Local properties of Richardson varieties in the Grassmannian via a bounded Robinson-Schensted-Knuth correspondence
Victor Kreiman
University of Georgia Department of Mathematics Athens GA 30602 USA
DOI: 10.1007/s10801-007-0093-0
Abstract
The Richardson variety X α γ in the Grassmannian is defined to be the intersection of the Schubert variety X γ and opposite Schubert variety X α . We give an explicit Gröbner basis for the ideal of the tangent cone at any T-fixed point of X α γ , thus generalizing a result of Kodiyalam-Raghavan (J. Algebra 270(1):28-54, 2003) and Kreiman-Lakshmibai (Algebra, Arithmetic and Geometry with Applications, 2004). Our proof is based on a generalization of the Robinson-Schensted-Knuth (RSK) correspondence, which we call the bounded RSK (BRSK). We use the Gröbner basis result to deduce a formula which computes the multiplicity of X α γ at any T-fixed point by counting families of nonintersecting lattice paths, thus generalizing a result first proved by Krattenthaler (Sém. Lothar. Comb. 45:B45c, 2000/2001; J. Algebr. Comb. 22:273-288, 2005).
Pages: 351–382
Keywords: keywords Schubert variety; Grassmannian; multiplicity; Gröbner basis; Robinson-Schensted-knuth correspondence
Full Text: PDF
References
1. Brion, M.: Lectures on the geometry of flag varieties. In: Topics in cohomological studies of algebraic varieties. Trends in Mathematics, pp. 33-85. Birkhäuser, Basel (2005)
2. Eisenbud, D.: Commutative Algebra. Graduate Texts in Mathematics, vol.
150. Springer, New York (1995)
3. Fulton, W.: Young Tableaux. London Mathematical Society Student Texts, vol.
35. Cambridge University Press, Cambridge (1997)
4. Ghorpade, S., Raghavan, K.N.: Hilbert functions of points on Schubert varieties in the symplectic Grassmannian. Trans. Am. Math. Soc. 358(12), 5401-5423 (2006)
5. Herzog, J., Trung, N.V.: Gröbner bases and multiplicity of determinantal and Pfaffian ideals. Adv. Math. 96(1), 1-37 (1992)
6. Hodge, W.V.D., Pedoe, D.: Methods of algebraic geometry, vol. I. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1994
7. Kodiyalam, V., Raghavan, K.N.: Hilbert functions of points on Schubert varieties in Grassmannians. J. Algebra 270(1), 28-54 (2003)
8. Krattenthaler, C.: On multiplicities of points on Schubert varieties in Grassmannians. Sém. Lothar. Comb. 45, Art. B45c (2000/2001) (electronic)
9. Krattenthaler, C.: On multiplicities of points on Schubert varieties in Grassmannians II. J. Algebr. Comb. 22, 273-288 (2005)
10. Kreiman, V.: Schubert classes in the equivariant K-theory and equivariant cohomology of the Grassmannian. Preprint arXiv:math.AG/0512204 J Algebr Comb (2008) 27: 351-382
11. Kreiman, V.: Monomial bases and applications for Richardson and Schubert varieties in ordinary and affine Grassmannians. Ph.D. thesis, Northeastern University (2003)
12. Kreiman, V., Lakshmibai, V.: Multiplicities of singular points in Schubert varieties of Grassmannians. In: Algebra, Arithmetic and Geometry with Applications, West Lafayette, IN, 2000, pp. 553-563. Springer, Berlin (2004)
13. Kreiman, V., Lakshmibai, V.: Richardson varieties in the Grassmannian. In: Contributions to Au- tomorphic Forms, Geometry, and Number Theory, pp. 573-597. Johns Hopkins University Press, Baltimore (2004)
14. Lakshmibai, V., Gonciulea, N.: Flag Varieties. Hermann, Paris (2001)
15. Lakshmibai, V., Raghavan, K.N., Sankaran, P.: Equivariant Giambelli and determinantal restriction formulas for the Grassmannian. Preprint arXiv:math.AG/0506015
16. Raghavan, K.N., Upadhyay, S.: Hilbert functions of points on Schubert varieties in the orthogonal Grassmannians. Preprint arXiv:0704.0542
17. Richardson, R.W.: Intersections of double cosets in algebraic groups. Indag. Math. (N.S.) 3(1), 69-77 (1992)
18. Rosenthal, J., Zelevinsky, A.: Multiplicities of points on Schubert varieties in Grassmannians. J. Al- gebr. Comb. 13(2), 213-218 (2001)
19. Sagan, B.E.: The Symmetric Group. Graduate Texts in Mathematics, vol.
203. Springer, New York (2001)
20. Stanley, R.P.: Some combinatorial aspects of the Schubert calculus. In: Combinatoire et représentation du groupe symétrique, Actes Table Ronde CNRS, Univ. Louis-Pasteur Strasbourg, Strasbourg, 1976.
2. Eisenbud, D.: Commutative Algebra. Graduate Texts in Mathematics, vol.
150. Springer, New York (1995)
3. Fulton, W.: Young Tableaux. London Mathematical Society Student Texts, vol.
35. Cambridge University Press, Cambridge (1997)
4. Ghorpade, S., Raghavan, K.N.: Hilbert functions of points on Schubert varieties in the symplectic Grassmannian. Trans. Am. Math. Soc. 358(12), 5401-5423 (2006)
5. Herzog, J., Trung, N.V.: Gröbner bases and multiplicity of determinantal and Pfaffian ideals. Adv. Math. 96(1), 1-37 (1992)
6. Hodge, W.V.D., Pedoe, D.: Methods of algebraic geometry, vol. I. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1994
7. Kodiyalam, V., Raghavan, K.N.: Hilbert functions of points on Schubert varieties in Grassmannians. J. Algebra 270(1), 28-54 (2003)
8. Krattenthaler, C.: On multiplicities of points on Schubert varieties in Grassmannians. Sém. Lothar. Comb. 45, Art. B45c (2000/2001) (electronic)
9. Krattenthaler, C.: On multiplicities of points on Schubert varieties in Grassmannians II. J. Algebr. Comb. 22, 273-288 (2005)
10. Kreiman, V.: Schubert classes in the equivariant K-theory and equivariant cohomology of the Grassmannian. Preprint arXiv:math.AG/0512204 J Algebr Comb (2008) 27: 351-382
11. Kreiman, V.: Monomial bases and applications for Richardson and Schubert varieties in ordinary and affine Grassmannians. Ph.D. thesis, Northeastern University (2003)
12. Kreiman, V., Lakshmibai, V.: Multiplicities of singular points in Schubert varieties of Grassmannians. In: Algebra, Arithmetic and Geometry with Applications, West Lafayette, IN, 2000, pp. 553-563. Springer, Berlin (2004)
13. Kreiman, V., Lakshmibai, V.: Richardson varieties in the Grassmannian. In: Contributions to Au- tomorphic Forms, Geometry, and Number Theory, pp. 573-597. Johns Hopkins University Press, Baltimore (2004)
14. Lakshmibai, V., Gonciulea, N.: Flag Varieties. Hermann, Paris (2001)
15. Lakshmibai, V., Raghavan, K.N., Sankaran, P.: Equivariant Giambelli and determinantal restriction formulas for the Grassmannian. Preprint arXiv:math.AG/0506015
16. Raghavan, K.N., Upadhyay, S.: Hilbert functions of points on Schubert varieties in the orthogonal Grassmannians. Preprint arXiv:0704.0542
17. Richardson, R.W.: Intersections of double cosets in algebraic groups. Indag. Math. (N.S.) 3(1), 69-77 (1992)
18. Rosenthal, J., Zelevinsky, A.: Multiplicities of points on Schubert varieties in Grassmannians. J. Al- gebr. Comb. 13(2), 213-218 (2001)
19. Sagan, B.E.: The Symmetric Group. Graduate Texts in Mathematics, vol.
203. Springer, New York (2001)
20. Stanley, R.P.: Some combinatorial aspects of the Schubert calculus. In: Combinatoire et représentation du groupe symétrique, Actes Table Ronde CNRS, Univ. Louis-Pasteur Strasbourg, Strasbourg, 1976.