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Abstract We say that two graphs are similar if their adjacency matrices are similar
matrices. We show that the square grid Gn of order n is similar to the disjoint union
of two copies of the quartered Aztec diamond QADn−1 of order n − 1 with the path
P

(2)
n on n vertices having edge weights equal to 2. Our proof is based on an explicit

change of basis in the vector space on which the adjacency matrix acts. The arguments
verifying that this change of basis works are combinatorial. It follows in particular
that the characteristic polynomials of the above graphs satisfy the equality P(Gn) =
P(P

(2)
n )[P(QADn−1)]2. On the one hand, this provides a combinatorial explanation

for the “squarishness” of the characteristic polynomial of the square grid—i.e., that
it is a perfect square, up to a factor of relatively small degree. On the other hand,
as formulas for the characteristic polynomials of the path and the square grid are
well known, our equality determines the characteristic polynomial of the quartered
Aztec diamond. In turn, the latter allows computing the number of spanning trees of
quartered Aztec diamonds.

We present and analyze three more families of graphs that share the above de-
scribed “linear squarishness” property of square grids: odd Aztec diamonds, mixed
Aztec diamonds, and Aztec pillowcases—graphs obtained from two copies of an
Aztec diamond by identifying the corresponding vertices on their convex hulls.

We apply the above results to enumerate all the symmetry classes of spanning trees
of the even Aztec diamonds, and all the symmetry classes not involving rotations of
the spanning trees of odd and mixed Aztec diamonds. We also enumerate all but the
base case of the symmetry classes of perfect matchings of odd square grids with the
central vertex removed. In addition, we obtain a product formula for the number of
spanning trees of Aztec pillowcases.
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Introduction

The number of spanning trees of the Aztec diamond graph ADn (see Figure 2.1 for
an illustration of AD5) was shown by Knuth [6] to be given by a simple explicit
product involving cosines. Stanley [9] posed then the problem of determining the
number of spanning trees of the quartered Aztec diamonds (Figure 2.2 shows the
quartered Aztec diamond of order five). The author found a solution in the fall of
1996, when he was a Postdoctoral Fellow at the Mathematical Sciences Research
Institute in Berkeley (see also [3]). This solution is presented in Section 2, and was
the starting point of the current paper. In the meanwhile, a different solution has been
found by Richard Kenyon, James Propp and David Wilson [5, §6.8].

A useful observation in Cvetcović et al. [4] (reproduced here as Theorem 2.2) al-
lows one to deduce the number of spanning trees of certain planar graphs—the graphs
considered in this paper included—from the characteristic polynomial of a slight
modification of their dual. Our approach is to determine these characteristic poly-
nomials by showing that the involved graphs “reduce” to disjoint unions of graphs
whose characteristic polynomials are known. More precisely, given a graph whose
characteristic polynomial we need to find, we provide a block diagonal matrix sim-
ilar to its adjacency matrix, so that the diagonal blocks are adjacency matrices of
graphs with known characteristic polynomials. Our solution is combinatorial, in that
it accomplishes this by providing simple, conceptual changes of bases.

We apply this approach four times. First, we decompose this way the square grids,
thus obtaining the characteristic polynomial of quartered Aztec diamonds. Next, we
decompose the odd and mixed Aztec diamonds, thereby obtaining the characteristic
polynomials of the odd and mixed “halved” Aztec diamonds (see Section 3). In Sec-
tion 6 we handle similarly the “Aztec pillowcase” graphs (we note that these are not
related to the “Aztec pillows” previously introduced in the literature by James Propp).

The results of Sections 2 and 3 allow us to solve most cases of two other natural
enumeration questions: the symmetry classes of spanning trees of Aztec diamonds
(see Section 4), and the symmetry classes of perfect matchings of odd by odd square
grids with the center vertex removed. We conclude the paper with a section posing
some open problems.

1 A similarity lemma for graphs possessing an automorphism of order two
whose fixed points form a cut set

The adjacency matrix of a weighted directed graph is the matrix whose rows and
columns are indexed by the vertices and whose (u, v)-entry equals the weight of the
directed edge from u to v if there is such an edge, and 0 otherwise. If the graph is
undirected, one can replace each edge e by a pair of anti-parallel directed edges of
the same weight as the weight of e, and use the previous definition. The characteristic
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polynomial of the graph G is the characteristic polynomial of its adjacency matrix;
we denote it by P(G;x) (or simply P(G), if we need not display its argument). We
think of unweighted graphs as weighted graphs in which all weights are equal to 1.

Let G = (V ,E) be a connected, undirected, weighted graph. For any subset X ⊂
V , denote by 〈X〉 the weighted subgraph of G induced by X.

Let T be an automorphism of G so that T 2 is the identity. Denote by V0 the set of
vertices of G fixed by T . Assume that 〈V \ V0〉 is the union of two disjoint graphs of
the form 〈V1〉 and 〈T (V1)〉, for some suitable V1 ⊂ V (this happens whenever V0 is a
cut set).

Set G+ := 〈V1〉. Let G′ := 〈V1 ∪ V0〉. Consider the directed graph on the vertex
set V1 ∪ V0 that has a directed edge from u to v if and only if u and v are adjacent
in G′. Weight this edge by twice the weight of the edge {u,v} if u ∈ V0 and v ∈ V1,
and by the weight of {u,v} in all remaining instances. Denote the resulting weighted
directed graph by G−.

We say that the graphs G1 and G2 are similar—and write G1 ∼ G2—if their
adjacency matrices are similar.

Lemma 1.1 Under the above assumptions, G is similar to the disjoint union of G+
with G−.

Proof Let A be the adjacency matrix of G. For each vertex v of G consider an inde-
terminate ev . Denote by U the complex vector space of formal linear combinations∑

v∈V cvev , cv ∈ C.
Let FG be the linear map from U to itself that sends ev to

∑
w∈V av,wew , where

av,w is the weight of the edge {v,w} if v and w are adjacent, and 0 otherwise. Then
the matrix of FG in the basis B := {ev : v ∈ V } is just the adjacency matrix of G.

Set B ′ := {(ev − eT (v))/2 : v ∈ V1} and B ′′ := {(ev + eT (v))/2 : v ∈ V1 ∪ V0}. One
readily sees that B ′ ∪ B ′′ is a basis of U.

For any v ∈ V1 we have

FG((ev − eT (v))/2) = 1

2

[∑

w∈V

av,wew −
∑

w∈V

aT (v),wew

]

= 1

2

[∑

w∈V

av,wew −
∑

w∈V

aT (v),T (w)eT (w)

]

= 1

2

∑

w∈V

av,w(ew − eT (w))

= 1

2

∑

w∈V1

av,w(ew − eT (w)),

where at the last equality we used V = V1 ∪ V0 ∪ T (V1), the assumption that there
are no edges between V1 and T (V1), and the fact that the summand in the next to last
line above vanishes when w ∈ V0. Thus B ′ spans an FG-invariant subspace, and the
matrix of its restriction to it is, in basis B ′, just the adjacency matrix of G+.
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Similarly, for v ∈ V1 we have

FG((ev + eT (v))/2) = 1

2

[∑

w∈V

av,wew +
∑

w∈V

aT (v),wew

]

= 1

2

[∑

w∈V

av,wew +
∑

w∈V

aT (v),T (w)eT (w)

]

= 1

2

∑

w∈V

av,w(ew + eT (w))

=
∑

w∈V1

av,w(ew + eT (w))/2 +
∑

w∈V0

av,wew,

while for v ∈ V0

FG((ev + eT (v))/2) = FG(ev) =
∑

w∈V

av,wew

=
∑

w∈V1

av,wew +
∑

w∈T (V1)

av,wew +
∑

w∈V0

av,wew

=
∑

w∈V1

av,wew +
∑

w∈V1

av,T (w)eT (w) +
∑

w∈V0

av,wew

=
∑

w∈V1

av,w(ew + eT (w)) +
∑

w∈V0

av,wew.

Therefore, B ′′ also spans an FG-invariant subspace, and the matrix with respect to
B ′′ of the restriction of FG to this FG-invariant subspace is precisely the adjacency
matrix of the weighted directed graph G−.

Thus the matrix of FG in the basis B ′ ∪ B ′′ is block-diagonal with the two blocks
equal to the adjacency matrices of G+ and G−, respectively, and the claim follows. �

For the remainder of this paper, given a graph G = (V ,E) we will denote by UG

the complex vector space of formal linear combinations
∑

v∈V cvev , cv ∈ C, the ev’s
being indeterminates, and by FG the linear map from UG to itself that sends ev to∑

w∈V av,wew , where av,w is the (v,w)-entry of the adjacency matrix of G.

2 The quartered Aztec diamond

The Aztec diamond graph of order n, denoted ADn, is the subgraph of the grid (Z +
1/2)2 induced by the vertices (x, y) with |x| + |y| ≤ n (Figure 2.1 shows AD5). The
quartered Aztec diamond QADn is the subgraph of ADn induced by the vertices in
its southeastern quarter (QAD5 is pictured in Figure 2.2).

Denote by Gn the n × n grid graph (illustrated in Figure 2.3 for n = 5), and by
P

(2)
n the path on n vertices having edge weights equal to 2.
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Fig. 2.1 The Aztec diamond
AD5

Fig. 2.2 The quartered Aztec
diamond QAD5

Fig. 2.3 The square grid G5

Fig. 2.4 The weighted directed
graph QAD5

Theorem 2.1 Gn is similar to the disjoint union of two copies of QADn−1 with P
(2)
n :

Gn ∼ QADn−1 ∪̇ QADn−1 ∪̇ P (2)
n . (2.1)

The proof is presented after Corollary 2.3 below.
Theorem 2.1 implies in particular that the characteristic polynomial of Gn equals

the product of the characteristic polynomials of the graphs on the right hand side
of (2.1).

It is well known (see e.g. [8, Problem 1.29]) that the eigenvalues of the path Pn

(with edge weights equal to 1) are
{

2 cos
π

n + 1
,2 cos

2π

n + 1
, . . . ,2 cos

nπ

n + 1

}

; (2.2)

the characteristic polynomial of P
(2)
n readily follows from this.
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On the other hand, the square grid Gn is the so-called tensor sum of Pn with itself
(see e.g. [7]), and thus by [7, Theorem I] its eigenvalues are given by all possible
sums of two of the numbers in (2.2):

2 cos
jπ

n + 1
+ 2 cos

kπ

n + 1
, 1 ≤ j, k ≤ n. (2.3)

It follows that

P(QADn−1;x) =
∏

1≤i<j≤n

(

x − 2 cos
jπ

n + 1
− 2 cos

kπ

n + 1

)

. (2.4)

The following result of [4] provides a useful connection between characteristic
polynomials and the number of spanning trees of certain planar graphs. For com-
pleteness, we include the proof. For a graph G we denote by t(G) the number of its
spanning trees.

Theorem 2.2 [4] Let G be a connected planar graph all of whose bounded faces
have r sides. Let G′ be the graph obtained from the planar dual of G by deleting the
vertex corresponding to the infinite face. Then

t(G) = P(G′; r).

Proof By a well known fact, G has the same number of spanning trees as its planar
dual G⊥. By the Matrix Tree Theorem (see e.g., [1]), t(G⊥) is equal to the determi-
nant of the matrix obtained from the negative Laplacian of G⊥ (i.e., the difference
between the diagonal matrix of its vertex degrees and its adjacency matrix) by delet-
ing the row and column indexed by the vertex of G⊥ corresponding to the infinite
face of G. The hypothesis implies that the latter matrix is precisely the evaluation of
the characteristic polynomial of G′ at r . �

Corollary 2.3 The number of spanning trees of QADn equals

∏

1≤j<k≤n−1

(

4 − 2 cos
jπ

n
− 2 cos

kπ

n

)

. (2.5)

Proof This is a direct consequence of Equation (2.4), Theorem 2.2, and the fact that
the graph obtained from the planar dual of QADn by deleting the vertex correspond-
ing to the infinite face is isomorphic to QADn−2. �

Proof of Theorem 2.1 Apply Lemma 1.1 to the square grid Gn, choosing T to be
the symmetry across one of its diagonals (see Figure 2.3). The resulting graph G+
is isomorphic to QADn−1. The resulting weighted directed graph G− is obtained
from QADn by replacing all its edges by pairs of anti-parallel directed edges of
weight 1, and then changing to 2 the weights of all directed edges originating from
the n vertices on the hypotenuse of the convex hull of QADn; denote the latter by
QADn (Figure 2.4 shows QAD5; edges between non-marked vertices mean that
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there are directed edges of weight 1 between both corresponding ordered pairs of
vertices; an edge between an unmarked vertex v and a marked vertex w signifies a
directed edge from v to w of weight 1, and a directed edge from w to v of weight 2).
We obtain

Gn ∼ QADn−1 ∪̇ QADn. (2.6)

Let U = UQADn
and F = FQADn

be as defined at the end of Section 1.
As proved in Lemma 2.6 below, the union of the set B of n(n−1)/2 vectors in the

statement of Lemma 2.4 with the set B ′ of n vectors in the statement of Lemma 2.5
forms a basis of U. By Equation (2.9), the subspace spanned by B is F -invariant.
Lemma 2.5 proves that the subspace spanned by B ′ is F -invariant as well. Thus the
matrix of the linear map F in the basis B ∪ B ′ is a block diagonal matrix with two
blocks. By (2.9), the first of these is precisely the adjacency matrix of QADn−1. By
(2.13), the second block equals the adjacency matrix of the path P

(2)
n . Thus

QADn ∼ QADn−1 ∪̇ P (2)
n . (2.7)

This and (2.6) imply (2.1). �

In order to present the lemmas employed in the above proof, we coordinatize
the vertices of QADn using matrix-style coordinates, assigning the top left vertex
coordinates (1,1). Let eij be the indeterminate corresponding to vertex (i, j) in
U = UQADn

. Thus {eij : i, j ≥ 1, i + j ≤ n + 1} is a basis of U, and the matrix of

F = FQADn
in this basis is the adjacency matrix of QADn.

Lemma 2.4 For i, j ≥ 1, i + j ≤ n, define

vij := ei−1,j − ei,j−1 + ei+1,j − ei,j+1 (2.8)

(if any index is outside the range [1, n], we omit the corresponding term).
Then for all i, j ≥ 1, i + j ≤ n, we have

F(vij ) = vi−1,j + vi,j−1 + vi+1,j + vi,j+1, (2.9)

where by convention undefined vkl’s on the right hand side (these occur when k and
l fail to satisfy both k, l ≥ 1 and k + l ≤ n) are omitted.

Proof By the definition of F , we have

F(eij ) = ei−1,j + ei,j−1 + ei+1,j + ei,j+1, (2.10)

for all i, j ≥ 1, i + j ≤ n, where we omit the terms on the right hand side correspond-
ing to undefined ek,l’s, i.e. to those index values that fail to satisfy both k, l ≥ 1 and
k + l ≤ n + 1.

Call the union of the neighborhoods of all neighbors of a vertex in a graph the
second neighborhood of that vertex. Then by equations (2.8), (2.10), and the linearity
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Fig. 2.5(a) The twelve cases

Fig. 2.5(b) Twelve
representatives

of F , both sides of (2.9) are linear combinations of ekl’s corresponding to vertices
(k, l) from the second neighborhood of vertex (i, j).

It is apparent from the definition of QADn that, up to reflection in its symmetry
axis, there are only twelve translationally distinct second neighborhoods of its ver-
tices; the induced partition of the set of vertices is shown in Figure 2.5(a) (pairs of
vertices of QADn that are mirror images with respect to its symmetry axis are under-
stood to be in the same class of the partition). Because of this, it is enough to check
that (2.9) holds for one representative of each of the twelve classes—for instance
those indicated in Figure 2.5(b).

These twelve checkings are accomplished by Figure 2.6; the order of the panels
corresponds to the numbering of the representative vertices shown in Figure 2.5(b).
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Fig. 2.6 Checking the twelve cases

In each panel there are two copies of the second neighborhood of the vertex (i, j)

in question. The vertex (i, j) is indicated by the black dot. The top copy performs the
computation of the left hand side of (2.9), using (2.8), (2.10), and the linearity of F .
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Consider for instance the top half of the sixth panel. By (2.8) and the linearity of F ,

F(vij ) = F(ei−1,j ) − F(ei,j−1) + F(ei+1,j ) − F(ei,j+1).

Each term ±F(ek,l) on the right hand side above is depicted in the figure by placing
the corresponding uncircled plus or minus sign next to the vertex (k, l). By (2.10),
we have

F(ei−1,j ) − F(ei,j−1) + F(ei+1,j ) − F(ei,j+1)

= (ei−2,j + ei−1,j−1 + ei,j + ei−1,j+1)

− (ei−1,j−1 + ei,j−2 + ei+1,j−1 + ei,j )

+ (ei,j + ei+1,j−1 + ei+2,j + ei+1,j+1)

− (ei−1,j+1 + ei,j + ei+1,j+1 + ei,j+2).

The sixteen ±ek,l’s on the right hand side are marked on the figure by placing circled
plus or minus signs next to vertex (k, l). Then the coefficient of any ek,l in F(vij )

is visually apparent from the top half of the sixth panel: Simply “add up” the circled
signs, counting a circled plus as 1, and a circled minus as −1 (the coefficient is clearly
zero unless vertex (k, l) is shown in the figure).

To continue with our example, turn now to the bottom copy of the sixth panel in
Figure 2.6. It performs the computation of the right hand side of (2.9), in the following
sense. By (2.8), we have

vi−1,j + vi,j−1 + vi+1,j + vi,j+1 = (ei−2,j − ei−1,j−1 + ei,j − ei−1,j+1)

+ (ei−1,j−1 − ei,j−2 + ei+1,j−1 − ei,j )

+ (ei,j − ei+1,j−1 + ei+2,j − ei+1,j+1)

+ (ei−1,j+1 − ei,j + ei+1,j+1 − ei,j+2).

Each ±ek,l’s above is depicted in the figure by placing a circled plus or minus sign
next to vertex (k, l). This affords a visual computation of the result, by the same
adding of circled signs as above.

One checks by inspection that in the top half of the sixth panel in Figure 2.6, each
vertex gets the same sum of circled signs as the corresponding vertex in the bottom
half. This establishes Equation (2.9) for vertices of type 6.

The remaining cases are checked similarly by the rest of Figure 2.6. (The calcula-
tions required in panels 8 and 9 are identical to those in panels 5 and 6, respectively;
thus we did not repeat them.) The double circled plusses and minuses in the last three
panels indicate contributions of ±2ekl , and appear due to the fact that the directed
edge from a marked to an unmarked vertex of QADn has weight 2 (marked vertices
are indicated by black diamonds). Note that in the bottom panels there are no con-
tributions coming from the diamond vertices, because by the convention stated after
Equation (2.9), the undefined terms on the right hand side of the latter are omitted
(and by the statement after Equation (2.8), vij is not defined if (i, j) is a diamond
vertex). �
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Fig. 2.7(i)

Fig. 2.7(ii)

Lemma 2.5 Let

cij :=
{

2, i, j ≥ 1, i + j ≤ n

1, i, j ≥ 1, i + j = n + 1,
(2.11)

and define

wk :=
∑

n−k+2≤i+j≤n+1
i−j∈{n−k,n−k−2,n−k−4,...,k−n}

cij eij , (2.12)

for k = 1, . . . , n (for n = 9 these are represented in Figures 2.7(i)–(ix)). Then

F(wk) = 2wk−1 + 2wk+1 (2.13)

for all k = 1, . . . , n, where by convention on the right hand side we omit terms of
index outside the range [1, n].

Proof This follows again by the linearity of F and the fact that its action on eij is the
weighted sum of the indeterminates corresponding to the neighbors of vertex (i, j) in
QADn. Figure 2.7 corresponds to n = 9, but all the features needed to check the gen-
eral case are present in it. Panels (i)–(ix) show the vectors w1, . . . ,w9, respectively:
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Fig. 2.7(iii)

Fig. 2.7(iv)

Fig. 2.7(v)

the vertices that contribute indeterminates with non-zero coefficients are indicated by
the value of that coefficient next to them.

Panel (x) shows 1
2F(w4)—one dot next to a vertex (k, l) represents the contribu-

tion of one unit to the coefficient of ekl . It is apparent that this vector is the same as
the sum of the vectors in panels (iii) and (v). This checks (2.13) for k = 4.
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Fig. 2.7(vi)

Fig. 2.7(vii)

Fig. 2.7(viii)

Similarly, panels (ii), (iv), and (xi) check (2.13) for k = 3, while the case k =
n = 9 follows by panels (viii) and (xii). �

Lemma 2.6 The vectors (2.8) and (2.12) form a basis of U.
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Fig. 2.7(ix)

Fig. 2.7(x)

Fig. 2.7(xi)

Proof Since there are n(n − 1)/2 vectors vij in (2.8) and n vectors wk in (2.12), it
suffices to show that eij is in their span for all i, j ≥ 1, i + j ≤ n + 1. We show first
that the vectors uk := ∑

i+j=k+1 eij , k = 1, . . . n, are in this span.
Indeed, for 1 ≤ k ≤ l ≤ n define

[k, l] :=
{

(2k − 1) + (2k + 1) + · · · + (2l − 1), if n is odd,

(2k) + (2k + 2) + · · · + (2l), if n is even.
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Fig. 2.7(xii)

Fig. 2.8(a) The weight function
wt9

Fig. 2.8(b) The weight
function wt10

Let wtn be the weight function on the vertices of QADn whose nonzero values are
given by the patterns shown in Figure 2.8—Figure 2.8(a) shows the pattern for odd
values of n, and Figure 2.8(b) the pattern for even n (vertices of nonzero weight are
marked by dots).

Define the closed half-strip Ck to be the region described, in the standard rectan-
gular coordinate system with origin at the northwest corner of QADn, by {(x, y) :
−(k − 1) ≤ x + y ≤ k − 1, x − y ≥ k − 1} (for n = 9, C4 is illustrated in Figure 2.9).
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Fig. 2.9 C4

Color the vertices of QADn in chessboard fashion. Denote the set of vertices of
QADn by V .

We claim that for k = 1, . . . , n − 2 one has1

∑

x∈Ck+1∩V
x of same color as vertex (k,1)

wtn(x)vx − kwn−1−k + (k + 2)wn+1−k

= (2n + 4)(ek,1 + ek−1,2 + · · · + e1,k). (2.14)

Indeed, suppose that n is odd. It is then readily seen that the definition (2.8) of the
vectors vij and the definition of the weight wtn imply that when expressing the sum
on the left hand side of (2.14) in terms of the vectors eij , the nonzero coefficients
are given by the pattern shown in Figure 2.10 (the two pictures illustrate the cases of
odd and even k). On the other hand, when expressing the combination of the last two
terms on the left hand side of (2.14) as a linear combination of the eij ’s, the nonzero
coefficients are given by the patterns indicated by Figure 2.11. It is apparent from
these two figures that (2.14) holds. The case of even n is justified analogously.

By (2.14), the vectors u1, . . . , un−2 are seen to be in the span of the vectors (2.8)
and (2.12). Clearly, un−1 = 1

2w2 and un = w1. Thus all uk’s, k = 1, . . . , n are in the
span of the vectors (2.8) and (2.12), as claimed at the beginning of this proof.

We now show by induction on i + j ≥ 2 that eij is in the span S of the vectors
(2.8) and {u1, . . . , un}.

If i + j = 2, we must have i = j = 1, and the claim follows as e11 = u1. Assume
that eij is in S for all i + j ≤ k. Then the definition (2.8) of vk−i,i implies that
ek−i,i+1 − ek−i+1,i is in S, for i = 1, . . . , k − 1. Thus ek−i,i+1 = ek,1 + si with si ∈ S,
for i = 1, . . . , k − 1. Therefore uk = ek,1 + ek−1,2 + · · · + e1,k = kek,1 + s, with
s ∈ S, implying ek,1 ∈ S. Since ek−i,i+1 = ek,1 + si , it follows that ek−i,i+1 ∈ S for
all i = 0, . . . , k − 1, and the induction step is complete. This completes the proof. �

Remark 2.7 Theorem 2.1 shows considerably more than the fact that the character-
istic polynomial of the graph on the left hand side of (2.1) is equal to the product of
the characteristic polynomials of the graphs on the right hand side of (2.1): it shows

1For a vertex x of QADn we write vx for vij , where (i, j) are the coordinates of x.
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Fig. 2.10 a The sum in (2.14) for n and k odd. b Same for n odd and k even

that the corresponding adjacency matrices are similar (i.e., they have the same Jordan
form). The same remark applies to the results of Section 3.

3 The halved Aztec diamonds

One way to define the Aztec diamond ADn is to say that it is the graph whose vertices
are the white unit squares of a (2n+1)× (2n+1) chessboard with black corners, two
vertices being adjacent if they correspond to white unit squares that share a corner.
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Fig. 2.11 a The sum of the last two terms on the left hand side of (2.14) for n and k odd. b Same for n

odd and k even

The analogous graph on the black unit squares of this chessboard is called the odd
Aztec diamond of order n and is denoted ODn (Figure 3.1 shows OD5).

Similar considerations on a 2n × 2n chessboard lead to graphs on the white and
black unit squares that are isomorphic. We denote them by MDn (“mixed” diamonds;
MD5 is pictured in Figure 3.2).

Define HODn to be the subgraph of ODn induced by the black unit squares on or
above a diagonal of the (2n + 1) × (2n + 1) chessboard. Similarly, let HMDn be the
subgraph of MDn induced by the black vertices on or above the black diagonal of the
2n × 2n board (HOD5 and HMD5 are shown in Figures 3.3 and 3.4, respectively).
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Fig. 3.1 OD5

Fig. 3.2 MD5

Fig. 3.3 HOD5

Fig. 3.4 HMD5

Let Qn be the graph obtained from the path Pn by including a loop of weight 2 at
each vertex. Let Q′

n be the graph obtained similarly from Pn, but by weighting each
loop by −2. The graph Rn is obtained from Qn by changing the weight of the loop at
the last vertex to 1, and R′

n is obtained from Q′
n by changing the weight of the loop

at the last vertex to −1.
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Fig. 3.5 Q5

Fig. 3.6 Q′
5

Fig. 3.7 R5

Fig. 3.8 R′
5

Fig. 3.9 HMD5

Theorem 3.1 We have

MDn ∼ HMDn−1 ∪̇ HMDn−1 ∪̇ Rn ∪̇ R′
n. (3.1)

Proof Apply Lemma 1.1 to MDn, choosing the automorphism T to be the reflection
across its symmetry axis. The resulting graph G+ is isomorphic to HMDn−1. The
resulting weighted directed graph G−, which we denote HMDn, is obtained from
HMDn by: (1) marking the 2n bottommost vertices, (2) replacing each edge between
two marked or two unmarked vertices by two anti-parallel directed edges of weight 1,
and (3) replacing each edge between an unmarked vertex v and a marked vertex w by
a directed edge (v,w) weighted 1 and a directed edge (w,v) weighted 2 (Figure 3.9
illustrates this when n = 5). We obtain

MDn ∼ HMDn−1 ∪̇ HMDn. (3.2)

Let v be a vertex of HMDn. Proceed from v along a ray in the northeast di-
rection. If no other vertex of HMDn is on this ray, set NE(v) := ∞; otherwise, let
w be the first encountered vertex and set NE(v) := w. Define NW(v), SW(v), and
SE(v) analogously, via the vertices closest to v in the northwestern, southwestern,
and southeastern directions, respectively.

For each vertex v of HMDn, let ev be an indeterminate. Denote by V1 the set
of unmarked vertices of HMDn. Let B1 ⊂ V1 consist of the n − 1 vertices on the
northeastern side of the convex hull of V1, and B2 ⊂ V1 of the n − 1 vertices on the
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Fig. 3.10 The sets Sk for n = 6

northwestern side of the latter. Define

fv :=
⎧
⎨

⎩

−eNE(v) + eNW(v) − eSW(v) + eSE(v), v ∈ V1 \ (B1 ∪ B2)

ev + eNW(v) − eSW(v) + eSE(v), v ∈ B1

−ev − eNE(v) − eSW(v) + eSE(v), v ∈ B2,

(3.3)

where by definition e∞ := 0. It will turn out that these particular special definitions
for the vertices in B1 and B2 are just the right ones for obtaining the desired decom-
position of HMDn.

Regard (3.3) as vectors in U = UHMDn
. A case analysis analogous to that in the

proof of Lemma 2.4 shows that the action of F = FHMDn
on the vectors (3.3) is

given by

F(fv) = fN(v) + fW(v) + fS(v) + fE(v), (3.4)

where N(v), W(v), S(v), and E(v) are defined in analogy to NE(v)—via rays from v

in the directions of the four cardinal points—and f∞ := 0.
The set V of vertices of HMDn naturally splits into n levels—denote them, from

bottom to top, by L1, . . . ,Ln. The same set can also be regarded as consisting of
2n columns of vertices—denote them, from left to right, by C1, . . . ,C2n. We define
subsets S1, . . . , Sn ⊂ V as follows.

Color the vertices of V black and white in chessboard fashion so that C1 is black;
let VB be the set of black vertices. For 1 ≤ k ≤ n, set

Sk := (VB ∩ (C1 ∪ C2 ∪ · · · ∪ Ck ∪ C2n−k+1 ∪ C2n−k+2 ∪ · · · ∪ C2n))

∪ ((Ck ∪ Ck+1 ∪ · · · ∪ C2n−k+1) ∩ (Lk ∪ Lk−2 ∪ Lk−4 ∪ · · ·)) (3.5)

(for n = 6, these are pictured in Figure 3.10).
Let wt be the weight function on V that assigns 1 to the vertices in L1, and

(−1)k−1 · 2 to the vertices in Lk , if k = 2, . . . , n. Let wt′(v) := wt(v) if v is black,
and wt′(v) := −wt(v) if v is white.

Define, for k = 1, . . . , n,

gk := (−1)k−1
∑

v∈Sk

wt(v)ev (3.6)
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Fig. 3.11 The support of αn,k

(circled vertices) and βn,k

(dotted vertices)

and

g′
k :=

∑

v∈Sk

wt′(v)ev. (3.7)

An argument similar to the one that proved Lemma 2.5 shows that the action of F

on these vectors is given by

F(g1) = 2g1 + g2, (3.8)

F(gk) = gk−1 + 2gk + gk+1, 2 ≤ k ≤ n − 1, (3.9)

F(gn) = gn−1 + gn, (3.10)

and

F(g′
1) = −2g′

1 + g′
2, (3.11)

F(g′
k) = g′

k−1 − 2g′
k + g′

k+1, 2 ≤ k ≤ n − 1, (3.12)

F(g′
n) = g′

n−1 − g′
n. (3.13)

Furthermore, by Lemma 3.2, the span of the vectors (3.3), (3.6) and (3.7) con-
tains uk = ∑

v∈Lk
ev and u′

k = ∑
v∈Lk

cvev , k = 1, . . . , n, where cv equals 1 or −1
according as v is black or white. Then a simple inductive argument shows that each
ev , v ∈ V is contained in the span of the union of the vectors (3.3) with the uk’s and
the u′

k’s. This implies that the union of the vectors (3.3), (3.6) and (3.7) forms a basis
of U.

However, by (3.4) and (3.8)–(3.13), the matrix of F in this basis is a block diag-
onal matrix consisting of three blocks. One of them, corresponding to the rows and
columns indexed by the vectors (3.3), is by (3.4) the same as the adjacency matrix of
HMDn−1. The other two, by (3.8)–(3.13), are the same as the adjacency matrices of
Rn and R′

n, respectively. This implies (3.1). �

Lemma 3.2 The span of the vectors {fv : v ∈ V1}, {gk : k = 1, . . . , n}, and {g′
k :

k = 1, . . . , n} given by (3.3), (3.6), and (3.7) contains uk = ∑
v∈Lk

ev and u′
k =∑

v∈Lk
cvev , k = 1, . . . , n, where cv equals 1 or −1 according as v is black or white.
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Proof Suppose n is even. For 2 ≤ k ≤ n, let αn,k be the function on V that is zero on
the vertices not circled in Figure 3.11, and whose value at a circled vertex is given by
the corresponding entry in the following array (for briefness we denote a = n − k):

k − 1
−(k − 1) −2(k − 1)

k − 1 2(k − 1) 3(k − 1)

.

.

.

.

.

.

k − 1 2(k − 1) 3(k − 1) · · · (a − 1)(k − 1)

−(k − 1) −2(k − 1) −3(k − 1) · · · −(a − 1)(k − 1) −a(k − 1)

k − 1 2(k − 1) 3(k − 1) · · · (a − 1)(k − 1) a(k − 1) (a + 1)(k − 1)

k − 2 2(k − 2) 3(k − 2) · · · (a − 1)(k − 2) a(k − 2) (a + 1)(k − 2)

.

.

.

.

.

.

1 · 2 2 · 2 3 · 2 · · · (a − 1) · 2 a · 2 (a + 1) · 2
1 2 3 · · · a − 1 a a + 1

(read the pattern above from bottom to top; for k even the pattern ends on top as in-
dicated; for k odd the alternation of signs along the rows of the top triangular portion
of the array causes the entries in the top three rows above to be the negatives of the
shown ones).

Let βn,k be the function on V that is zero on the vertices not dotted in Figure 3.11,
and defined at each dotted vertex v by βn,k(v) = −αn,k(v

′), where v′ is the reflection
of v across the vertical symmetry axis of HMDn (note that the supports of αn,k and
βn,k are disjoint).

It is straightforward to check that for k = 2, . . . , n one has
∑

v∈V1

(αn,k(v) + βn,k(v))fv + [−(n − k + 1)gk−2 − gk−1 + (n − k + 2)gk]

= (2n + 1)
∑

v∈Lk

ev.

Furthermore, if cv is plus or minus one according as v is black or white, one similarly
checks that

∑

v∈V1

cv(αn,k(v) + βn,k(v))fv + (−1)k[(n − k + 1)g′
k−2 + g′

k−1 − (n − k + 2)g′
k]

= (2n + 1)
∑

v∈Lk

cvev,

for k = 2, . . . , n. Since by definition u1 = g1 and u′
1 = g′

1, the above equalities prove
the statement for n even.

The above equalities hold without change also for odd n, provided we define αn,k

and βn,k to be the negatives of their values above. �

Theorem 3.3 We have

ODn ∼ HODn−1 ∪̇ HODn−1 ∪̇ P1 ∪̇ Qn ∪̇ Q′
n. (3.14)
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Fig. 3.12 HOD4

Fig. 3.13(a) The gk ’s for n = 4

Proof We proceed in a way analogous to the proof of Theorem 3.1. Lemma 1.1 im-
plies

ODn ∼ HODn−1 ∪̇ HODn, (3.15)

where HODn is the weighted directed graph obtained from HODn by marking its
bottommost 2n + 1 vertices, replacing each edge of it between two unmarked or two
marked vertices by a pair of opposite arcs of weights 1, and each edge between an
unmarked vertex v and a marked vertex w by an arc (v,w) of weight 1 and an arc
(w,v) of weight 2 (Figure 3.12 shows HOD4).

Let V be the set of vertices of HODn, and let V1 be the set of its unmarked
vertices. For each v ∈ V , let ev be an indeterminate. For v ∈ V1, define fv by (3.3),
the same formulas we used in the proof of Theorem 3.1—except for the case when
v is the topmost vertex in V1, when we define fv := −eSW(v) + eSE(v). Then, as an
argument similar to the one in the proof of Theorem 3.1 readily checks, (3.4) holds
for all v ∈ V1.

The subsets of vertices and the weights on V that will provide us with the vectors
we need to complete {fv : v ∈ V1} to a basis of U = UHODn

are now defined slightly
differently than in the proof of Theorem 3.1. Define the gk’s and g′

k’s to be the linear
combinations of the ev’s indicated by the patterns shown in Figure 3.13(a) and (b),
respectively (these figures correspond to n = 4).

An argument similar to the one given in Lemma 2.5 shows that the action of F =
FHODn

on these vectors is given by

F(g1) = 2g1 + g2, (3.16)
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Fig. 3.13(b) The g′
k

’s for n = 4

F(gk) = gk−1 + 2gk + gk+1, 2 ≤ k ≤ n − 1, (3.17)

F(gn) = gn−1 + 2gn, (3.18)

and

F(g′
1) = −2g′

1 + g′
2, (3.19)

F(g′
k) = g′

k−1 − 2g′
k + g′

k+1, 2 ≤ k ≤ n − 1, (3.20)

F(g′
n) = g′

n−1 − 2g′
n. (3.21)

Finally, the vector h that equals the alternating sum of ev’s over the set of the n

vertices of HODn on the northwestern side of the convex hull of its vertex set (the
topmost ev having coefficient +1) is readily seen to satisfy F(h) = 0.

An inductive argument similar to the one used in the proof of Lemma 2.6 shows
that for all v ∈ V , ev is in the span of the vectors {fv : v ∈ V1}, {ũk : k = 1, . . . , n},
{ũ′

k : k = 1, . . . , n} and h (the only part that requires separate justification is the
checking of the base case; this is provided by Lemma 3.5). Thus, by Lemma 3.4,
the span of the vectors {fv : v ∈ V1}, {gk : k = 1, . . . , n}, {g′

k : k = 1, . . . , n}, and h

contains ev for all v ∈ V , and hence these vectors form a basis of U.
By the above formulas describing the action of F on them it follows that the matrix

of F in this basis is a block-diagonal matrix consisting of four blocks: one the same
as the adjacency matrix of HODn−1, by the fact that (3.4) holds for V1; the next two
equal to the adjacency matrices of the path-like graphs Qn and Q′

n, respectively, by
(3.16)–(3.21); and the last equal to the 1 × 1 block consisting of a single 0, i.e., the
adjacency matrix of the path P1. Together with (3.15) this implies (3.14). �

Lemma 3.4 The span of the vectors {fv : v ∈ V1}, {gk : k = 1, . . . , n}, {g′
k : k =

1, . . . , n}, and h in the proof of Theorem 3.3 contains the vectors ũk and ũ′
k defined

by the patterns in Figure 3.14, for k = 1, . . . , n.
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Fig. 3.14(a) The ũk ’s for n = 4

Fig. 3.14(b) The ũ′
k

’s for n = 4

Proof Let wtn be the function on the vertices of HODn given by the pattern
0

−(n − 1) 0 n − 1

−2(n − 2) −(n − 2) 0 n − 2 2(n − 2)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

−3(n − 3) · · · −6 −3 0 3 6 · · · 3(n − 3)

−2(n − 2) · · · −6 −4 −2 0 2 4 6 · · · 2(n − 2)

−(n − 1) · · · −4 −3 −2 −1 0 1 2 3 4 · · · n − 1

0 · · · 0 0 0 0 0 0 0 0 0 0 0 · · · 0

Let Ck be the closed shaded region illustrated in Figure 3.15. It is straightforward
to check that

∑

v∈V1∩Ck

wtn(v)fv + [−(n − k + 1)gk−1 + (n − k + 2)gk] = (n + 1)ũk,

for all k = 1, . . . , n.
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Fig. 3.15 The region C4 for
HOD7

Similarly, if wt′n is the weight function on the vertices of HODn that equals wtn
on the black vertices and −wtn on the white vertices, one checks that

∑

v∈V1∩Ck

wt′n(v)fv + (−1)k−1[(n − k + 1)g′
k−1 + (n − k + 2)g′

k] = (n + 1)ũ′
k,

for k = 1, . . . , n. �

Lemma 3.5 Let t be the topmost vertex of HODn. Then et is in the span of the
vectors {fv : v ∈ V1}, {ũk : k = 1, . . . , n}, {ũ′

k : k = 1, . . . , n}, and h.

Proof Let αn be the weight function on the subset V1 of the vertices of HODn ob-
tained by weighting the ith topmost row, from left to right, by the successive coordi-
nates of the vector

(−1)i(n − i + 1)

2i
(2i − 1,0,2i − 3,0, . . . ,3,0,1),

for i = 1, . . . , n (recall that by definition HODn has n + 1 rows).
Let

dk = (−1)n+k(2k(n − k + 2) − n − 1)

4(n − k + 1)(n − k + 2)
, k = 1, . . . , n.

Then it is straightforward to check that

∑

v∈V1

αn(v)fv +
n∑

k=1

dk(ũk + ũ′
k) + h = (n + 1)et .

This proves the claim. �

Corollary 3.6 The number of spanning trees of the halved Aztec diamond HMDn is
given by

t(HMDn) =
∏

1≤j<k≤2n−1
j+k≤2n−1

(

4 − 4 cos
jπ

2n
cos

kπ

2n

)

. (3.22)
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Proof The graph obtained from the planar dual of HMDn by removing the vertex
corresponding to the infinite face is readily seen to be isomorphic to HODn−2 (see
Figures 3.3 and 3.4). Thus, Theorem 2.2 implies

t(HMDn) = P(HODn−2;4). (3.23)

By [6] we have

P(ODn;x) = x

n∏

j=1

(

x − 4 cos2 jπ

2n + 2

)

×
∏

1≤j<k≤2n+1

(

x − 4 cos
jπ

2n + 2
cos

kπ

2n + 2

)

. (3.24)

By (2.2), the eigenvalues of Qn are 2 + 2 cos jπ
n+1 = 4 cos2 jπ

2n+2 , j = 1, . . . , n, while

those of Q′
n are −2 + 2 cos jπ

n+1 , j = 1, . . . , n; the latter listed in reversed order thus

equal −4 cos2 jπ
2n+2 , j = 1, . . . , n. Theorem 3.3 and (3.24) imply then, after some

manipulation, that

P(HODn−1;x) =
∏

1≤j<k≤2n+1
j+k≤2n+1

(

x − 4 cos
jπ

2n + 2
cos

kπ

2n + 2

)

. (3.25)

The statement follows now by (3.23). �

Corollary 3.7 The number of spanning trees of the halved Aztec diamond HODn is
given by

t(HODn) =
∏

1≤j<k≤2n
j+k≤2n

(

4 − 4 cos
jπ

2n + 1
cos

kπ

2n + 1

)

. (3.26)

Proof The graph obtained from the planar dual of HODn by removing the vertex
corresponding to the infinite face is readily seen to be isomorphic to HMDn−1.
Therefore, by Theorem 2.2 we obtain

t(HODn) = P(HMDn−1;4). (3.27)

By [6] we have

P(MDn;x) =
n∏

j=1

(

x − 4 cos2 jπ

2n + 1

)

×
∏

1≤j<k≤2n

(

x − 4 cos
jπ

2n + 1
cos

kπ

2n + 1

)

. (3.28)
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It is not hard to show that the eigenvalues of the adjacency matrix of Rn are
2 + 2 cos 2jπ

2n+1 = 4 cos2 jπ
2n+1 , j = 1, . . . , n, while the eigenvalues of the adjacency

matrix of R′
n are just the negatives of the former. Using this, one sees after some

manipulation that

P(HMDn−1;x) =
∏

1≤j<k≤2n
j+k≤2n

(

x − 4 cos
jπ

2n + 1
cos

kπ

2n + 1

)

. (3.29)

Together with (3.27), this implies (3.26). �

Remark 3.8 It is amusing to note that the range for (j, k) in the product giving the
characteristic polynomial of HMDn can naturally be regarded as the vertex set of
HODn, and vice-versa.

4 Symmetry classes of spanning trees of Aztec diamonds

It is easy to see that no spanning tree of an Aztec diamond ADn can be symmetric
with respect to a symmetry axis � of the diamond that makes a 45◦ angle with the
horizontal. Indeed, suppose ADn had a spanning tree T symmetric about �. Let a

and b be two distinct vertices of ADn on �. Since T is connected, there exists a path
P in T connecting a to b. Since T is symmetric about �, the reflection P ′ of P

across � is also contained in T . But no path in ADn from a to b is invariant under this
reflection, so P and P ′ are two distinct paths connecting two vertices of the tree T , a
contradiction.

The same argument works for the odd Aztec diamonds ODn when n ≥ 2. The
mixed Aztec diamonds MDn do not possess a symmetry axis at a 45◦ angle from the
horizontal.

Let h, v and r denote the symmetry across the horizontal, the symmetry across the
vertical, and the rotation by 90◦, respectively; view them as elements of the symmetry
group of ADn or ODn. The above two paragraphs imply that there are a total of
five inequivalent symmetry classes of spanning trees of ADn and ODn: the base
case—trees with no symmetry requirement; horizontally symmetric trees—invariant
under the action of h; horizontally and vertically symmetric trees—invariant under
the action of 〈h,v〉; trees invariant under the action of r2; and trees invariant under
the action of r . Since MDn is not r-invariant, there are only four symmetry classes
for its spanning trees.

We denote the number of spanning trees of a graph G that are invariant under the
action of the group of symmetries H by tH (G).

The base case was done by Knuth [6]. In this section we provide product formulas
for all but three of the remaining cases. The latter are phrased as open problems. Our
arguments will express these numbers in terms of the number of perfect matchings
of three families of subgraphs of the infinite grid Z

2. Explicit formulas for the latter
are deduced using results from the previous sections and the factorization theorem
for perfect matchings of [2].
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Fig. 4.1 A5

Fig. 4.2 B5

Fig. 4.3 C8

To define our families of graphs, it will be convenient to denote by NE(i, j) the
infinite zig-zag lattice path in Z

2 starting at the lattice point (i, j) and taking alter-
nately two unit steps north and two east; NW(i, j) is defined analogously, alternating
between two steps north and two steps west.

Let G2n be the subgraph of the infinite grid Z
2 induced by the vertices (i, j) with

0 ≤ i, j ≤ 2n − 1. We define An to be the subgraph of G2n induced by its vertices on
or above the path NE(1,0). Bn is defined analogously, but using the path NE(0,0)

instead of NE(0,1) (A5 and B5 are illustrated in Figures 4.1 and 4.2, respectively; the
two dots in the latter emphasize that there are two vertices at the indicated positions).

Define Cn to be the subgraph of Z
2 induced by the lattice points (i, j), j ≥ 0,

that are on or below both NE(−n + 1,−1) and NW(n − 1,−1); C8 is shown in
Figure 4.3.

A fourth family will be relevant in the proof of (4.3); it will also be used in Sec-
tion 5. We define Dn to be the subgraph of Z

2 induced by the lattice points (i, j),
j ≥ 0, that are on or below both NE(−n,−2) and NW(n − 1,−1); D8 is shown in
Figure 4.4.
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Fig. 4.4 D8

For a graph G we denote the number of its perfect matchings by M(G) (if G

is weighted, M(G) denotes the sum of the weights of all its perfect matchings, the
weight of a matching being the product of the weights of its constituent edges).

Lemma 4.1 We have

M(An) = 1

2n

∏

1≤j≤k≤n

(

4 − 2 cos
jπ

n + 1
− 2 cos

kπ

n + 1

)

, (4.1)

M(Bn) =
∏

1≤j<k≤n

(

4 cos2 jπ

2n + 1
+ 4 cos2 kπ

2n + 1

)

, (4.2)

M(Cn) = 1

22� n+1
2 �

∏

1≤j≤k≤n
j+k even

(

4 − 2 cos
jπ

n + 1
− 2 cos

kπ

n + 1

)

, (4.3)

and

M(Dn) = 1

2� n
2 �

∏

1≤j<k≤n
j+k odd

(

4 − 2 cos
jπ

n + 1
− 2 cos

kπ

n + 1

)

. (4.4)

The following result of Temperley [10] will be useful in our proof. Let G = (V ,E)

be a finite connected planar graph; denote the set of its bounded faces by F . Pick a
point v(e) in the interior of each edge e of G; let Ve := {v(e) : e ∈ E}. Pick also a
point v(f ) in the interior of each bounded face f of G, and let Vf := {v(f ) : f ∈ F }.
Define T(G) to be the graph whose vertex set is V ∪Ve ∪Vf , with edge set consisting
of the pairs {v, v(e)}, v ∈ V , e ∈ E, v incident to e, and {v(e), v(f )}, e ∈ E, f ∈ F ,
e incident to f . In particular, if Gn is the n × n grid graph, T(Gn) is the refined grid
G2n−1.

Theorem 4.2 (Temperley [10], [8, Problem 4.30]) For any v ∈ V incident to the
infinite face of G we have

t(G) = M(T(G) \ v).

We will also employ the following “Factorization Theorem” we obtained in [2].

Theorem 4.3 (Factorization Theorem [2, Theorem 2.1]) Suppose the weighted bi-
partite planar graph G is drawn on the plane so that it is symmetric with re-
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Fig. 4.5

spect to a horizontal symmetry axis �. Label the vertices on � from left to right by
a1, b1, a2, b2, . . . , ak, bk , and assume they form a cut set. Properly color the vertices
of G white and black, so that a1 is white.

Let G′ be the graph obtained from G by

(i) removing the edges above � incident to any white ai or any black bj ;
(ii) removing the edges below � incident to any black ai or any white bj ; and

(iii) reducing by 1/2 the weight of any edge of G lying along �.

Let G+ be the subgraph of G′ induced by the vertices above �, the black ai ’s, and
white bj ’s. Let G− be the subgraph of G′ induced by the vertices below �, the white
ai ’s, and black bj ’s. Then

M(G) = 2kM(G+)M(G−).

Proof of Lemma 4.1 Apply the factorization theorem for perfect matchings [2, The-
orem 2.1] to the graph H obtained from the square grid G2n+1 by removing its top
right vertex v, with respect to the symmetry axis of H (see Figure 4.5). One of the
resulting subgraphs of H is then isomorphic to An (the boundary of this subgraph is
indicated by the upper bold outline in Figure 4.5), while the other can be regarded
as T(QADn+1) \ v (the boundary of the latter is traced out by the lower bold out-
line in Figure 4.5). Since H itself can be regarded as T(Gn+1) \ v, we obtain by the
factorization theorem that

M(T(Gn+1) \ v) = 2nM(An)M(T(QADn+1) \ v). (4.5)

By Theorem 4.2, the left hand side equals t(Gn+1), which in turn by Theorem 2.2
equals P(Gn;4); (2.3) provides an explicit formula for the latter. On the other hand,
by Theorem 4.2, M(T(QADn+1) \ v) = t(QADn+1), for which Equation (2.4) gives
a product expression. Solving for M(An) in (4.5) yields then (4.1).

Equality (4.2) follows by applying the factorization theorem to the square grid G2n

and its diagonal symmetry axis. The resulting subgraphs are both isomorphic to Bn.
We obtain

M(G2n) = 2n [M(Bn)]2. (4.6)
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Fig. 4.6

A classical result of Kasteleyn, Temperley and Fisher (see e.g. [8, Problem 4.29])
gives

M(G2n) = 22n2 ∏

1≤j,k≤n

(

cos2 jπ

2n + 1
+ cos2 kπ

2n + 1

)

. (4.7)

Plugging this into (4.6) and using the well known identity
∏n

j=1 2 cos jπ
2n+1 = 1 we

obtain (4.2).
Next, we prove (4.4). Apply the factorization theorem to the graph T(QADn+1) \

v, with v chosen to be both on the symmetry axis and on the infinite face of
T(QADn+1) (see Figure 4.6). One of the resulting subgraphs is then Dn, while the
other is T(HODn/2) \ v, when n is even, and T(HMD(n+1)/2) \ v, when n is odd.
The formulas provided by Corollaries 2.3, 3.3 and 3.4 can then be used to obtain an
expression for M(Dn). After some manipulation one obtains (4.4).

Now M(Cn) can be worked out by applying the factorization theorem to the graph
An. It is readily seen that one of the resulting subgraphs is Dn, while the other is Cn.
We obtain

M(An) = 2� n+1
2 �M(Dn)M(Cn).

Using (4.1) and (4.4) this implies (4.3). �

Theorem 4.4 The only nonempty non-trivial symmetry class of spanning trees of
ADn is that of horizontally symmetric trees. We have

t〈h〉(ADn) = 2n t(HMDn) = 2n
∏

1≤j<k≤2n−1
j+k≤2n−1

(

4 − 4 cos
jπ

2n
cos

kπ

2n

)

. (4.8)

Proof Suppose T is a horizontally and vertically symmetric spanning connected sub-
graph of ADn. Since T is connected, it contains some edge e crossed by the horizon-
tal symmetry axis �h. The mirror image e′ of e across the vertical symmetry axis �v is
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also in T , as T is vertically symmetric. Let a be the top vertex of e, and a′ its mirror
image across �v . Since T is connected, it contains a path P from a to a′. But then the
union of the reflection of P across �h with the edges e and e′ yields another path in
T , distinct from P , connecting a to a′; so T cannot be tree.

A similar argument shows that, if T is a spanning connected subgraph of ADn

which is invariant under rotation by 180◦, and a is say one of the four centralmost
vertices of ADn, then T must contain two distinct paths connecting a to its image
through rotation by 180◦. Since quarter turn invariant spanning trees are obviously
also half turn invariant, to conclude the proof it suffices to prove (4.8).

Let T be a horizontally symmetric spanning tree of ADn. The argument in the first
paragraph of this proof implies that T contains precisely one edge e that crosses �h.
The removal of this edge from T leaves two mirror images of a spanning tree of
HMDn, and defines a 2n-to-1 map from the set of horizontally symmetric spanning
trees of ADn to the set of spanning trees of HMDn. This proves the first equality
of (4.8); the second follows by Corollary 3.6. �

Theorem 4.5 The non-trivial symmetry classes of spanning trees of ODn not involv-
ing rotations are enumerated by

t〈h〉(ODn) = M(C2n−1) = 1

22n

∏

1≤j≤k≤2n−1
j+k even

(

4 − 2 cos
jπ

2n
− 2 cos

kπ

2n

)

(4.9)

and

t〈h,v〉(ODn) = M(An−1) = 1

2n−1

∏

1≤j≤k≤n−1

(

4 − 2 cos
jπ

n
− 2 cos

kπ

n

)

. (4.10)

Proof Let T be an h-invariant spanning tree of ODn, and let a and b be the two
vertices of ODn that are both on its infinite face and on its horizontal symmetry
axis �h. Let P be the path in T connecting a to b. By the uniqueness of such a path
it follows that P is h-invariant. Clearly, this implies that P consists of the 2n edges
of ODn along �h.

It follows that the h-invariant spanning trees of ODn are in bijection with the span-
ning trees of HODn that contain all the bottom 2n edges. In turn, the latter can be
identified with the spanning trees of the graph G obtained from HODn−1 by includ-
ing a new vertex w connected to its 2n − 1 bottommost vertices. However, T(G) \ w

is readily seen to be isomorphic to C2n−1. Then (4.9) follows from Theorem 4.2 and
(4.3).

An argument similar to the one in the first paragraph of this proof shows that the
〈h,v〉-invariant spanning trees can be identified with the spanning trees of QADn

which contain all the 2n edges along the straight line portions of its boundary. In
analogy to the previous paragraph, by Theorem 4.2 the number of the latter is seen to
equal M(An−1). Thus (4.10) follows by (4.1). �
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Theorem 4.6 The non-trivial symmetry classes of spanning trees of MDn not involv-
ing rotations are enumerated by

t〈h〉(MDn) = M(C2n−2)

= 1

22n−2

∏

1≤j≤k≤2n−2
j+k even

(

4 − 2 cos
jπ

2n − 1
− 2 cos

kπ

2n − 1

)

(4.11)

and

t〈h,v〉(MDn) = M(Bn−1)

= 2n−1
n−1∏

j=1

cos
jπ

2n − 1

∏

1≤j<k≤n−1

(

4 cos2 jπ

2n − 1
+ 4 cos2 kπ

2n − 1

)

.

(4.12)

Proof Arguments analogous to the ones in the proof of Theorem 4.5 show that
t〈h〉(MDn) = M(C2n−2), and t〈h,v〉(MDn) = M(Bn−1). Then (4.11) and (4.12) fol-
low by (4.3) and (4.2). �

Open Problem 4.7 Find formulas for t〈r〉(ODn), t〈r2〉(ODn), and t〈r2〉(MDn).

5 Symmetry classes of perfect matchings of odd squares with a central unit
hole

The existence of formula (4.7) invites one to look for an analog in the case of
odd square grids. One very natural candidate is the graph Hn obtained from the
(2n + 1) × (2n + 1) square grid by removing its central vertex (see Figure 5.1).

As it turns out, the numbers M(Hn) do not seem to have many factors in their
prime factorization (see Section 7). This makes it implausible for them to possess a
“nice” product expression (e.g. similar in style to the product formulas that occur in
this paper).

However, all non-trivial symmetry classes of perfect matchings of Hn turn out to
be enumerated by variations of the product formulas we have encountered in the pre-
vious sections. To present our results we will need, besides the graphs introduced in
the previous section, to enumerate the perfect matchings of certain weighted versions
of An and Bn.

Define Ãn to be the weighted graph obtained from An by weighting its top
2n − 1 edges by 1/2, and keeping weight 1 for all its other edges. Define B̃n to
be the weighted graph obtained from Bn by weighting its top 2n − 2 edges by 1/2,
and keeping weight 1 for all its other edges. For a weighted graph G, M(G) denotes
the sum of the weights of all its perfect matchings, the weight of a matching being
equal to the product of the weights on its constituent edges.
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Lemma 5.1

M(Ãn) = 1

23n

2n∏

j=1

(

4 − 4 cos
jπ

2n + 1

)

×
∏

1≤j<k≤n

(

4 − 2 cos
2jπ

2n + 1
− 2 cos

2kπ

2n + 1

)

, (5.1)

and

M(B̃n) = 1

2n−1

∏

1≤j<k≤2n−1
j+k≤2n−1, j+k odd

(

4 − 4 cos
jπ

2n
cos

kπ

2n

)

. (5.2)

Before giving the proof of the above lemma, we show how it implies the following
result.

Clearly, no perfect matching of Hn can be symmetric with respect to the diagonal.
Thus the reflection h across the horizontal, the reflection v across the vertical, and
the rotation r by 90◦ generate the relevant symmetry group. As is Section 4, there are
four inequivalent non-trivial symmetry classes, corresponding to the subgroups 〈h〉,
〈h,v〉, 〈r2〉, and 〈r〉, respectively. Denote by MK(G) the number of perfect matchings
of G that are invariant under the symmetry group K .

Theorem 5.2 We have

M〈h〉(H2n) =
n−1∏

j=0

2n∏

k=0

(

4 − 2 cos
(2j + 1)π

2n + 1
− 2 cos

kπ

2n + 1

)

, (5.3)

M〈h,v〉(H2n) =
∏

1≤j,k≤n

(

4 cos2 jπ

2n + 1
+ 4 cos2 kπ

2n + 1

)

, (5.4)

M〈r2〉(Hn) = 2n−2� n
2 � ∏

1≤j<k≤n
j+k odd

(

4 − 2 cos
jπ

n + 1
− 2 cos

kπ

n + 1

)2

, (5.5)

M〈r〉(H2n−1) = 2
∏

1≤j≤k≤n−1

(

4 − 2 cos
jπ

n
− 2 cos

kπ

n

)

×
∏

1≤j<k≤2n−1
j+k≤2n−1, j+k odd

(

4 − 4 cos
jπ

2n
cos

kπ

2n

)

, (5.6)

and
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Fig. 5.1 Factorization applied
to H6/〈r2〉

M〈r〉(H2n) = 1

2n

2n∏

j=1

(

4 − 4 cos
jπ

2n + 1

)

×
∏

1≤j<k≤n

(

4 − 2 cos
2jπ

2n + 1
− 2 cos

2kπ

2n + 1

)

×
(

4 cos2 jπ

2n + 1
+ 4 cos2 kπ

2n + 1

)

. (5.7)

Proof For a perfect matching of Hn to be h-invariant, all vertices along the horizontal
symmetry axis �h must be matched by edges along �h; this is possible only when n

is even. The h-invariant perfect matchings of H2n can then be identified with perfect
matchings of the rectangular 2n × (4n + 1) grid graph. The latter were enumerated
by Kasteleyn, Fisher and Temperley; (5.3) follows from the form given in [5].

By a similar argument, the 〈h,v〉-invariant perfect matchings of H2n can be identi-
fied with perfect matchings of the square grid graph G2n. Thus (5.4) follows by (4.7).

To prove (5.5), note that M〈r2〉(Hn) = M(Hn/〈r2〉), where Hn/〈r2〉 is the orbit
graph of the action of r2 on Hn. This orbit graph can be regarded as being obtained
from the subgraph of Hn induced by its vertices on or under a diagonal d by identify-
ing the pairs of vertices on d that are at the same distance from the center; Figure 5.1
shows H6/〈r2〉.

Apply the factorization theorem of [2] to Hn/〈r2〉 with respect to the diagonal
perpendicular to d . The resulting graphs both turn out to be isomorphic to Dn. We
obtain

M〈r2〉(Hn) = 2n[M(Dn)]2.

Formula (4.4) implies then (5.5).
We now turn to the proof of (5.6). Let Hn/〈r〉 be the orbit graph of the action of

r on Hn. By definition, M〈r〉(Hn) = M(Hn/〈r〉). The graph Hn/〈r〉 is obtained from
the subgraph of Hn induced by its vertices on or under the union of its two diagonals
by identifying the pairs of vertices on this union that are at the same distance from
the center; Figure 5.2 shows H7/〈r〉.
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Fig. 5.2 Factorization for
H7/〈r〉

Fig. 5.3 Factorization for
H6/〈r〉

Apply the factorization theorem of [2] to Hn/〈r〉 with respect to the vertical sym-
metry axis. The shape of the resulting subgraphs is different for different parities
of n.

For odd n, one of the graphs is A(n−1)/2, while the other is B̃(n+1)/2 (see Fig-
ure 5.2). We obtain

M〈r〉(H2n−1) = 22n−1M(An−1)M(B̃n).

Using (4.1) and Lemma 5.1, this implies (5.6).
On the other hand, when n is even, one of the subgraphs obtained by applying

the factorization theorem to Hn/〈r〉 is Bn/2, while the other is Ãn/2 (see Figure 5.3).
Thus

M〈r〉(H2n) = 22nM(Bn)M(Ãn).

Formula (5.7) follows then by (4.2) and Lemma 5.1. �

Proof of Lemma 5.1 Apply the factorization theorem of [2] to the graph C2n (see
Figure 5.4; the dotted edges are weighted 1/2). One of the resulting subgraphs is
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Fig. 5.4 Factorization applied
to C8

Fig. 5.5 Factorization applied
to G5

then Ãn, while the other is Bn. We obtain

M(C2n) = 2nM(Ãn)M(Bn).

Plug in the expressions for M(Bn) and M(C2n) given by (4.2) and (4.3). We obtain

1

22n

∏

1≤j≤k≤2n
j+k even

(

4 − 2 cos
jπ

2n + 1
− 2 cos

kπ

2n + 1

)

= 2nM(Ãn)
∏

1≤j<k≤n

(

4 cos2 jπ

2n + 1
+ 4 cos2 kπ

2n + 1

)

. (5.8)

Use the identity 2 cos2(x) = 1 + cos(2x) to write

4 cos2 jπ

2n + 1
+ 4 cos2 kπ

2n + 1
= 4 + 2 cos

2jπ

2n + 1
+ 2 cos

2kπ

2n + 1

= 4 − 2 cos
(2n + 1 − 2j)π

2n + 1
− 2 cos

(2n + 1 − 2k)π

2n + 1
.

Rewrite the factors on the right hand side of (5.8) using the above equality, and sim-
plify out their occurrences in the product on the left hand side of (5.8). Solving for
M(Ãn) in the resulting equation yields (5.1).

To deduce (5.2), consider the graph Gn obtained from T(HMDn) by including
a new vertex v on its vertical symmetry axis � and joining v by an edge to the two
bottommost vertices of HMDn on its infinite face (see Figure 5.5). Apply the factor-
ization theorem of [2] to the graph G with respect to �. One of the resulting subgraphs
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is then B̃n, while the other is T(QADn) \ w, where w is a leaf of QADn. We obtain

M(Gn) = 2nM(B̃n)M(T(QADn) \ w). (5.9)

However, since v can be matched in Gn only to w or its mirror image across �, we
have by symmetry M(Gn) = 2M(T(HMDn)\w). Using Theorem 4.2, (5.9) becomes

2t(HMDn) = 2nM(B̃n)t(QADn).

Combining this with formulas (2.5) and (3.22) we obtain

∏

1≤j<k≤2n−1
j+k≤2n−1

(

4 − 4 cos
jπ

2n
cos

kπ

2n

)

= 2nM(B̃n)
∏

1≤j<k≤n−1

(

4 − 2 cos
jπ

n
− 2 cos

kπ

n

)

. (5.10)

For same parity indices j and k in the product on the left hand side, write the corre-
sponding factor as

4 − 4 cos
jπ

2n
cos

kπ

2n
= 4 − 2 cos

(k − j)π

2n
− 2 cos

(k + j)π

2n
.

The resulting factors cancel all the factors in the product on the right hand side of
(5.10). Solving for M(B̃n) in the resulting equality yields (5.2). �

6 Aztec pillowcases

Theorem 2.1 shows that the square grid graph Gn is similar to the disjoint union of
two copies of the same graph (namely, QADn−1) with a graph having a relatively
small number of vertices (namely, P

(2)
n ).

Analogous statements about the Aztec diamond graphs MDn and ODn follow by
Theorems 3.1 and 3.2.

These three results are instances of finite graphs G with an automorphism T of
order 2 so that if G1 is the subgraph of the orbit graph G/T induced by the orbits
of the vertices not fixed by T , then G is similar to the disjoint union of two copies
of G1 with some simple weighted graph on the vertices fixed by T . If in addition
the number of vertices fixed by T is relatively small compared to the total number of
vertices, we refer to such a pair (G,T ) as linearly squarish.

Which pairs (G,T ) are linearly squarish?
This seems to be a difficult question to answer. Lemma 1.1 applies whenever

T 2 = 1 and the fixed points of T form a cut set. Its proof shows that G is similar
to the disjoint union of G1 with a directed weighted graph constructed from the orbit
graph G/T . The challenging part is to decide when the latter is similar to the disjoint
union of G1 with some other graph.
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Fig. 6.1 The Aztec pillowcase graph AP5

Fig. 6.2 The odd Aztec
pillowcase OP4

The question seems hard even when we restrict to the special case of graphs that
are dual to simply connected lattice regions in Z2. If one uses the natural choice (2.8)
(or (3.3)) to define part of the desired new basis, the required action (2.9) (or (3.4)) of
F will hold as long as the corresponding vertex has its entire Z

2-second neighborhood
contained in G; but in general problems arise near the boundary. We may regard the
above examples of the square grid and mixed and odd Aztec diamonds as instances
when we managed to solve these problems at the boundary.

In this section we give another example of a linearly squarish graph, whose being
so is based on a variation of the change of basis (2.8).

Define the Aztec pillowcase graph APn to be the graph obtained from two copies
of ADn by identifying corresponding vertices on their convex hull (this leads to four
pairs of parallel edges; AP5 is pictured in Figure 6.1). The odd Aztec pillowcase OPn

is defined analogously using two copies of ODn (Figure 6.2 shows OP4; the vertex
identifications have been carried out). Note that OPn is precisely the planar dual of
APn.

Let P
(q)
n be the graph obtained from the path Pn by weighting each of its edges

by q .
Let Sn be the directed graph obtained from P

(2)
n−1 by regarding each edge as a pair

of anti-parallel arcs of weight 2, and including an extra vertex v, an arc of weight 2
directed from v to the rightmost vertex of P

(2)
n−1, and a loop at v of weight 4 (S5 is



534 J Algebr Comb (2008) 27: 493–538

Fig. 6.3 S5

Fig. 6.4 S′
5

pictured in Figure 6.3). Let S′
n be constructed analogously from P

(−2)
n−1 , with the loop

at the new vertex having weight −4 (S′
5 is illustrated in Figure 6.4).

Theorem 6.1 APn is similar to the disjoint union of two copies of ADn−1, one copy
of S2n−1, and one copy of S′

2n−1.

Proof Apply Lemma 1.1 to obtain that APn is similar to the disjoint union of ADn−1
and the weighted directed graph ADn obtained from ADn by marking the vertices
on its convex hull, replacing each edge between two unmarked vertices by a pair of
anti-parallel arcs of weight 1, and replacing each edge between an unmarked vertex
v and a marked vertex w by an arc (v,w) weighted 1 and an arc (w,v) weighted 2.

Define the operators N, S, E and W on the set of vertices of ADn to be the nearest
neighbors in specified cardinal directions, in analogy to the operators NE, NW, SW
and SE from the proof of Theorem 3.1. Let V be the set of vertices of ADn, and
V1 the subset of vertices that are not on the boundary of its convex hull. Clearly, the
subgraph of ADn induced by V1 of that copy is isomorphic to ADn−1.

For v ∈ V1, define

fv := dN(v)eN(v) − dW(v)eW(v) + dS(v)eS(v) − dE(v)eE(v), (6.1)

where dw = 1 if w ∈ V1, dw = 2 if w ∈ V \ V1, and d∞ = 0.
A case analysis similar to that in the proof of Lemma 2.3 checks that {fv : v ∈ V1}

spans an F -invariant subspace V of U = UADn
, and that the matrix of the restriction

of F to V in the basis defined by (6.1) is just the adjacency matrix of ADn−1.
Let u1, . . . , u2n be the vectors in U that are linear combinations with coefficients

0 or 1 of the basis vectors {ev : v ∈ V }, and whose supports are given by the patterns
in Figure 6.5. Let u′

k be obtained from uk by multiplying the coefficient of ev by cv ,
where cv equals 1 for black vertices and −1 for whites.

One readily checks that {u1, . . . , u2n} are linearly independent; denote their span
by U1. It is easy to verify that U1 is F -invariant, and that the matrix of the restriction
of F to U1 in the basis {u1, . . . , u2n} is

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 2 0 0 · · · 0 0 0
2 0 2 0 · · · 0 0 0
0 2 0 2 · · · 0 0 0
0 0 2 0 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · 0 2 0
0 0 0 0 · · · 2 0 0
0 0 0 0 · · · 0 2 4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (6.2)
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Fig. 6.5 The vectors uk for
n = 3

A similar statement holds for the vectors {u′
1, . . . , u

′
2n}, with the restriction of F to

the subspace they span being given by the negative of the above matrix. An approach
similar to the one detailed for three previous examples in this paper shows that the
vectors {fv : v ∈ V1}, {u1, . . . , u2n} and {u′

1, . . . , u
′
2n} span the entire space U, and

thus form a basis of it. The matrix of F in this basis has the desired block diagonal
form. �

Corollary 6.2 The number of spanning trees of the Aztec pillowcase graphs is given
by

t(APn) = t(OPn) = 1

2n2

2n−1∏

j=1

(

4 − 4 cos
jπ

2n

)2

×
∏

1≤j,k≤2n−1

(

4 − 4 cos
jπ

2n
cos

kπ

2n

)

. (6.3)

Proof The first equality follows from the fact that OPn is the planar dual of APn.
The spectrum of the matrix (6.2) is readily determined. It follows from Theorem 6.1
and [6, Equations (5)–(6)] that

P(APn;x) = (x − 4)(x + 4)

2n−1∏

j=1

(

x − 4 cos
jπ

2n

)2

×
∏

1≤j,k≤2n−1

(

x − 4 cos
jπ

2n
cos

kπ

2n

)

. (6.4)

Since all vertex degrees in APn are equal to 4, the eigenvalues of its negative Lapla-
cian are obtained by adding 4 to the eigenvalues of the adjacency matrix of ADn,
which in turn are immediately read off from (6.4). Then (6.3) follows by a well
known result (see e.g. [7, Theorem VI]) which states that the number of spanning
trees of a connected graph on m vertices is equal to 1/m times the product of the
non-zero eigenvalues of its negative Laplacian. �
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Remark 6.3 Embed APn on the pillowcase manifold (topologically equivalent to S2).
Let AOPn be the graph obtained by superimposing upon APn its planar dual (which
as we pointed out is isomorphic to OPn), regarding all points where edges cross or
meet as vertices, and all lines connecting such points as edges. Then Theorem 4.2
implies that

M(AOPn \ {v,w}) = t(APn) (6.5)

for any vertex v of APn and any vertex w of OPn on the same face of AOPn as v. By
(6.3) we obtain a product formula for M(AOPn \ {v,w}). In particular, this number
is independent of v and w, a fact not apparent a priori.

7 Some open problems

The number of perfect matchings of the (2n+1)×(2n+1) grid Hn with a central unit
hole does not seem to factor into a product of small primes. We have the following
prime factorizations:

M(H1) = 2

M(H2) = 22 · 72

M(H3) = 23 · 972

M(H4) = 24 · 61212

M(H5) = 25 · 312 · 1132 · 2712

M(H6) = 26 · 5924421592

M(H7) = 27 · 74172 · 1326051292

M(H8) = 28 · 44812 · 85132 · 99292 · 163612

M(H9) = 29 · 46392 · 233576763339021112

M(H10) = 210 · 72 · 732 · 1912 · 4792 · 511512 · 29056107452232

M(H11) = 211 · 10332 · 10492 · 16632 · 1661512 · 42412867396854492

M(H12) = 212 · 412 · 1372 · 70572 · 209925755279703552818354009212.

As pointed out in [6], the factors in a product formula of the kind presented in the
previous sections can be grouped into small groups so that the product over each
group is an integer. This shows that such products have a fairly large number of
prime factors. In this light, the above data suggests that it is unlikely for M(Hn) to
possess a similar product expression. It would be interesting to see whether M(Hn)

can nevertheless be expressed in terms of such products, e.g. as a sum of a small
number of them.

We conclude with an open problem that suggests a possible generalization of the
linear squarishness of the square grid to grids in higher dimensions.
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Let G
(d)
n be the subgraph of the d-dimensional cubical grid Z

d induced by the
lattice points with positive coordinates less or equal to d (thus G

(2)
n is just the square

grid of Section 2). Calculations show that for d = 3 their characteristic polynomials
start out as

P(G
(3)
1 ;x) = x

P (G
(3)
2 ;x) = (x − 3)(x + 3) [(x − 1)(x + 1)]3

P(G
(3)
3 ;x) = x(x2 − 18) [x2(x2 − 8)(x2 − 2)2]3

P(G
(3)
4 ;x) = (x2 − 3x − 9)(x2 + 3x − 9)

×[(x2 − 3x + 1)(x2 + 3x + 1)(x2 − x − 11)

× (x2 + x − 11)(x2 − x − 1)3(x2 + x − 1)3]3

P(G
(3)
5 ;x) = x(x − 3)(x + 3)(x2 − 27)

×[(x − 2)(x + 2)(x2 − 12)(x2 − 4x + 1)

× (x2 + 4x + 1)(x2 − 2x − 11)

× (x2 + 2x − 11)(x2 − 2x − 2)2(x2 + 2x − 2)2

× (x − 1)4(x + 1)4(x2 − 3)4]3.

This suggests that G
(3)
n may be similar to the disjoint union of three copies of some

graph on (n3 − n)/3 vertices with some other graph on n vertices. It would be inter-
esting if one could prove this, and identify the smaller graphs.

The pattern for d = 4 is equally suggestive. We have

P(G
(4)
1 ;x) = x

P (G
(4)
2 ;x) = x2(x − 4)(x + 4) [x(x − 2)(x + 2)]4

P(G
(4)
3 ;x) = x3(x2 − 32)(x2 − 8)2 [x4(x2 − 18)(x2 − 8)2(x2 − 2)4]4

P(G
(4)
4 ;x) = x4(x − 2)2(x + 2)2(x2 − 4x − 16)(x2 + 4x − 16)(x2 − 20)2

×[x8(x − 2)(x + 2)(x2 − 20)(x2 − 4x − 1)

× (x2 + 4x − 1)(x2 − 2x − 19)(x2 + 2x − 19)

× (x2 − 2x − 4)4(x2 + 2x − 4)4(x − 1)6(x + 1)6(x2 − 5)6]4

P(G
(4)
5 ;x) = x5(x − 4)(x + 4)(x2 − 48)(x − 2)2(x + 2)2(x2 − 12)2

× (x2 − 4x − 8)2(x2 + 4x − 8)2

×[x14(x − 3)(x + 3)(x2 − 6x + 6)(x2 + 6x + 6)

× (x2 − 2x − 26)(x2 + 2x − 26)(x2 − 27)

× (x2 − 4x − 8)(x2 + 4x − 8)(x2 − 4x + 1)3(x2 + 4x + 1)3
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× (x2 − 2x − 11)3(x2 + 2x − 11)3(x − 2)5(x + 2)5(x2 − 12)5

× (x2 − 2x − 2)9(x2 + 2x − 2)9(x − 1)10(x + 1)10(x2 − 3)10]4.

This raises the problem of understanding whether G
(4)
n is similar to the disjoint union

of four copies of some graph on (n4 − n2)/4 vertices with some other graph on n2

vertices. More generally, it would be interesting to see if an analogous phenomenon
occurs for general d .

Another open problem (suggested by one of the referees) is to consider mixed
Aztec pillowcase graphs and see if they admit a decomposition similar to the one
given in Theorem 6.1.

Acknowledgements I would like to thank the two anonymous referees for their careful reading of the
manuscript and their helpful suggestions. The numbers M(Hn) shown at the beginning of Section 7 were
computed using David Wilson’s program Vaxmacs for counting perfect matchings.
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