 that it is not possible to contract a 4-cycle in a single step, thus the changes
described below are the only permissible changes.

(T1) Repeating vertices. The G-homotopy relation is preserved by the repetition of
a vertex in the image of a row, and the corresponding word does not change.

(T2) Traversing an edge in both directions. Traversing an edge once in each di-
rection also preserves the G-homotopy relation and is equivalent to inserting s2

i

into the associated word. Similarly, we may reverse this by removing such an
edge, and deleting s2

i from the word.

Fig. 11 Repeating a vertex

Fig. 12 Traversing an edge in
both directions
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Fig. 13 Exchanging pairs of
edges

(T3) Exchanging pairs of edges of a 4-cycle. Since 4-cycles are G-homotopic to
the identity, we can replace two consecutive edges of a 4-cycle with the other
two edges in the cycle. Recall that a 4-cycle is associated with sj and sk , with
|j − k| ≥ 2. We see that the effect of this change is to commute sj and sk in the
word. See Fig. 13.

A key feature of each of the changes described above is that they preserve the par-
ity of the number of transpositions si (for each 1 ≤ i ≤ n−1) in the associated words.
We also note that these changes do not include the use of the relation (sj sj+1)

3 = 1
because that would involve exchanging consecutive edges of a primitive 6-cycle with
the remaining edges. This would obviously not preserve G-homotopy because any
cycle of length ≥ 5 is not contractible to a single vertex.

Note that the above two types of operations, (T2) and (T3) generate an equivalence
relation on the set σ0W of (based) loop-words, where

W = {W = sj1sj2 . . . sj2k
,∀k ≥ 1 | sji

∈ S, W = 1}.
Two based words σ0W and σ0W

′ are equivalent, σ0W ∼ σ0W
′, if one can be obtained

from the other by a sequence of (T2) and (T3) operations. Furthermore, two 6-cycles
based at σ0, C1 and C2, are G-homotopic if and only if their corresponding words,
σ0W1 and σ0W2 are equivalent. Therefore we can continue our investigation of equiv-
alence classes of 6-cycles using the language of graphs or words interchangeably.

Proposition 5.1 Let C1 and C2 be two G-homotopic primitive 6-cycles in �(Bn). If
C1 �G C2, then C1 = C2 = (sisi+1)

3, for some i, 1 ≤ i ≤ n − 2.

Proof For i = 1,2, let Pi be a path from σ0 to Ci . By assumption P1C1P
−1
1 �G

P2C2P
−1
2 , and the corresponding words w1(sisi+1)

3w−1
1 , w2(sj sj+1)

3w−1
2 are

equivalent. This means that we must be able to transform the first word into the sec-
ond using only (T2) and (T3) operations. A simple parity argument (si appears an
odd number of times in w1(sisi+1)

3w−1
1 ) shows that this is possible only if i = j . �

Association with the same pair of transpositions is a necessary condition for G-
homotopy of 6-cycles, but it turns out not to be sufficient. For 1 ≤ i ≤ 6, let σi and
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γi be the vertices of the cycles C1 and C2 respectively. Since �(Bn) is connected
there exists a path from C1 to C2. Let τi ∈ S and let τ1, τ2, . . . τk be a shortest path
from C1 to C2. Moreover, assume that γ1 = σ1τ1τ2 . . . τk , and that we go around
the cycles C1 and C2 in the si direction. That is, σ2 = σ1si , σ3 = σ1sisi+1 and so
on. Similarly γ2 = γ1si , γ3 = γ1sisi+1, etc. With this notation in mind we have the
following theorem.

Theorem 5.2 Let C1 and C2 be two distinct primitive 6-cycles in �(Bn). Then C1 �G

C2 iff there exists k ≥ 1, and transpositions τ1τ2 . . . τk disjoint from si and si+1, such
that γi = σiτ1 . . . τk , for all i = 1, . . .6.

Proof The first part of the proof is constructive: assuming C2 = C1τ1 . . . τk , we are
able to construct a G-homotopy that connects C1 to C2 by a net of 4-cycles of type
(siτj )

2 or (si+1τj )
2. Note that if τj is not disjoint from si and si+1, we do not get

4-cycles. Figure 14 is the image of one such G-homotopy from C1 to C2 = C1τ1τ2τ3.
For the second part of the proof assume that C1 and C2 are G-homotopic primitive

6-cycles, thus C1 = C2 = (sisi+1)
3, for some 1 ≤ i ≤ n − 1. Let P be a shortest path

from C1 to C2, with the vertices of both cycles as described above the theorem. See
Fig. 15.

While neither C1 nor C2 can be contracted, the loop C1PC−1
2 P −1 is contractible

to a single vertex. Let w = τ1τ2 . . . τk be the word corresponding to P , thus

W = (sisi+1)
3w(si+1si)

3w−1

corresponds to C1PC−1
2 P −1. Since as a permutation W = 1 we must be able to

reduce the word W to the empty word using only the relations s2
j = 1 and sj sk = sksj

if |j − k| ≥ 2.
Our goal is to show that w consists solely of transpositions disjoint from si

and si+1, and consequently that γi = σiτ1τ2 . . . τk , for all 1 ≤ i ≤ 6. This is proven
by first showing that we must be able to reduce W to the empty word without having
to insert sj , for any 1 ≤ j ≤ n − 1. Next, we consider the types of transpositions that

Fig. 14 A G-homotopy from C1 to C2
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Fig. 15 The loop C1PC−1
2 P−1 can be contracted to a single vertex

may occur in w, and show that it may only contain those that are disjoint from si
and si+1. This part of the proof requires checking many cases. Once we have shown
that w = τ1τ2 . . . τk , where each of the τj are disjoint from si and si+1, then we can
see that

γ1 = σ1τ1τ2 . . . τk and

γ2 = γ1si

= σ1τ1τ2 . . . τksi

= σ1siτ1τ2 . . . τk

= σ2τ1τ2 . . . τk.

By a similar argument, γj = σj τ1τ2 . . . τk for 3 ≤ j ≤ 6.

Insertion of s2
j is not needed.

Suppose we insert s2
j , at some step in the process. By the end of the process, each

of these two sj will have been removed. If those two sj were removed together as a
single pair, then they did not assist us in removing other occurrences of sj , so it was
not necessary to insert them at all.

If the sj were removed separately, each paired with another occurrence of sj ,
then whatever commuting that was done to put them into position next to their new
partners could have been done in the opposite direction by the partner transpositions,
which we could then remove. Thus we must be able to reduce W to the empty word
without inserting transpositions.

The word w does not contain si−1 or si+2.

Without loss of generality, suppose there is at least one si−1 in w. Since w is a shortest
path the only way to cancel that si−1 is by pairing it with the first si−1 in w−1. But
there is an odd number of transpositions si between the last occurrence of si−1 in
w and its first occurrence in w−1; three from (si+1s1)

3 and an even number, if any,
from w and w−1. Thus, even if there were to be some cancellation there will be at
least one occurrence of si left between the si−1, preventing their pairing.
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The word w does not contain si or si+1.

Assume now that there are some si or si+1 in w. Consider the subsequence of all the
transpositions si and si+1 in w. We show that if this subsequence is not empty then
P is not a shortest path.

First, we show that a subsequence cannot have consecutive occurrences of either si
or si+1. Next, we show that the subsequences must be of length shorter than six. We
then show that transforming W to the empty word is not possible if the alternating
subsequence is of odd length. Finally, we deal with the subsequences of even length.

Subsequence of si, si+1 alternates. Suppose that the subsequence in w consisting
of all transpositions si and si+1 contains a consecutive pair of the same transposition,
say si . Since si commutes with all transpositions in w different than si+1, we can
commute those two si within w until they are adjacent at which point they can be
removed. But this yields a shorter word w, and thus a shorter path P .

Length of subsequence is less than six. Next we consider which lengths of al-
ternating subsequences of si and si+1 are possible in w. If we have an alternating
subsequence of length six or longer, then we can commute si and si+1 with the other
transpositions in w until we have the subword (sisi+1)

3. The new word corresponds
to a path from C1 to C2 that contains a 6-cycle. The same path without the 6-cycle
would be shorter.

Odd subsequences. For subsequences of odd length, Fig. 16 illustrates the possi-
ble subsequences consisting of si and si+1 in W . This includes the six transpositions
from each of C1 and C2, as well as those from w and w−1. In each case, we see that
we are not able to remove all transpositions in the entire subsequence, contradicting
the assumption that C1 and C2 are G-homotopic.

Even subsequences. Assume that the alternating subsequence in P is of length
two or four. To illustrate this, consider the case where

w = τ1τ2siτ3si+1τ4.

Fig. 16 We cannot reduce W = (si si+1)3w(si+1si )
3w−1 to the empty word when subsequences are of

odd length
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Fig. 17 A shorter path
without si and si+1

We can commute these transpositions within w to obtain

w′ = sisi+1τ1τ2τ3τ4,

with the transpositions τj in the same relative order as they were in w. Note that as
permutations in Sn, w = w′.

Recall that σj and γj , 1 ≤ j ≤ 6, are the permutations associated with the vertices
in C1 and C2, respectively, with σ1 the first vertex in P , and γ1 the last. Our reordered
word w′ also corresponds to a path from σ1 to γ1 in �(Bn), thus we may write

γ1 = σ1sisi+1τ1τ2τ3τ4

= σ3τ1τ2τ3τ4.

and similarly we have

γ2 = σ4τ1τ2τ3τ4,

γ3 = σ5τ1τ2τ3τ4,

γ4 = σ6τ1τ2τ3τ4,

γ5 = σ1τ1τ2τ3τ4,

γ6 = σ2τ1τ2τ3τ4.

We see in Fig. 17 that the word τ1τ2τ3τ4 corresponds to a shorter path from σ1 to C2.
This new path now meets C2 at γ5, but it still satisfies the condition that the first
edge traversed in C2 is si , thus contradicting the assumption that P is a shortest path.
A similar argument holds true for each of the remaining three cases. �

The proof of Theorem 5.2 relies on the definition of a G-homotopy from C1 to C2,
and the limitations on the types of changes we are able to make to the words associ-
ated with each row of the G-homotopy grid. We can combine this theorem with the
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properties of �(Bn) to obtain the following corollaries about equivalence classes of
primitive 6-cycles.

Corollary 5.3 Horizontal and vertical 6-cycles are in different equivalence classes.

Proof Suppose C1 is a horizontal 6-cycle at level i. As observed earlier, for all ver-
tices σ in C1, σ−1(n) = i. Furthermore, if C2 = C1τ1 . . . τk , then (στ1 . . . τk)

−1(n) =
τk . . . τ1(i) and consequently C2 is also a horizontal 6-cycle. Similarly, if C1 is a ver-
tical 6-cycle, then C2 is a vertical 6-cycle. Therefore we may count horizontal and
vertical equivalence classes separately. �

Corollary 5.4 Vertical 6-cycles at different levels of �(Bn) are in different equiva-
lence classes.

Proof This is a direct consequence of Proposition 5.1 and the observation we made
in Section 4 that a vertical 6-cycle at level i, 2 ≤ i ≤ n − 1 is associated with trans-
positions si−1 and si . �

Corollary 5.5 For all 2 ≤ i ≤ n − 1, the number of vertical equivalence classes at
level i in �(Bn) is given by

(n − 1)!
2(i − 2)!(n − i − 1)! =

(
n − 1

i

)(
i

2

)
.

Proof There are (n − 1)! vertices in each level of �(Bn), and each vertical 6-cycle
at level i contains 2 vertices in that level, thus there are (n−1)!

2 vertical 6-cycles at
level i. The number of 6-cycles in each vertical equivalence class at level i is equal
to the order of the subgroup of Sn generated by transpositions disjoint from si−1

and si , which is (i − 2)!(n− i − 1)!, thus the number of equivalence classes at level i

is (n−1)!
2(i−2)!(n−i−1)! . �

Consequently, the total number of vertical equivalence classes is

n−1∑

i=2

(
n − 1

i

)(
i

2

)
=

n−1∑

i=2

(n − 1)!
2(i − 2)!(n − i − 1)!

=
n−3∑

i=0

(n − 1)!
2(i)!(n − i − 3)!

=
(

n−3∑

i=0

(
n − 3

i

))
(n − 1)(n − 2)

2

= 2n−3
(

n − 1

2

)
.
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Corollary 5.6 The number of horizontal equivalence classes in AG
1 (�(Bn))

ab is
equal to the rank of AG

1 (�(Bn−1))
ab .

Proof We count the horizontal equivalence classes in level n, which remains a copy
of �(Bn−1) even after we removed edges from �̃(Bn) in the construction of �(Bn).
Let C be a horizontal 6-cycle in the graph that is not at level n. Recall that there is
a copy, C′, of C at level n of �(Bn), and there is a net of vertical 4- and 6-cycles
connecting C to C′. While C may not be in the same equivalence class as C′, its
equivalence class can be expressed in terms of those of C′ and the vertical 6-cycles
in the net. �

We are now able to see why AG
1 (�(B4))

ab has seven generators rather than eight.
In �(B4), the horizontal 6-cycle at level 4 and the six vertical 6-cycles are each in dis-
tinct equivalence classes; the remaining 6-cycle equivalence class at level 1 is clearly
expressible in terms of the previous classes.

Theorem 5.7 For all n ≥ 1,

rank AG
1 (�(Bn))

ab = 2n−3(n2 − 5n + 8) − 1.

Proof From Theorem 5.2 and all of its corollaries we have that there are∑n
k=1 2k−3

(
k−1

2

)
equivalence classes of 6-cycles in �(Bn). Any other cycle in �(Bn)

of length ≥ 8 can be expressed as the concatenation of 4-cycles and 6-cycles, so those
6-cycles classes generate the free group An−3

1 (�(Bn))
ab .

Let f (n) = ∑n
k=1 2k−3

(
k−1

2

) = rank AG
1 (�(Bn))

ab . Then

∑

n≥0

f (n)xn =
∑

n≥0

n∑

k=0

2n−k−3
(

n − k − 1

2

)
xn

=
∑

k≥0

2−2xk+1
∑

n

2n−k−1
(

n − k − 1

2

)
xn−k−1

=
∑

k≥0

1

4
xk+1

∑

r

(
r

2

)
(2x)r

=
∑

k≥0

1

4
xk+1 (2x)2

(1 − 2x)3

= x3

(1 − 2x)3

∑

k≥0

xk

= x3

(1 − 2x)3(1 − x)
.

Using partial fraction decomposition, we see that

f (n) = 2n−3(n2 − 5n + 8) − 1. �
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In 2001, Babson observed that attaching 2-cells to the 4-cycles in �(Bn) results in
a topological space that is homotopy equivalent to the complement (in R

n) of the 3-
equal hyperplane arrangement. But this result holds true for all k-equal arrangements,
k ≥ 3 (see [3]). That is

An−k
1 (�(Bn)) � π1(Mn,k).

So, if we want to compute the first Betti number, H 1(Mn,k) of the complement (in
R

n) of the k-equal arrangement, it will suffice to compute the rank An−k
1 (�(Bn))

ab ,
which means counting the number of equivalence classes of 6-cycles in �n−k

�(Bn). The
vertices of this graph correspond to the maximal chains of �(Bn) and there is an edge
between two such maximal chains if they share (when viewed as simplices of �(Bn))
at least an (n− k)-face. Thus �n−3

�(Bn)(= �(Bn)) is a subgraph of �n−k
�(Bn) for all k ≥ 4,

with both graphs having the same set of vertices. In fact,

�n−3
�(Bn) ⊂ �n−4

�(Bn) ⊂ �n−5
�(Bn) ⊂ · · · ,

and the only difference between any two of these graphs is that �n−k
�(Bn)

has more

edges than �
n−j

�(Bn) for all k > j . Already when k = 4 it is easy to see that the graph

�n−4
�(Bn) no longer has primitive 6-cycles. Indeed, if σ is a permutation of a 6-cycle,

and m is the corresponding maximal chain of Bn, then the maximal chain m′ corre-
sponding to the permutation σsisi+1si differs from m in exactly two levels. Hence,
the permutations σ and σsisi+1si are adjacent in �n−4

�(Bn) as their corresponding sim-

plices share an (n − 4)-face. Thus, in �n−4
�(Bn) all 6-cycles are concatenation of at

least two 4-cycles, which means that every cycle is contractible and An−4
1 (�(Bn)) is

the trivial group. Moreover, given the fact that �n−k
�(Bn) contains �n−4

�(Bn) for all k ≥ 4
none of these graphs have primitive cycles of length ≥ 4, and we have the following
theorem.

Theorem 5.8 For all k ≥ 4, An−k
1 (�(Bn)) = 1.

Thus, we can conclude that for all k ≥ 4, the first Betti number, H 1(Mn,k), of the
complement of the k-equal arrangement is zero, a fact that can also be recovered from
Theorem 1.1(b) of [9].

Conclusion. As we mentioned in the introduction, once all is said and done we
believe that the crux of the paper lies in the combinatorial techniques that were intro-
duced. In particular, realizing that the �-graph of the order complex of a product of
two posets is obtained by taking the box product of three graphs, one of them being
the new shuffle graph, and removing some (easily identifiable) edges, should prove
useful in computing the discrete fundamental group of other posets. Moreover, the
translation of the grid-homotopy equivalence relations in the language of equivalence
of words (over the symmetric group), is also promising. Indeed, all Coxeter arrange-
ments will have such algebraic structure that could prove fundamental in computing
the A

q

1 -group of the appropriate complexes.
The authors would like to thanks the referees for their helpful comments and ad-

vice.
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