Crystal graphs of irreducible U v([^(\mathfrak sl)] e) \mathcal{U}_{v}({\widehat{\mathfrak{sl}}_{e}}) -modules of level two and Uglov bipartitions
Nicolas Jacon
Université de Franche-Comté, UFR Sciences et Techniques 16 route de Gray 25 030 Besançon France
DOI: 10.1007/s10801-007-0078-z
Abstract
We give a simple description of the natural bijection between the set of FLOTW bipartitions and the set of Uglov bipartitions (which generalizes the set of Kleshchev bipartitions). These bipartitions, which label the crystal graphs of irreducible U v([^(\mathfrak sl)] e) \mathcal{U}_{v}({\widehat{\mathfrak{sl}}_{e}}) -modules of level two, naturally appear in the context of the modular representation theory of Hecke algebras of type B n .
Pages: 143–162
Keywords: keywords Hecke algebras; modular representations; canonical basis; crystal graph
Full Text: PDF
References
1. Ariki, S. (1996). On the decomposition numbers of the Hecke algebra of G(m, 1, n). Journal of Mathematics of Kyoto University, 36, 789-808.
2. Ariki, S. (2001). On the classification of simple modules for cyclotomic Hecke algebras of type G(m, 1, n) and Kleshchev multipartitions. Osaka Journal of Mathematics, 38, 827-837.
3. Ariki, S. (2002). University lecture series: Vol.
26. Representations of quantum algebras and combinatorics of Young tableaux. Providence: Am. Math. Soc.
4. Ariki, S., & Mathas, A. (2000). The number of simple modules of the Hecke algebras of type G(r, 1, n). Mathematische Zeitschrift, 233, 601-623.
5. Ariki, S., Kreiman, V., & Tsuchioka, S. On the tensor product of two basic representations of Uv(sle). Preprint available at http://arXiv.org/math.RT/0606044. (1)
6. Foda, O., Leclerc, B., Okado, M., Thibon, J.-Y., & Welsh, T. (1999). Branching functions of An - 1 and Jantzen-Seitz problem for Ariki-Koike algebras. Advances in Mathematics, 141, 322-365.
7. Dipper, R., & James, G. D. (1992). Representations of Hecke algebras of type B. Journal of Algebra, 146, 454-481.
8. Geck, M. (2007). Modular representations of Hecke algebras. In M. Geck, D. Testerman & J. Th'evenaz (Eds.), Group representation theory (EPFL, 2005, pp. 301-353). Presses Polytechniques et Universitaires Romandes. Lausanne: EPFL Press.
9. Geck, M. (2006). Modular principal series representations. International Mathematics Research No- tices, 2006, Article ID 41957, 20 pages.
10. Geck, M., & Jacon, N. (2006). Canonical basic sets in type Bn. Journal of Algebra, 306(1), 104-127.
11. Geck, M., & Rouquier, R. (2001). Filtrations on projective modules for Iwahori-Hecke algebras. In M. J. Collins & B. J. Parshall (Eds.), Modular representation theory of finite groups, Charlottesville, VA, 1998. (pp. 211-221). Berlin: Walter de Gruyter.
12. Jacon, N. (2004). On the parametrization of the simple modules for Ariki-Koike algebras at roots of unity. Journal of Mathematics of Kyoto University, 44, 729-767.
13. Jacon, N. (to appear). Crystal graphs of higher level q-deformed Fock spaces, Lusztig a-values and Ariki-Koike algebras. Algebras and Representation Theory.
14. Jimbo, M., Misra, K. C., Miwa, T., & Okado, M. (1991). Combinatorics of representations of Uq (sl(n)) at q =
0. Communications in Mathematical Physics, 136, 543-566.
15. Leclerc, B., & Miyachi, H. (2004). Constructible characters and canonical bases. Journal of Algebra, 277(1), 298-317.
16. Mathas, A. (1999). University lecture series: Vol.
15. Iwahori-Hecke algebras and Schur algebras of the symmetric group. Providence: Am. Math. Soc.
17. Uglov, D. (2000). Progress in mathematics: Vol.
191. Canonical bases of higher-level q-deformed Fock spaces and Kazhdan-Lusztig polynomials (pp. 249-299). Physical combinatorics, Kyoto,
1999. Boston: Birkhäuser.
2. Ariki, S. (2001). On the classification of simple modules for cyclotomic Hecke algebras of type G(m, 1, n) and Kleshchev multipartitions. Osaka Journal of Mathematics, 38, 827-837.
3. Ariki, S. (2002). University lecture series: Vol.
26. Representations of quantum algebras and combinatorics of Young tableaux. Providence: Am. Math. Soc.
4. Ariki, S., & Mathas, A. (2000). The number of simple modules of the Hecke algebras of type G(r, 1, n). Mathematische Zeitschrift, 233, 601-623.
5. Ariki, S., Kreiman, V., & Tsuchioka, S. On the tensor product of two basic representations of Uv(sle). Preprint available at http://arXiv.org/math.RT/0606044. (1)
6. Foda, O., Leclerc, B., Okado, M., Thibon, J.-Y., & Welsh, T. (1999). Branching functions of An - 1 and Jantzen-Seitz problem for Ariki-Koike algebras. Advances in Mathematics, 141, 322-365.
7. Dipper, R., & James, G. D. (1992). Representations of Hecke algebras of type B. Journal of Algebra, 146, 454-481.
8. Geck, M. (2007). Modular representations of Hecke algebras. In M. Geck, D. Testerman & J. Th'evenaz (Eds.), Group representation theory (EPFL, 2005, pp. 301-353). Presses Polytechniques et Universitaires Romandes. Lausanne: EPFL Press.
9. Geck, M. (2006). Modular principal series representations. International Mathematics Research No- tices, 2006, Article ID 41957, 20 pages.
10. Geck, M., & Jacon, N. (2006). Canonical basic sets in type Bn. Journal of Algebra, 306(1), 104-127.
11. Geck, M., & Rouquier, R. (2001). Filtrations on projective modules for Iwahori-Hecke algebras. In M. J. Collins & B. J. Parshall (Eds.), Modular representation theory of finite groups, Charlottesville, VA, 1998. (pp. 211-221). Berlin: Walter de Gruyter.
12. Jacon, N. (2004). On the parametrization of the simple modules for Ariki-Koike algebras at roots of unity. Journal of Mathematics of Kyoto University, 44, 729-767.
13. Jacon, N. (to appear). Crystal graphs of higher level q-deformed Fock spaces, Lusztig a-values and Ariki-Koike algebras. Algebras and Representation Theory.
14. Jimbo, M., Misra, K. C., Miwa, T., & Okado, M. (1991). Combinatorics of representations of Uq (sl(n)) at q =
0. Communications in Mathematical Physics, 136, 543-566.
15. Leclerc, B., & Miyachi, H. (2004). Constructible characters and canonical bases. Journal of Algebra, 277(1), 298-317.
16. Mathas, A. (1999). University lecture series: Vol.
15. Iwahori-Hecke algebras and Schur algebras of the symmetric group. Providence: Am. Math. Soc.
17. Uglov, D. (2000). Progress in mathematics: Vol.
191. Canonical bases of higher-level q-deformed Fock spaces and Kazhdan-Lusztig polynomials (pp. 249-299). Physical combinatorics, Kyoto,
1999. Boston: Birkhäuser.