
J Algebr Comb (2008) 27: 215–245
DOI 10.1007/s10801-007-0079-y

Monomial ideals, edge ideals of hypergraphs, and their
graded Betti numbers

Huy Tài Hà · Adam Van Tuyl

Received: 26 October 2006 / Accepted: 14 May 2007 / Published online: 7 July 2007
© Springer Science+Business Media, LLC 2007

Abstract We use the correspondence between hypergraphs and their associated edge
ideals to study the minimal graded free resolution of squarefree monomial ideals.
The theme of this paper is to understand how the combinatorial structure of a hy-
pergraph H appears within the resolution of its edge ideal I(H). We discuss when
recursive formulas to compute the graded Betti numbers of I(H) in terms of its sub-
hypergraphs can be obtained; these results generalize our previous work (Hà, H.T.,
Van Tuyl, A. in J. Algebra 309:405–425, 2007) on the edge ideals of simple graphs.
We introduce a class of hypergraphs, which we call properly-connected, that natu-
rally generalizes simple graphs from the point of view that distances between inter-
secting edges are “well behaved.” For such a hypergraph H (and thus, for any simple
graph), we give a lower bound for the regularity of I(H) via combinatorial infor-
mation describing H and an upper bound for the regularity when H = G is a simple
graph. We also introduce triangulated hypergraphs that are properly-connected hy-
pergraphs generalizing chordal graphs. When H is a triangulated hypergraph, we
explicitly compute the regularity of I(H) and show that the graded Betti numbers
of I(H) are independent of the ground field. As a consequence, many known results
about the graded Betti numbers of forests can now be extended to chordal graphs.
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1 Introduction

Let X = {x1, . . . , xn} be a finite set, and let E = {E1, . . . ,Es} be a family of distinct
subsets of X . The pair H = (X ,E) is called a hypergraph if Ei �= ∅ for each i. The
elements of X are called the vertices, while the elements of E are called the edges
of H. A hypergraph H is simple if: (1) H has no loops, i.e., |E| ≥ 2 for all E ∈ E ,
and (2) H has no multiple edges, i.e., whenever Ei,Ej ∈ E and Ei ⊆ Ej , then i = j .
A hypergraph generalizes the classical notion of a graph; a graph is a hypergraph for
which every E ∈ E has cardinality two.

Let k be a field. By identifying the vertex xi with the variable xi in the ring
R = k[x1, . . . , xn], we can associate to every simple hypergraph H = (X ,E) the
squarefree monomial ideal

I(H) =
({

xE =
∏
x∈E

x

∣∣∣E ∈ E
})

⊆ R = k[x1, . . . , xn].

We call the ideal I(H) the edge ideal of H.
In this paper, we study the minimal graded free resolution of I(H). Since there is

a natural bijection between the sets
{

simple hypergraphs H = (X ,E)

with X = {x1, . . . , xn}
}

↔
{

squarefree monomial
ideals I ⊆ R = k[x1, . . . , xn]

}
,

we are in fact studying a fundamental problem in commutative algebra which asks
for the minimal graded free resolution of a monomial ideal (for an introduction, see
[24]). The edge ideal approach allows us to study this problem from a new angle; the
standard approach is to use the Stanley–Reisner dictionary to associate to a square-
free monomial ideal I a simplicial complex Δ where the generators of I correspond
to the minimal nonfaces of Δ. Instead, we associate to I a new combinatorial object,
namely, a hypergraph. The theme of this work is to understand how the algebraic
invariants of I = I(H) encoded in its minimal free resolution relate to the combina-
torial properties of H.

The edge ideal of a hypergraph was first introduced by Villarreal [31] in the spe-
cial case that H = G is a simple graph. Subsequently, many people, including [1, 12,
13, 15–18, 27–30, 32], have been working on a program to build a dictionary between
the algebraic properties of I(G) and combinatorial structure of G. Of particular rele-
vance to this paper, the minimal graded resolution of I(G) was investigated in [5, 7,
9, 19–22, 26, 33] (see also [23] for a survey). In this paper, we extend some of these
results to the hypergraph case, most notably, the results of [22], thereby extending our
understanding of quadratic squarefree monomial ideals to arbitrary squarefree mono-
mial ideals. At the same time, we also derive new results which, even when restricted
to graphs, give new and interesting corollaries.

The edge ideal I(H) of an arbitrary hypergraph was first studied by Faridi [11]
but from a slightly different perspective. Recall that Δ is a simplicial complex on the
vertex set X if {xi} ∈ Δ for all i, and if F ∈ Δ, then all subsets of F belong to Δ. The
facets of Δ are the maximal elements of Δ under inclusion. The facet ideal of Δ is
then defined to be the ideal I(Δ) = ({xF = ∏

x∈F x | F is a facet of Δ}) ⊆ R. Note,
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however, that if F(Δ) = {F1, . . . ,Ft } denotes the set of facets of Δ, then H(Δ) =
(X ,F(Δ)) is a hypergraph. In fact, what Caboara, Faridi, and Selinger [3] call a
facet complex is a hypergraph. It is immediate that I(H(Δ)) = I(Δ). Conversely,
given any hypergraph H = (X ,E), we can associate to H the simplicial complex
Δ(H) = {F ⊆ X | F ⊆ Ei for some Ei ∈ E}. It is again easy to verify that I(H) =
I(Δ(H)).

One may therefore take the viewpoint that the generators of a squarefree mono-
mial ideal correspond to either the edges of a hypergraph or the facets of a simplicial
complex. In this paper, we have chosen to take the first option for at least two rea-
sons: first, the language of hypergraphs is more natural to describe our results; and
second, we only require the edge structure of the hypergraph and never make use of
the simplicial complex structure. (A hypergraph point of view is also taken in the re-
cent paper [15].) Of course, all our results could be reinterpreted as statements about
the facet ideal of some simplicial complex.

The starting point of this paper is to determine how the splitting technique used in
[22] to study the resolution of edge ideals of graphs can be extended to hypergraphs.
Recall that Eliahou and Kervaire [8] call a monomial ideal I splittable if I = J + K

for two monomial ideas J and K such that the minimal generators of J,K , and
J ∩ K satisfy a technical condition (see Definition 2.3 for the precise statement).
When an ideal is splittable, the minimal resolutions (specifically the graded Betti
numbers) of I, J,K , and J ∩K are then related. Given a hypergraph H, we therefore
want to split I(H) so that the ideals J,K , and J ∩ K correspond to edge ideals of
sub-hypergraphs of H. This allows us to derive recursive-type formulas to relate the
graded Betti numbers of I(H) to those of sub-hypergraphs of H. These formulas
provide a systematic approach to investigating algebraic invariants and properties of
I(H).

We now summarize the results of this paper. In Sect. 3 we extend the notion of a
splitting edge of a graph as defined in [22] to the hypergraph setting. Precisely, let
E be an edge of the hypergraph H. If H\E denotes the hypergraph with the edge
E removed, then it is clear that I(H) = (xE) + I(H\E). We call E a splitting edge
precisely when I(H) = (xE) + I(H\E) is a splitting of the ideal I(H). Our main
result in Sect. 3 is the following classification of splitting edges, thus answering a
question raised in [23].

Theorem 1.1 (Theorem 3.2) Let H be a hypergraph with two or more edges. Then
an edge E is a splitting edge of H if and only if there exists a vertex z ∈ E such that

(
xE

) ∩ I(H\E) ⊆ (
xE

) ∩ I
(
H\{z}).

Here, H\{z} denotes the sub-hypergraph of H where every edge containing z is re-
moved.

To make use of our classification of splitting edges, we need to be able to describe
the resolution of J ∩ K = (xE) ∩ I(H\E). This resolution was described when H =
G is a simple graph in [23]. However, this is a difficult problem for an arbitrary H. We
are therefore interested in families of hypergraphs, which includes all simple graphs,
where one can say something about J ∩ K .
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In Sect. 4 we introduce one such family which we call properly-connected hy-
pergraphs. A hypergraph H = (X ,E) is properly-connected if all its edges have the
same cardinality and, furthermore, if E,H ∈ E with E ∩ H �= ∅, then the distance
distH(E,H) between E and H , that is, the length of the shortest path between E

and H in H, is determined by |E ∩ H |. It is easy to see that all simple graphs are
properly-connected. In fact, a re-examination of the results of [22] reveals that the
properly-connected property of graphs is an essential ingredient implicitly used in
the proofs. A properly-connected hypergraph is in some sense a natural generaliza-
tion of a simple graph.

When H is properly-connected, we can describe the resolution of J ∩ K in terms
of edge ideals of sub-hypergraphs of H. Therefore, for any splitting edge E ∈ H, we
can derive the following recursive-type formula for βi,j (I(H)).

Theorem 1.2 (Theorem 4.16) Let H be a properly-connected hypergraph, and let E

be a splitting edge of H. Suppose that d = |E|, H′ = {H ∈ H | distH(E,H) ≥ d +1},
and t = |N(E)|, where

N(E) =
⋃

{H∈H|distH(E,H)=1}
H\E.

Then for all i ≥ 1,

βi,j

(
I(H)

) = βi,j

(
I(H\E)

) +
i∑

l=0

(
t

l

)
βi−1−l,j−d−l

(
I(H′)

)
.

Here, β−1,j (I(H′)) = 1 if j = 0 and 0 if j �= 0.

The sub-hypergraphs H\E and H′ in Theorem 1.2 may fail to have splitting edges,
thus preventing us from computing βi,j (I(H)) recursively. However, in [22] (see also
[19, 20] in the case of forests), it is proved that when H is a hyperforest (i.e., a sim-
plicial forest in the sense of [11]), then βi,j (I(H)) can be computed recursively. The
goal of Sect. 5 is to introduce a subclass of properly-connected hypergraphs, which
we call triangulated hypergraphs, for which Theorem 1.2 can be used to completely
resolve the graded Betti numbers of I(H) recursively. Triangulated hypergraphs gen-
eralize the notion of chordal graphs, which has attracted considerable attention lately
(cf. [12, 13, 17, 18]). In fact, triangulated graphs are precisely chordal graphs. As a
consequence of Theorem 1.2, we also show that the graded Betti numbers of a trian-
gulated hypergraph are independent of the characteristic of the ground field (Corol-
lary 5.9). Restricted to simple graphs, we obtain the following interesting corollary,
which extends a result of [19, 20] (that proved the result for forests).

Corollary 1.3 (Corollary 5.10) Suppose that G is a chordal graph. Then the graded
Betti numbers of I(G) are independent of the characteristic of the ground field and
can be computed recursively.

In Sect. 6 we study reg(I(H)), the Castelnuovo–Mumford regularity of I(H),
when H is properly-connected. Again, the key idea we need here is the notion
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of distance between edges. We say that two edges E,H ∈ H are t-disjoint if
distH(E,H) ≥ t . When H is a properly-connected hypergraph and d is the com-
mon cardinality of the edges, then d-disjoint edges are disjoint edges in the usual
sense. We then show the following:

Theorem 1.4 Let H be a properly-connected hypergraph. Suppose that d is the com-
mon cardinality of the edges in H. Let c be the maximal number of pairwise (d + 1)-
disjoint edges of H. Then

(i) (Theorem 6.5) reg(I(H)) ≥ (d − 1)c + 1;
(ii) (Theorem 6.8) if H is also triangulated, then reg(I(H)) = (d − 1)c + 1.

By a matching of a hypergraph H, we mean any subset E ′ ⊆ E of edges in H which
are pairwise disjoint. The matching number of H, denoted by α′(H), is the largest
size of a maximal matching of H. For simple graphs, we also obtain a particularly
nice upper bound for the regularity of I(G). This addresses a question J. Herzog had
asked us.

Theorem 1.5 Theorem 6.7 Let G be a finite simple graph. Then

reg
(
R/I(G)

) ≤ α′(G),

where α′(G) is the matching number of G.

Using Theorem 1.5, we can compare the regularity and projective dimension of
I(G) to those of I(G)∨, the Alexander dual of I(G).

Theorem 1.6 (Theorem 6.14) Let G be a simple graph.

(1) If G is unmixed (i.e., all the minimal vertex covers have the same cardinality),
then

reg
(
I(G)

) ≤ htI(G) + 1 ≤ reg
(
I(G)∨

) + 1 and

pdim
(
I(G)∨

) ≤ htI(G) ≤ pdim
(
I(G)

) + 1.

(2) If G is not unmixed, then

reg
(
I(G)

) ≤ htI(G) + 1 ≤ reg
(
I(G)∨

)
and

pdim
(
I(G)∨

) ≤ htI(G) ≤ pdim
(
I(G)

)
.

When restricted to simple graphs, Theorem 1.4(ii) also gives an interesting corol-
lary, which was first proved by Zheng [33] in the special case that G was a forest.

Corollary 1.7 (Corollary 6.9) Let G be a chordal graph. Then

reg
(
I(G)

) = c + 1,

where c is the maximal number of 3-disjoint edges in G.
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Finally, in Sect. 7 we show that the first syzygy module of I(H) when H is
properly-connected is generated by linear syzygies if and only if the diameter of the
hypergraph H is small enough (Theorem 7.4). By the diameter we mean the maxi-
mum distance between any two edges of H. This result can be seen as the first step
towards generalizing Fröberg’s result [14] characterizing graphs whose edge ideals
have a linear resolution. As an interesting corollary, if H is a triangulated hypergraph,
and if I(H) only has linear first syzygies, then the resolution of I(H) must in fact be
linear (Corollary 7.6).

2 Preliminaries

We recall the relevant results concerning hypergraphs, resolutions, and splittable
ideals.

2.1 Hypergraphs and edge ideals

Our reference for the hypergraph material is Berge [2].
Throughout this paper we assume that our hypergraphs H = (X ,E) are simple,

i.e., |E| ≥ 2 for all E ∈ E , and there is no element of E which contains another. When
there is no danger of confusion, we sometimes specify a hypergraph by describing
only its set of edges.

If each E ∈ E has the same cardinality d , then we call H a d-uniform hypergraph.
Note that a simple graph is a simple 2-uniform hypergraph. If H is d-uniform, then
the associated simplicial complex Δ(H) is a pure simplicial complex, that is, all its
facets have the same dimension.

If E is an edge of a hypergraph H, then by H\E we denote the hypergraph formed
by removing the edge E from H. Similarly, if x is a vertex of H, we write H\{x} to
denote the hypergraph formed by removing x and all edges E ∈ E with the property
that x ∈ E. Note that x is an isolated vertex of H\{x}, or we can also consider the
vertex set of H\{x} to be X \{x}. If Y ⊂ X , then the induced hypergraph on Y ,
denoted HY , is the sub-hypergraph of H whose edge set is {E ∈ E | E ⊆ Y}. If there
is no edge E ∈ E such that E ⊆ Y , then we view HY as the graph of the isolated
vertices Y .

The notion of distance between edges in a hypergraph will play a fundamental role
in later discussions. We introduce the relevant definitions here.

Definition 2.1 A chain of length n in H is a sequence (E0, x1,E1, . . . , xn,En) such
that

(1) x1, . . . , xn are all distinct vertices of H,
(2) E0, . . . ,En are all distinct edges of H, and
(3) x1 ∈ E0, xn ∈ En, and xk, xk+1 ∈ Ek for each k = 1, . . . , n − 1.

We sometimes denote the chain by (E0, . . . ,En) if the vertices in the chain are not
being investigated. Note that (3) implies that Ei ∩ Ei+1 �= ∅ for i = 0, . . . , n − 1.
If E and E′ are two edges, then E and E′ are connected if there exists a chain
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(E0, . . . ,En) such that E = E0 and E′ = En. If |E| ≥ |E′|, then the chain connecting
E to E′ is a proper chain if |Ei ∩ Ei+1| = |Ei+1| − 1 for all i = 0, . . . , n − 1. The
(proper) chain is an (proper) irredundant chain of length n if no proper subsequence
is a (proper) chain from E to E′.

Definition 2.2 If E and E′ are two edges of a hypergraph H with |E| ≥ |E′|, then
we define the distance between E and E′, denoted by distH(E,E′), to be

distH(E,E′) = min{� | (E = E0, . . . ,E� = E′) is a proper irredundant chain}.
If no proper irredundant chain between the two edges exists, we set distH(E,E′) =
∞.

As in the introduction, the edge ideal of H = (X ,E) is the squarefree monomial
ideal

I(H) =
({

xE =
∏
x∈E

x

∣∣∣E ∈ E
})

⊆ R = k[x1, . . . , xn].

We often abuse notation and write xE for both the edge E and the corresponding
monomial.

2.2 Resolutions and splittable ideals

Let M be a graded R-module where R = k[x1, . . . , xn]. Associated to M is a minimal
graded free resolution of the form

0 →
⊕

j

R(−j)βl,j (M) →
⊕

j

R(−j)βl−1,j (M) → ·· · →
⊕

j

R(−j)β0,j (M)

→ M → 0,

where l ≤ n and R(−j) is the R-module obtained by shifting the degrees of R by j .
The number βi,j (M), the ij th graded Betti number of M , equals the number of min-
imal generators of degree j in the ith syzygy module of M .

Of particular interest are the following invariants which measure the “size” of the
minimal graded free resolution of I . The regularity of I , denoted reg(I ), is defined
by

reg(I ) := max
{
j − i | βi,j (I ) �= 0

}
.

The projective dimension of I , denoted pdim(I ), is defined to be

pdim(I ) := max
{
i | βi,j (I ) �= 0

}
.

An ideal I generated by elements of degree d is said to have a linear resolution if
βi,j (I ) = 0 for all j �= i + d .

We now recall some results concerning splittable ideals. We use G(I ) to denote
the unique minimal set of generators of a monomial ideal I .
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Definition 2.3 (see [8]) A monomial ideal I is splittable if I is the sum of two
nonzero monomial ideals J and K , that is, I = J + K , such that

(1) G(I ) is the disjoint union of G(J ) and G(K);
(2) there is a splitting function

G(J ∩ K) → G(J ) × G(K),

w �→ (
φ(w),ψ(w)

)
satisfying
(a) for all w ∈ G(J ∩ K), w = lcm(φ(w),ψ(w)),
(b) for every subset S ⊂ G(J ∩ K), both lcm(φ(S)) and lcm(ψ(S)) strictly di-

vide lcm(S).

If J and K satisfy the above properties, then we say that I = J + K is a splitting
of I .

When I = J + K is a splitting, then there is a relation between βi,j (I ) and the
graded Betti numbers of the “smaller” ideals. This relation was first observed for the
total Betti numbers by Eliahou and Kervaire [8] and extended to the graded case by
Fatabbi [10].

Theorem 2.4 Suppose that I is a splittable monomial ideal with splitting I = J +K .
Then

βi,j (I ) = βi,j (J ) + βi,j (K) + βi−1,j (J ∩ K) for all i, j ≥ 0,

where βi−1,j (J ∩ K) = 0 if i = 0.

When I is a splittable ideal, Theorem 2.4 gives us the following corollary.

Corollary 2.5 If I is a splittable monomial ideal with splitting I = J + K , then

(i) reg(I ) = max{reg(J ), reg(K), reg(J ∩ K) − 1},
(ii) pdim(I ) = max{pdim(J ),pdim(K),pdim(J ∩ K) + 1}.

Our goal is to study the numbers βi,j (I(H)). From the definition of I(H) it di-
rectly follows that β0,j (I(H)) is simply the number of edges E ∈ H with |E| = j . We
can therefore restrict ourselves to investigating the numbers βi,j (I(H)) with i ≥ 1.
When H is a d-uniform hypergraph, the following result implies that we only need
to consider a finite range of values of j for each i.

Theorem 2.6 Suppose that H is a d-uniform hypergraph. If βi,j (I(H)) �= 0, then
i + d ≤ j ≤ min{n,d(i + 1)}.
Proof Since H is a d-uniform hypergraph, I(H) is generated by monomials of de-
gree d . So, βi,j (I(H)) = 0 for j < i + d , thus giving us the lower bound. For the
upper bound, the Taylor resolution implies that βi,j (I(H)) = 0 if j > d(i + 1). On
the other hand, Hochster’s formula implies that βi,j (I(H)) = 0 if j > n. The conclu-
sion now follows. �
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3 Splitting edges

Let I be any squarefree monomial ideal, and suppose that H is the hypergraph asso-
ciated to I , i.e., I = I(H). We would like to find splittings of I so that we can make
use of Theorem 2.4. In this section we describe one possible splitting of I(H).

One of the simplest ways to partition G(I ) is to pick any m ∈ G(I ) and set G(J ) =
{m} and G(K) = G(I )\{m}. Note that this is equivalent to picking any edge E of H
and setting

J = (
xE

)
and K = I(H\E).

It is immediate that I = I(H) = J + K , and furthermore, J and K satisfy condition
(1) of Definition 2.3. However, for an arbitrary edge E, J and K may fail to satisfy
condition (2) of Definition 2.3. If E is chosen so that J and K satisfy this condition,
then we give this edge the following name.

Definition 3.1 Let H be a hypergraph. An edge E is a splitting edge of H if

I(H) = (
xE

) + I(H\E)

is a splitting of I(H).

To make use of Theorem 2.4, one would therefore like a means to identify the split-
ting edges of a hypergraph. The main result of this section is the following theorem
which provides a classification of the splitting edges of a hypergraph. This theorem
answers Question 5.4.2 of [23] which asked the equivalent question of what facet
could be a splitting facet of simplicial complex.

Theorem 3.2 Let H be a hypergraph with two or more edges. Then an edge E is a
splitting edge of H if and only if there exists a vertex z ∈ E such that

(
xE

) ∩ I(H\E) ⊆ (
xE

) ∩ I
(
H\{z}).

Proof Let E be an edge of H, and set J = (xE) and K = I(H\E). To prove the
“only if” direction, we prove the contrapositive. So, suppose that for every vertex
z ∈ E, we have (

xE
) ∩ I(H\E) �⊆ (

xE
) ∩ I

(
H\{z}).

Thus, for each z ∈ E, there exists a minimal generator xLz of J ∩ K such that xLz /∈
(xE) ∩ I(H\{z}). Set S = {xLz | z ∈ E} ⊆ G(J ∩ K).

We will now show that no splitting function can exist. Suppose that there is a
splitting function s : G(J ∩ K) → G(J ) × G(K) given by s(w) = (φ(w),ϕ(w)).
Then, since J = (xE), for each xLz ∈ S, we have φ(xLz) = xE . For each z ∈ E,
let xGz = ϕ(xLz) ∈ G(K). So Gz is an edge of H, and lcm(xE, xGz) = xE∪Gz = xLz .

We claim that for each z ∈ E, we have z ∈ Gz. Indeed, if z′ /∈ Gz′ for some z′ ∈ E,
then Gz′ is an edge of H\{z′}. But then xLz′ = lcm(xE, xGz′ ) = xE∪Gz′ is an element
of (xE) ∩ I(H\{z′}), a contradiction to the choice of xLz′ .
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Now, since z ∈ Gz for each z ∈ E, we have

lcm
(
ϕ(S)

) = lcm
({

xGz | z ∈ E
}) = x∪z∈EGz = x(∪z∈EGz)∪E = x∪z∈E(Gz∪E)

= x∪z∈ELz = lcm
({

xLz | z ∈ E
}) = lcm(S).

But this contradicts the fact that we have a splitting function. This proves the “only
if” direction.

Conversely, suppose that there exists a vertex z of E such that

(
xE

) ∩ I(H\E) ⊆ (
xE

) ∩ I
(
H\{z}).

This implies that G(J ∩ K) ⊆ {xE∪H | H ∈ H\{z}}. We will construct a splitting
function s = (φ,ϕ) : G(J ∩ K) → G(J ) × G(K) which satisfies the conditions of
Definition 2.3. For any xL ∈ G(J ∩ K), we define φ(xL) = xE ∈ G(J ). For each
xL ∈ G(J ∩ K), ϕ(xL) is defined as follows: by our hypothesis, we have L ∈ {E ∪
H | H ∈ H\{z}}. Thus, A = {H ∈ H\{z} | L = E ∪ H } is not the empty set. We
consider X as a set of alphabets (in some order of its elements) and identify each
element of A with the word formed by its vertices (in increasing order). Let GL be
the unique maximal element of A with respect to the lexicographic word ordering
(which is a total order). Observe that, by construction, z /∈ GL and E ∪ GL = L.
Define ϕ(xL) = xGL .

It is easy to see that s = (φ,ϕ) is a well-defined function on G(J ∩ K) and that
condition (a) of Definition 2.3 is satisfied. To show that condition (b) of Definition 2.3
is satisfied, we observe that for any xL ∈ G(J ∩K), by construction, z does not divide
ϕ(xL). Observe further that for any subset S ⊆ G(J ∩K), z divides xE which strictly
divides lcm(S). Thus, since lcm(φ(S)) = xE and since z does not divide lcm(ϕ(S)),
we must have that lcm(φ(S)) and lcm(ϕ(S)) both strictly divide lcm(S). The “if”
direction is proved. �

Remark 3.3 Theorem 3.2 can be reinterpreted as describing when a squarefree
monomial ideal I = (m1, . . . ,ms) in R = k[x1, . . . , xn] has a splitting I = (mi) +
(m1, . . . , m̂i , . . . ,ms) for some i. Precisely, I = (mi) + (m1, . . . , m̂i , . . . ,ms) is
a splitting if and only if there exists a variable xj such that xj |mi and (mi) ∩
(m1, . . . , m̂i , . . . ,ms) ⊆ (mi) ∩ I ′R, where by I ′R we mean the ideal I ′ = I ∩
k[x1, . . . , x̂j , . . . , xn], but viewed as an ideal of R. The result follows from the fact
that I(H\{xj }) = I ′R. This reformulation nicely illustrates that in some cases the
hypergraph point of view is conceptually easier (at least to us) to grasp.

Example 3.4 The following example illustrates that a hypergraph may not have a
splitting edge. Let H be the hypergraph on vertex set X = {a, b, c, d, e} with edge
set E = {abe, ade, bce, cde}. The edge ideal is then I(H) = (abe, ade, bce, cde).
By symmetry it suffices to show that any one of the edges is not a splitting edge. So,
consider the edge E = abe. Then

(
xE

) ∩ I(H\E) = (abde, abce, abcde) = (abde, abce),
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while

(
xE

) ∩ I
(
H\{a}) = (abce),

(
xE

) ∩ I
(
H\{b}) = (abde),(

xE
) ∩ I

(
H\{e}) = (0).

Thus, there is no vertex z ∈ E with the property that (xE) ∩ I(H\E) ⊆ (xE) ∩
I(H\{z}).

There is a nice class of edges of a simple hypergraph that are easy to identify and
also have the property that they are splitting edges. We now define this class.

Definition 3.5 Let H be a simple hypergraph. An edge E is a v-leaf if E contains
a free vertex, that is, E contains a vertex v ∈ X such that v does not belong to any
other edge of H.

Remark 3.6 If H = G is a simple graph, then v-leaves are precisely the leaves in the
usual sense.

Corollary 3.7 Suppose that E is a v-leaf of a hypergraph H. Then E is a splitting
edge of H.

Proof If v is the free vertex in E, then H\E = H\{v}. Now apply Theorem 3.2. �

Faridi [11] introduced the notion of a leaf for a simplicial complex Δ. Precisely,
a facet F of Δ is a leaf if F is the only facet of Δ, or there exists a facet G �= F in
Δ such that F ∩ F ′ ⊆ F ∩ G for all facets F ′ �= F in Δ. We can translate Faridi’s
definition into hypergraph language; we call the translated version of Faridi’s leaf an
f -leaf to distinguish it from a v-leaf.

Definition 3.8 An edge E of a hypergraph H is an f -leaf if E is the only edge of H,
or if there exists an edge H of H such that E ∩ E′ ⊆ E ∩ H for all edges E′ �= E

of H.

We introduce two types of hypertrees and hyperforests based upon the two notions
of leaves.

Definition 3.9 A hypergraph H is a v-forest, respectively, f -forest, if every induced
subgraph of H, including H itself, contains a v-leaf, respectively, an f -leaf. If H
is connected, we call H a v-tree, respectively, f -tree. When H is an f -forest, the
associated simplicial complex Δ(H) is called a simplicial forest.

Notice that when H = G is a simple graph, the notions of v-leaf and f -leaf coin-
cide. So, with simple graphs, the notions of a v-forest and an f -forest coincide with
the usual notion of a forest. These definitions, however, are not equivalent in a general
hypergraph, as illustrated below.
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Example 3.10 An f -leaf must always contain a free vertex (cf. [11, Remark 2.3]),
thus every f -leaf is a v-leaf. However, a v-leaf need not be an f -leaf. For ex-
ample, consider the hypergraph H on X = {a, b, c, d, e, f } with the edge set E =
{abf, bcd, def } = {E1,E2,E3}. Each edge is a v-leaf, since each edge has a ver-
tex not in the other two edges. However, H has no f -leaf. By symmetry, it is
enough to show that E1 = abf cannot be an f -leaf. Indeed, E1 ∩ E2 �⊆ E1 ∩ E3
and E1 ∩ E3 �⊆ E1 ∩ E2.

The hypergraph H is an example of a v-tree, but H is not an f -tree, since H has
no f -leaf, although all its induced subgraphs have an f -leaf.

Since an f -leaf is a v-leaf, Corollary 3.7 immediately gives:

Corollary 3.11 If E is an f -leaf of a hypergraph H, then E is a splitting edge of H.

4 Properly-connected hypergraphs

Given a hypergraph H, we would like to express the numbers βi,j (I(H)) in terms
of the graded Betti numbers of edge ideals associated to subgraphs of H; this would
lead to recursive-type formulas. When E is a splitting edge of a hypergraph H, Theo-
rem 2.4 implies that βi,j (I(H)) can be computed from the graded Betti numbers of
the ideals (xE), I(H\E), and L = (xE) ∩ I(H\E). The Betti numbers of (xE) are
trivial to compute, while those of I(H\E) already correspond to the edge ideal of a
sub-hypergraph of H. Thus one only needs to relate the numbers βi,j (L) to the Betti
numbers of an edge ideal of some other sub-hypergraph. For a general hypergraph,
this appears to be a difficult problem.

The goal of this section is to introduce a family of d-uniform hypergraphs, which
we call properly-connected, that among other things enables us to relate the graded
Betti numbers of L to those of an edge ideal associated to a sub-hypergraph of H.

Definition 4.1 A d-uniform hypergraph H = (X ,E) is said to be properly-connected
if for any two edges E and E′ of H with the property that E ∩ E′ �= ∅, we have

distH(E,E′) = d − |E ∩ E′|.
Otherwise, we say that H is not properly-connected.

Remark 4.2 Our definition of properly-connected is similar to (but not equivalent
to) what Zheng [33, Definition 3.14] called the intersection property for a simplicial
complex. If Δ is a pure simplicial forest, then Δ has the intersection property if for
any two facets F,F ′ ∈ Δ, the distance between F and F ′ (defined in terms of the
length of chain of between the two facets) is determined by |F ∩ F ′|.

Example 4.3 Consider the 4-uniform hypergraph H with edge set

E = {x1x2x3x4, x1x2x3x7, x1x2x6x7, x1x5x6x7, x1x5x6x8}.
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There is a proper irredundant chain of length 4 from the edge E = x1x2x3x4 to E′ =
x1x5x6x8 (to form the chain, just take the edges as listed in E). Furthermore, there
is no shorter such chain. But E and E′ have a nonempty intersection. So H is not
properly-connected, since 4 = distH(E,E′) �= 4 − |E ∩ E′| = 3. This hypergraph is
not properly-connected.

Example 4.4 Every finite simple graph G is properly-connected. To see this, note
that a graph is clearly a 2-uniform hypergraph. If E,E′ are two edges of G such
that E ∩ E′ �= ∅, then either E and E′ are the same edge, or E and E′ share exactly
one vertex. In the first case, distG(E,E′) = 2 − |E ∩ E′| = 2 − 2 = 0, while in the
second case distG(E,E′) = 2 − |E ∩ E′| = 1. So, in this sense, properly-connected
hypergraphs generalize simple graphs.

Properly-connected hypergraphs are appealing combinatorial objects to study be-
cause within this family, the notions of v-leaf and f -leaf become equivalent. As well,
splitting edges of properly-connected hypergraphs can be described combinatorially.
We prove both of these assertions.

Theorem 4.5 Suppose that H is a d-uniform properly-connected hypergraph, and E

is an edge of H. Then E is a v-leaf if and only if E is an f -leaf.

Proof Because we know that an f -leaf is a v-leaf, it suffices to prove the converse. If
H has only one edge then we are done. So, suppose that H has at least two edges. Let
E be a v-leaf with free vertex v. Let H be any edge of H with H ∩ E �= ∅. If there is
no such H , then E is automatically an f -leaf. Since H is properly-connected, there
is a proper chain E0 = E,E1, . . . ,Ek = H from E to H . Since |E| = |E1| = d and
|E ∩ E1| = d − 1, E ∩ E1 = E\{v}. To see that E is an f -leaf, let G be any other
edge of H. Then E ∩ G ⊂ E\{v} = E ∩ E1. �

Let E be an edge of a d-uniform properly-connected hypergraph H. If H is any
edge of H with distH(E,H) = 1, then |H\E| = 1, or in other words, H\E = {z} for
some vertex z. Before classifying splitting edges, we introduce the following defini-
tion.

Definition 4.6 If E is an edge of a d-uniform properly-connected hypergraph H,
then the vertex neighbor set of E is the following subset of X :

N(E) =
⋃

{H∈H|distH(E,H)=1}
H\E.

Example 4.7 When G is a finite simple graph, and x is a vertex, then N(x) de-
notes all the neighbors of x. If E = {u,v} is any edge of G, then N(E) = (N(u) ∪
N(v))\{u,v}.

Theorem 4.8 Let E be an edge of a d-uniform properly-connected hypergraph H,
and suppose that N(E) = {z1, . . . , zt }. Then E is a splitting edge if and only if there
exists a vertex z ∈ E such that (E\{z}) ∪ {zi} ∈H for each zi ∈ N(E).



228 J Algebr Comb (2008) 27: 215–245

The proof of this theorem depends upon the following two lemmas.

Lemma 4.9 Let H be a d-uniform properly-connected hypergraph. Suppose that
E = E0 = {x1, . . . , xd} and E′ are edges in H with distH(E,E′) = t ≤ d . Then, after
relabeling, there exist edges E1, . . . ,Et such that Ei = {y1, . . . , yi, xi+1, . . . , xd},
Et = E′, and yi /∈ Ej for all j < i.

Proof Since distH(E,E′) = t , there must be a proper irredundant chain of edges
E0 = E, . . . ,Et = E′. Since Ei differs from Ei+1 by exactly one vertex, for each i,
|E ∩ Ei | ≥ d − i, since at most one vertex changes at each stage. Since (E0, . . . ,Et )

is an irredundant chain and H is properly-connected, for i < d , we must have

i = distH(E0,Ei) = d − |E0 ∩ Ei |.
Hence, |E0 ∩ Ei | = d − i for any i less than d for which the expression makes sense.
Moreover, if i = t = d , then distH(E0,Ei) = d , and we have E0 ∩ Ei = ∅. That is,
|E0 ∩ Ei | = 0 = d − i.

We will prove the result using induction on i. Let E = E0 = {x1, . . . , xd}, and
assume the vertices are labeled so that x1 /∈ E1. We know that |E0 ∩ E1| = d − 1,
which implies that E1 = {y1, x2, . . . , xd} where y1 /∈ E0, thus proving the base case.

Now assume that E0, . . . ,Ei satisfy the claim, i.e., that Ei = {y1, . . . , yi, xi+1, . . . ,

xd} with yi /∈ Ej for all j < i. We know that |Ei ∩ Ei+1| = d − 1, so that Ei+1 is
constructed from Ei by removing some vertex and adding a vertex that we will
call yi+1 which is not in Ei . First, we claim that the vertex that we remove from
Ei cannot be yj with j ≤ i. If we were to replace some yj with a vertex yi+1,
then |E0 ∩ Ei | = d − i ≤ |E0 ∩ Ei+1|, which contradicts our earlier assumption that
|E0 ∩ Ei+1| = d − i − 1. So, we may assume that yi+1 replaces xi+1. If yi+1 = xj

for some j ≤ i, then |E0 ∩ Ei+1| = |E0 ∩ Ei |, which is a contradiction as before.
Therefore, yi+1 /∈ Ej for any j ≤ i. �

Lemma 4.10 Let E be any edge of a d-uniform properly-connected hypergraph H.
Then

(
xE

) ∩ I(H\E) = ({
lcm

(
xE,xH

) | H ∈ H and distH(E,H) = 1
})

+ ({
lcm

(
xE,xH

) | H ∈ H and distH(E,H) ≥ d + 1
})

.

Proof Set

A = ({
lcm

(
xE,xH

) | H ∈ H\E and distH(E,H) ≤ d
})

and

B = ({
lcm

(
xE,xH

) | H ∈ H and distH(E,H) ≥ d + 1
})

.

By definition (xE) ∩ I(H\E) = A + B . Thus, if we set

C = ({
lcm

(
xE,xH

) | H ∈H and distH(E,H) = 1
})

,

then it suffices to show that A = C. Since C ⊆ A is clear, we now show the reverse
containment.
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Let xE∪H = lcm(xE, xH ) be a generator of A, i.e., suppose that H ∈ H\E
and t = distH(E,H) ≤ d . Note that we can assume that 2 ≤ t ≤ d , since if
t = distH(E,H) = 1, then xE∪H ∈ C. So there exists a proper irredundant chain
E = H0,H1,H2, . . . ,Ht = H whose length is minimal among all proper irredundant
chains from E to H .

Now if E = {x1, . . . , xd}, then H1 = {x1, . . . , x̂i , . . . , xd, z}, where by x̂i we mean
that the vertex xi is removed, and z is not one of x1, . . . , xd . From this observation
we have

lcm
(
xE,xH1

) = xE∪{z} = xEz.

Now xEz is a generator of C. To finish the proof, Lemma 4.9 implies that z ∈ Hi for
i = 2, . . . , t . Therefore, lcm(xE, xHi ) = xE∪Hi is divisible by xEz and thus is in C.
In particular, xE∪H ∈ C. �

Proof of Theorem 4.8 Suppose that E is a splitting edge. By Theorem 3.2 there is
a vertex z ∈ E such that (xE) ∩ I(H\E) ⊆ (xE) ∩ I(H\{z}). Let zi ∈ N(E). We
will show that (E\{z})∪ {zi} is an edge of H\{z} ⊆ H. Since zi ∈ N(E), there exists
an edge H with distH(E,H) = 1 such that H\E = {zi}. Thus, xE∪H is a generator
of (xE) ∩ I(H\E). We thus must have xE∪H ∈ (xE) ∩ I(H\{z}). Hence there is an
edge H ′ ∈ H\{z} such that E ∪ H = E ∪ H ′. Since |E ∩ H | = d − 1, we must have
that |E ∩ H ′| = d − 1. Since z /∈ H ′ and zi /∈ E, we must have H ′ = (E\{z}) ∪ {zi}.
So, (E\{z}) ∪ {zi} ∈ H\{z}, as desired.

Conversely, suppose that there exists a vertex z ∈ E such that (E\{z}) ∪ {zi} ∈ H
for each zi ∈ N(E). Let xL be any minimal generator of (xE) ∩ I(H\E). By
Lemma 4.10, we have L = E ∪ H with distH(E,H) = 1 or L = E ∪ H with
distH(E,H) ≥ d + 1. If distH(E,H) ≥ d + 1, then z /∈ H since E ∩ H = ∅. So
H ∈ H\{z}, and hence xL ∈ (xE) ∩ I(H\{z}). So, suppose that L = E ∪ H with
distH(E,H) = 1. Then, the exists zi ∈ N(E) such that E ∪ H = E ∪ {zi}. By
our hypothesis, the edge E′ = (E\{z}) ∪ {zi} ∈ H. But then E′ ∈ H\{z}. Further-
more, L = E ∪ H = E ∪ E′. So xL ∈ (xE) ∩ I(H\{z}). We have now shown that
(xE) ∩ I(H\E) ⊆ (xE) ∩ I(H\{z}), so by Theorem 3.2 the edge E must be a split-
ting edge. �

Example 4.11 We give an example of a 3-uniform properly-connected hypergraph
which has a splitting edge that is not a v-leaf. Let H be the hypergraph with edge set

E = {x1x2x3, x1x2x4, x1x3x5, x2x3x4, x2x3x5, x3x4x5}.
One can verify that H is properly connected by showing that distH(E,E′) = 3 −
|E ∩ E′| for every pair of edges in E . Now E = x1x2x3 is not a v-leaf, since it
does not contain a free vertex. We can use Theorem 4.8 to verify that E is a split-
ting edge. In this case N(E) = {x4, x5}, since the edges of distance one from E are
{x1x2x4, x1x3x5, x2x3x4, x2x3x5}. Then E is a splitting edge, since (E\{x1})∪{x4} =
x2x3x4 and (E\{x1}) ∪ {x5} = x2x3x5 are both edges of H. Note that even when E

is a splitting edge, the graph H\E may fail to be properly-connected. In this case, if
we remove E from H, the resulting hypergraph fails to be properly-connected, since
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the edges E1 = x1x2x4 and E2 = x1x3x5 intersect at x1, but there is no proper chain
of length 2 = 3 − |E1 ∩ E2| in H\E between these two edges.

Notation 4.12 Suppose that E is an edge of a d-uniform properly-connected hy-
pergraph H. For simplicity of notation, throughout the rest of the paper, when not
specified, H′ refers to the sub-hypergraph

H′ = {
H ∈H | distH(E,H) ≥ d + 1

}
.

The following lemma tells us the properly-connected property is passed on to H′.

Lemma 4.13 If E is an edge of a d-uniform properly-connected hypergraph H, then
H′ also is a d-uniform properly-connected hypergraph.

Proof Since it is clear that H′ is a d-uniform hypergraph, it suffices to show that H′ is
properly connected. So, suppose that the edges H,H ′ ∈H′ have the property that H ∩
H ′ �= ∅. Since they also are edges of H, there exists a chain H = H0,H1, . . . ,Ht =
H ′ in H such that t = distH(H,H ′) = d − |H ∩ H ′|. If all the edges Hi for i =
1, . . . , t − 1 are also in H′, then it is clear that t = distH′(H,H ′) = d − |H ∩ H ′|.
So, suppose that there is an edge Hi in the chain with i ∈ {1, . . . , t − 1} and Hi /∈H′.
Then s = distH(E,Hi) ≤ d . Let E = E0,E1, . . . ,Es = Hi be the proper irredundant
chain in H between E and Hi . Then distH(E1,Hi) = s − 1 < d . But this means
that |E1 ∩ Hi | �= ∅. Let x ∈ E1 ∩ Hi . By Lemma 4.9 the vertex x must be in either
H or H ′. Without loss of generality, assume that x ∈ H . But then distH(E1,H) =
d − |H ∩ E1| ≤ d − 1. But since E is distance one from E1, this means that there is
a proper chain of length d from E to H , contradicting the fact that H ∈H′. �

As a byproduct of Lemma 4.10, we can rewrite (xE) ∩ I(H\E) in terms of the
edge ideal of H′.

Corollary 4.14 Let E be any edge of a d-uniform properly-connected hypergraph
H, and suppose that N(E) = {z1, . . . , zt }. Then

(
xE

) ∩ I(H\E) = xE
(
(z1, . . . , zt ) + I(H′)

)
.

Proof It is straightforward to verify that

xE(z1, . . . , zt ) = ({
lcm

(
xE,xH

) | H ∈H and distH(E,H) = 1
})

.

If H ∈ H\E with distH(E,H) ≥ d + 1, then since H is properly-connected, |E ∩
H | = ∅. So

xEI(H′) = ({
lcm

(
xE,xH

) | H ∈ H and distH(E,H) ≥ d + 1
})

.

The result now follows from Lemma 4.10. �

When E is an edge of a properly-connected hypergraph, we can also describe the
graded Betti numbers of (xE) ∩ I(H\E) in terms of those of I(H′).
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Lemma 4.15 Let E be any edge of a d-uniform properly-connected hypergraph H.
Set t = |N(E)|. Then

βi−1,j

((
xE

) ∩ I(H\E)
) =

i∑
l=0

(
t

l

)
βi−1−l,j−d−l

(
I(H′)

)
,

where β−1,j (I(H′)) = 1 if j = 0 and 0 otherwise.

Proof If N(E) = {z1, . . . , zt }, then by the previous corollary,

βi−1,j

((
xE

) ∩ I(H\E)
) = βi−1,j

(
xE

(
(z1, . . . , zt ) + I(H′)

))
= βi−1,j−d

(
(z1, . . . , zt ) + I(H′)

)
= βi,j−d

(
R/

(
(z1, . . . , zt ) + I(H′)

))
.

None of the generators of I(H′) are divisible by zi for i = 1, . . . , t . To see this,
suppose that xH ∈ I(H′) is divisible by some zi , i.e., zi is a vertex of the edge H .
Now there is an edge Hi with zi ∈ Hi and distH(E,Hi) = 1. Since H ∩ Hi �= ∅ and
since H is properly-connected, p = distH(H,Hi) = d − |H ∩ Hi | < d . So there is a
proper irredundant chain Hi = H ′

0, . . . ,H
′
p = H . But then E,Hi = H ′

0, . . . ,H
′
p = H

forms a proper irredundant chain of length p + 1 ≤ d , and thus distH(E,H) ≤ d ,
contradicting the fact that distH(E,H) ≥ d + 1.

We modify our notation and write R = k[z1, . . . , zt , x1, . . . , xs], where {x1, . . . ,

xs} = X \N(E). Then

R/
(
(z1, . . . , zt ) + I(H′)

) ∼= R1/(z1, . . . , zt ) ⊗k R2/I(H′),

where R1 = k[z1, . . . , zt ] and R2 = k[x1, . . . , xs], and where we view I(H′) as an
ideal of R and as the ideal of R2 generated by the same elements. By tensoring
the resolutions of R1/(z1, . . . , zt ) and R2/I(H′) together we get (see, for example,
Lemma 2.1 and Corollary 2.2 of [20])

βi,j−d(R/L) =
i∑

l1=0

j−d∑
l2=0

βl1,l2

(
R1/(z1, . . . , zt )

)
βi−l1,j−d−l2

(
R2/

(
I(H′)

))
,

where L = (z1, . . . , zt ) + I(H′). Since z1, . . . , zt is a regular sequence on R1,

βl1,l2

(
R1/(z1, . . . , zt )

) =
{

0 if l2 �= l1,(
t
l

)
if l = l2 = l1.

As a consequence, the previous expression reduces to

βi,j−d(R/L) =
i∑

l=0

(
t

l

)
βi−l,j−d−l

(
R2/I(H′)

)
.

We are now done, since

βi−l,j−d−l

(
R2/I(H′)

) = βi−l,j−d−l

(
R/I(H′)

) = βi−l−1,j−d−l

(
I(H′)

)
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for all l (where we adopt the convention that β−1,j (I(H′)) = 1 if j = 0 and 0 if
j �= 0). �

When H is a properly-connected hypergraph, we obtain the following recursive-
like formula for βi,j (I(H)). This result generalizes a similar result for simple graphs
found in [22].

Theorem 4.16 Let H be a d-uniform properly-connected hypergraph, and let E be
a splitting edge of H. Suppose that H′ = {H ∈ H | distH(E,H) ≥ d + 1} and t =
|N(E)|. Then for all i ≥ 1,

βi,j

(
I(H)

) = βi,j

(
I(H\E)

) +
i∑

l=0

(
t

l

)
βi−1−l,j−d−l

(
I(H′)

)
.

Here, β−1,j (I(H′)) = 1 if j = 0 and 0 if j �= 0.

Proof Since E is a splitting edge, by Theorem 2.4 we have

βi,j

(
I(H)

) = βi,j

((
xE

)) + βi,j

(
I(H\E)

) + βi−1,j

((
xE

) ∩ I(H\E)
)
.

When i ≥ 1, βi,j ((x
E)) = 0. Now substitute the formula of Lemma 4.15 into the last

expression. �

5 Triangulated properly-connected hypergraphs

If H is a properly-connected hypergraph with splitting edge E, the sub-hypergraphs
H\E and H′ in Theorem 4.16 may or may not have a splitting edge. In fact, H\E
may not even be a properly-connected hypergraph. These facts prevent us from using
Theorem 4.16 to recursively compute βi,j (I(H)) for any hypergraph. One is lead to
ask if there is any subfamily of properly-connected hypergraphs for which the for-
mula is recursive. In this section, we introduce one such family which generalizes the
notion of a chordal graph. In [22] it was shown that hyperforests (i.e., a simplicial for-
est in the sense of [11]) is a family of hypergraphs for which the graded Betti numbers
can be computed recursively. Since a hyperforest need not be properly-connected, the
results of this section give a partial generalization of [22].

We begin by recalling the definition of a chordal graph.

Definition 5.1 A graph G is called chordal if every cycle of length 4 or larger has a
chord, that is, an edge joining two nonadjacent vertices in the cycle.

An alternative characterization for chordal graphs can be found in [25] (due
to Dirac [6]). This characterization will prove more suitable when generalizing to
properly-connected hypergraphs.

Theorem 5.2 A graph G is chordal if and only if every induced subgraph of G con-
tains a vertex v whose neighborhood N(v) is a complete graph.
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In the above theorem, since v is adjacent to every vertex in N(v), we also have that
the induced graph on N(v) ∪ {v} is also a complete graph. To extend this definition,
we first introduce an analog of complete graphs.

Definition 5.3 The d-complete hypergraph of order n, denoted by Kd
n , is the hyper-

graph consisting of all the d-subsets of the vertex set X , where |X | = n. When d = 2,
then K2

n is the usual complete graph Kn. When n < d , we consider Kd
n as the hyper-

graph with n isolated vertices. If n = 0, then Kd
0 is the empty graph which we view

as the d-complete hypergraph of order 0.

Definition 5.4 Two distinct vertices x, y ∈X are neighbors if there is an edge E ∈ H
such that x, y ∈ E. For any vertex x ∈ X , the neighborhood of x, denoted N(x), is
the set

N(x) = {y ∈ X | y is a neighbor of x}.

Observe that if E is any edge of H and x ∈ E, then E ⊆ N(x) ∪ {x}.

Definition 5.5 A d-uniform properly-connected hypergraph H is said to be triangu-
lated if for every nonempty subset Y ⊆ X , the induced subhypergraph HY contains
a vertex x ∈ Y ⊆ X such that the induced hypergraph of HY on N(x) ∪ {x} is a
d-complete hypergraph of order |N(x)| + 1.

By virtue of Theorem 5.2, the simple graphs that are triangulated are precisely the
chordal graphs. We shall show that properly-connected hyperforests are triangulated
hypergraphs.

Theorem 5.6 Suppose that H is a d-uniform properly-connected hypergraph that is
a v-forest (or equivalently, f -forest). Then H is a triangulated hypergraph.

Proof For any Y ⊆ X , the induced subgraph HY must contain a v-leaf, say E. Since
E is a v-leaf, E contains a free vertex, say x. Suppose that E = {x, x2, . . . , xd}.
Then N(x) = {x2, . . . , xd}. But the induced graph of HY on N(x) ∪ {x} is simply
the edge E which is the d-uniform complete hypergraph Kd

d . So H is a triangulated
hypergraph. �

The following lemma is the key result needed to prove that Theorem 4.16 is recur-
sive for triangulated hypergraphs.

Lemma 5.7 Let H be a triangulated hypergraph. Then there exists an edge E ∈ H
such that

(a) E is a splitting edge, and
(b) the subgraphs H\E and H′ are triangulated hypergraphs.

Proof Since H is a triangulated hypergraph, there exists a vertex x ∈ X such that the
induced hypergraph on N(x) ∪ {x} is a d-complete hypergraph. Let E be any edge
of H that contains x. We will show that E is an edge that satisfies (a) and (b).
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(a) Suppose that N(E) = {z1, . . . , zt }. For each zi ∈ N(E), there must be an edge
Ei ∈ H such that distH(E,Ei) = 1 and E ∪ Ei = E ∪ {zi}. For each i, either x ∈ Ei

or x /∈ Ei . If x /∈ Ei , then (E\{x}) ∪ {zi} = Ei ∈H. Now, suppose that x ∈ Ei . Since
zi ∈ Ei , we have zi ∈ N(x). If E = {x, x2, . . . , xd}, then {x2, . . . , xd, zi} ⊆ N(x) is a
subset of size d in N(x) ∪ {x}. But since the induced hypergraph on N(x) ∪ {x} is a
d-complete hypergraph, this means that {x2, . . . , xd, zi} is an edge of H. This edge is
simply (E\{x}) ∪ {zi}. So, E is a splitting edge by Theorem 4.8.

(b) We consider H\E first. We begin by showing that H\E is properly-connected.
If H,H ′ ∈ H\E with H ∩ H ′ �= ∅, then in H we also have H ∩ H ′ �= ∅. Since H is
properly-connected, we can find a proper irredundant chain H = E0,E1, . . . ,Et =
H ′, where t = distH(H,H ′) = d − |H ∩ H ′|. If E /∈ {E1, . . . ,Et−1}, then this chain
remains a proper irredundant chain in H\E giving us t = distH\E(H,H ′) = d −
|H ∩ H ′|.

So suppose that E ∈ {E1, . . . ,Et−1}. Let x ∈ E be the vertex such that the in-
duced hypergraph on N(x) ∪ {x} is a d-complete hypergraph. Let Ei−1 and Ei+1
be the edges that appear immediately before and after E, respectively, in the chain
E0, . . . ,Et . There then exists a vertex zi−1 ∈ Ei−1 such that {zi−1} = Ei−1 \ E and
a vertex zi+1 ∈ Ei+1 such that {zi+1} = Ei+1 \ E. By Lemma 4.9 there are three
cases to consider: (i) x ∈ Ei−1,E, and Ei+1, (ii) x ∈ Ei−1 and E, but x /∈ Ei+1, or
(iii) x /∈ Ei−1 but x ∈ E and Ei+1. (Lemma 4.9 shows that when moving through
the chain, one removes one vertex from an edge and replaces it with another vertex,
and furthermore, once you add a vertex to a chain, this vertex appears in all later
edges in the chain.) In case (i), let E′ = Ei−1 ∩ Ei+1. Note that |E′| = d − 2. Then
E′ ∪ {zi−1, zi+1} is a subset of N(x) ∪ {x} of size d , and since the induced graph on
N(x) ∪ {x} is a d-complete hypergraph, this means that E′′ = E′ ∪ {zi−1, zi+1} is an
edge of H. The edge E′′ is distance one from Ei−1 and Ei+1. We can replace E in
the chain E0, . . . ,Et with E′′ and still have a proper chain of length t in H\E from
H to H ′. Moreover, this chain must be irredundant, since if it was shorter, then this
would give rise to a shorter chain in H, contradicting the fact that t is the length of
the shortest chain. In case (ii), let z be the vertex of E such that {z} = E \ Ei−1.
Then Ei−1 \ {x} and z are in N(x) ⊆ N(x) ∪ {x}. Thus E′ = (Ei−1 \ {x}) ∪ {z} also
is an edge of H. Furthermore, E′ is distance one away from Ei−1 and Ei+1 (since
z is added to E, we have z ∈ Ei+1). So, we can replace E in the chain by E′ and
get a chain of correct length in H\E. Finally, in case (iii), let z be the vertex in E

such that {z} = E \ Ei+1. Then z ∈ N(x) and (Ei+1 \ {x}) ⊆ N(x). This means that
E′ = (Ei+1 \ {x})∪{z} is an edge of H. But this edge is distance one from both Ei−1
and Ei+1, so, as we did before, we can replace E with E′ to get a chain of the desired
length.

We can now show that H\E is also triangulated. If the vertex x ∈ E only appears
in E, then E is a v-leaf. Then H\E = H\{x} = HX \{x}, and it is clear that HX \{x}
is a triangulated hypergraph. So, suppose that there are two or more edges that con-
tain x. If Y ⊆ X with x /∈ Y , then the induced hypergraph of H\E on Y is the same
as the induced hypergraph of H on Y , so there exists a vertex z ∈ Y such that the
induced hypergraph on N(z) ∪ {z} is a d-complete hypergraph. It remains to con-
sider the case where x ∈ Y . Let NY (x) denote the neighbors of x in (H\E)Y . Note
that NY (x) ∪ {x} ⊆ N(x) ∪ {x}. Since the induced hypergraph on N(x) ∪ {x} is a
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d-complete hypergraph, any induced subgraph on a subset of N(x) ∪ {x} also is a
d-complete hypergraph. So the induced hypergraph (H\E)NY (x)∪{x} is a d-complete
hypergraph. Thus H\E is triangulated.

Finally, by Lemma 4.13 we know that H′ is properly-connected. The reason that
H′ is triangulated follows from the fact that

H′ = H\{x, x2, . . . , xd, z1, . . . , zt } = HX \{x,x2,...,xd ,z1,...,zt },

where E = {x, x2, . . . , xd} and N(E) = {z1, . . . , zt }. �

We come to the main result of this section.

Theorem 5.8 Suppose that H is a d-uniform triangulated hypergraph. Then the
graded Betti numbers of I(H) can be computed recursively using the formula

βi,j

(
I(H)

) = βi,j

(
I(H\E)

) +
i∑

l=0

(
t

l

)
βi−1−l,j−d−l

(
I(H′)

)
,

where E is a splitting edge, t = |N(E)|, and H′ and H\E are also d-uniform trian-
gulated hypergraphs. Here, β−1,j (I(H′)) = 1 if j = 0 and 0 if j �= 0.

Proof By Lemma 5.7, the triangulated hypergraph H has a splitting edge E. Further-
more, since both hypergraphs H\E and H′ are triangulated hypergraphs, they also
have splitting edges. Thus, by repeatedly using the formula of Theorem 4.16 we get
the recursive formula. �

It is well known that the graded Betti numbers for an arbitrary monomial ideal
may depend upon the characteristic of k. However, as a consequence of the above
formula, we obtain the following corollary.

Corollary 5.9 Suppose that H is a triangulated hypergraph. Then the graded Betti
numbers of I(H) are independent of the characteristic of the ground field and can be
computed recursively.

When restricted to simple graphs, we get a particularly nice corollary.

Corollary 5.10 Suppose that G is a chordal graph. Then the graded Betti numbers of
I(G) are independent of the characteristic of the ground field and can be computed
recursively.

Jacques [19] and Jacques and Katzman [20] first proved Corollary 5.10 in the special
case that G is a forest, a subclass of chordal graphs.

6 Properly-connected hypergraphs and regularity

In this section we investigate the Castelnuovo–Mumford regularity of the edge ideal
I(H) associated to a properly-connected hypergraph H. For such a hypergraph, we
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bound reg(I(H)) below by combinatorial invariants of the hypergraph. When H = G

is a simple graph, we also provide an upper bound. In the case that H is also triangu-
lated, we explicitly compute reg(I(H)). Our exact formula for reg(I(H)) generalizes
Zheng’s formula [33] for the regularity of I(H) when H = G is a forest.

We begin by relating the regularity of I(H) to the regularity of edge ideals associ-
ated to sub-hypergraphs of H. We produce similar results for the projective dimension
of I(H). We first make the convention that reg(0) = 1 and if H has no edges, we set
pdim(I(H)) = −1.

Lemma 6.1 Let E be any edge of a d-uniform properly-connected hypergraph H
such that H\E is nonempty. Let t = |N(E)| and H′ = {H ∈ H | distH(H,E) ≥ d +
1}. If L = (xE) ∩ I(H\E), then

(a) reg(L) = reg(I(H′)) + d , and
(b) pdim(L) = pdim(I(H′)) + t .

Proof We shall prove both results using Lemma 4.15. For (a), suppose that s =
reg(L). So, there exists a such that βa,a+s(L) �= 0. By Lemma 4.15,

βa+1−1,a+s(L) =
a+1∑
l=0

(
t

l

)
βa+1−1−l,a+s−d−l

(
I(H′)

)
.

Since every number in the summation on the right-hand side is nonnegative, there
exists l such that βa−l,a+s−d−l (I(H′)) �= 0. Hence, reg(I(H′)) ≥ s − d , or equiva-
lently, reg(I(H′)) + d ≥ reg(L). Conversely, if r = reg(I(H′)), then there exists b

such that βb,b+r (I(H′)) �= 0. But then, since b+ r = (b+ r +d)−d , by Lemma 4.15
we have

0 �= βb,(b+r+d)−d

(
I(H′)

) ≤
b+1∑
l=0

(
t

l

)
βb+1−1−l,b+r+d−d−l

(
I(H′)

) = βb,b+r+d(L).

So reg(I(H′)) + d ≥ reg(L) ≥ reg(I(H′)) + d , as desired.
To prove (b), suppose that N(E) = {z1, . . . , zt }. In the proof of Lemma 4.15 it

was shown that

R/L ∼= R1/(z1, . . . , zt ) ⊗k R2/I(H′),

where R1 = k[z1, . . . , zt ] and R2 = k[x1, . . . , xs] with {x1, . . . , xs} = X \N(E). By
tensoring the resolutions of R1/(z1, . . . , zt ) and R2/I(H′), we get

pdim(L) + 1 = pdim(R/L) = pdim
(
R1/(z1, . . . , zt )

) + pdim
(
R2/I(H′)

)
= t + pdim

(
R/I(H′)

) = t + pdim
(
I(H′)

) + 1.

The desired identity is obtained by comparing the first and last values of the above
equality. �

Theorem 6.2 Let E be any edge of a d-uniform properly-connected hypergraph H
such that H\E is nonempty. Let t = |N(E)|. Then



J Algebr Comb (2008) 27: 215–245 237

(a) reg(I(H)) ≤ max{reg(I(H\E)), reg(I(H′)) + d − 1};
(b) pdim(I(H)) ≤ max{pdim(I(H\E)),pdim(I(H′)) + t + 1}.
Furthermore, if E is a splitting edge, then we have equality in both (a) and (b).

Proof Set L = (xE) ∩ I(H\E). The two inequalities then follow by using the short
exact sequence

0 → L → (
xE

) ⊕ I(H\E) → I(H) → 0

and Lemma 6.1 to bound reg(I (H)) and pdim(I(H)), noting that since H\E is non-
empty, reg(H\E) ≥ d . When E is a splitting edge, the equalities are a result of the
formulas of Corollary 2.5. �

We now focus our attention on using combinatorial information from H to bound
reg(I(H)). More precisely, the regularity will be expressed using the following ter-
minology.

Definition 6.3 Let H be a d-uniform properly-connected hypergraph. Two edges
E,H of H are t-disjoint if distH(E,H) ≥ t . A set of edges E ′ ⊆ E is pairwise t-
disjoint if every pair of edges of E ′ is t-disjoint. (We thank Jeremy Martin for sug-
gesting this name.)

Remark 6.4 When H is a d-uniform properly-connected hypergraph, then two edges
E and H are d-disjoint if and only if E ∩ H = ∅; that is, E and H are disjoint in the
usual sense. When H = G is a simple graph, Zheng’s definition [33, Definition 2.15]
for two edges to be disconnected is equivalent to our definition that the two edges be
3-disjoint in G.

We come to the first main result of this section.

Theorem 6.5 Let H be a d-uniform properly-connected hypergraph. Then
βi−1,di(I(H)) equals the number of sets of i pairwise (d + 1)-disjoint edges of H. In
particular, if c is the maximal number of pairwise (d + 1)-disjoint edges of H, then

reg(I(H)) ≥ (d − 1)c + 1.

Proof The first statement of the theorem implies that βc−1,dc(I(H)) �= 0. Thus, dc−
(c − 1) ≤ reg(I(H)), and the second statement is proved. We shall prove the first
statement of the theorem. In the case d = 2, this is the content of [21, Lemma 2.2].
We generalize Katzman’s arguments to the more general situation.

Recall that E = {E1, . . . ,Es} and let T : 0 → Ts
∂s→ ·· · ∂2→ T1

∂1→ I(H) → 0 be the
Taylor resolution of I(H). Then Ti is a free R-module with generators ej1,...,ji

, for
1 ≤ j1 < · · · < ji ≤ s, and the boundary map ∂i is defined by

∂i(ej1,...,ji
) =

i∑
k=1

(−1)kμkej1,...,ĵk ,...,ji
,
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where ĵk indicates the removal of jk , and μk = xEjk
\(∪l �=kEjl

). Let m = (x1, . . . , xn)

be the maximal homogeneous ideal in R. It is well known that the graded Betti num-
bers of I(H) are given by

βi−1,j

(
I(H)

) = dimk Hi(T ⊗R R/m)j .

Observe that generators of degree di of Ti are ej1,...,ji
’s, where Ej1, . . . ,Eji

are
pairwise disjoint. Consider one such generator ej1,...,ji

. Let H1 be the induced sub-
hypergraph of H on the vertices in

⋃i
k=1 Ejk

. It can be seen that for 1 ≤ k ≤ i,
Ejk

is disjoint from
⋃

l �=k Ejl
and hence, μk ∈ m. Thus, the image of ∂i(ej1,...,ji

) in

T ⊗R R/m is 0. Also, if H1 contains an edge Et different from Ej1, . . . ,Eji
, then

since Et ⊆ ⋃i
k=1 Ejk

, we have ∂i+1(ej1,...,ji ,t ) = ej1,...,ji
. That is, if H1 contains an

edge different from Ej1, . . . ,Eji
, then the image of ej1,...,ji

in Hi(T ⊗R R/m) is 0.
Furthermore, the image of ej1,...,ji

in T ⊗R R/m is in the image of ∂i+1 if and only if
it is the image of ∂i+1(el1,...,li+1), where {l1, . . . , li+1} = {j1, . . . , ji} ∪ {t} for some t .
This implies that in the expansion of ∂i+1(el1,...,li+1), we must have μt = 1, i.e., H1

contains the edge Et different from Ej1, . . . ,Eji
.

It remains to show that Ej1, . . . ,Eji
are pairwise disjoint edges of H such that the

induced sub-hypergraph of H on the vertices of
⋃i

k=1 Ejk
contains no other edges if

and only if Ej1, . . . ,Eji
are pairwise (d + 1)-disjoint edges in H.

Suppose first that Ej1, . . . ,Eji
are pairwise disjoint edges of H such that the

induced sub-hypergraph H1 on the vertices of
⋃i

k=1 Ejk
contains no other edges.

Clearly, since Ejk
∩ Ejl

= ∅ for k �= l, we have distH(Ejk
,Ejl

) ≥ d . Now, suppose
that there exist k �= l such that distH(Ejk

,Ejl
) = d . Then there is a proper chain

Ejk
= F0,F1, . . . ,Fd = Ejl

. By Lemma 4.9, the vertices of F1 are in Ejk
∪Ejl

, so F1

is an edge in H1. This implies that F1 has to be one of the {Ej1, . . . ,Eji
}\{Ejk

,Ejl
}.

This is a contradiction since F1 ∩ Ejk
�= ∅.

Conversely, suppose that Ej1, . . . ,Eji
are pairwise (d + 1)-disjoint edges of H.

Let H1 be the induced sub-hypergraph of H on the vertices of
⋃i

k=1 Ejk
. By con-

tradiction, suppose that H1 contains an edge E different from Ej1, . . . ,Eji
. Then

E ⊆ ⋃i
k=1 Ejk

. Without loss of generality, we may assume that E ∩ Ej1 �= ∅. Then
there is a proper chain Ej1 = F0,F1, . . . ,Fl = E for some l < d . By Lemma 4.9,
the vertices of F1 are in Ej1 ∪ E. Thus, F1 also is an edge of H1. This implies
that there exists jk �= j1 such that F1 has a nonempty intersection with Ejk

(other-
wise, F1 ⊆ Ej1 , which is a contradiction). However, we now have distH(F1,Ejk

) =
d − |F1 ∩ Ejk

| ≤ d − 1, whence distH(Ej1 ,Ejk
) ≤ d , which is again a contradic-

tion. �

When H is a graph, we also obtain an especially appealing upper bound for the
regularity of I(H).

Definition 6.6 Let H = (X ,E) be a hypergraph. A matching of H is defined to be
a subset E ′ ⊆ E consisting of pairwise disjoint edges. The matching number of H,
denoted α′(H), is the largest size of a maximal matching in H.
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Theorem 6.7 Let G be a finite simple graph. Then

reg
(
R/I(G)

) ≤ α′(G),

where α′(G) is the matching number of G.

Proof It can be seen from the Taylor resolution that

reg
(
I(G)

) ≤ max
{
deg lcm

(
xE1, . . . , xEi

) − i | {E1, . . . ,Ei} ⊆ E
} + 1.

Since any edge of G has 2 vertices, it can be seen that i+1 ≤ deg lcm(xE1, . . . , xEi ) ≤
2i. Let deg lcm(xE1 , . . . , xEi ) = i + k for some 1 ≤ k ≤ i. It suffices to show that we
can always find a matching of size k among {E1, . . . ,Ei}. To this end, we shall use
induction on i + k.

If i +k = 2, i.e., i = k = 1, then the statement is clear. Suppose now that i +k > 2.
If k = 1 or k = i, then the statement is also clear. Assume that 1 < k < i. If Ei is
disjoint from Ej for all j < i, then deg lcm(xE1, . . . , xEi−1) = i + k − 2 = (i − 1) +
(k − 1). By induction, there exists a matching S ⊂ {E1, . . . ,Ei−1} of size (k − 1). It
is easy to see that S ∪ {Ei} is now a matching of size k. It remains to consider the
case that at least a vertex of Ei is also a vertex of Ej for some j < i. In this case,
we have deg lcm(xE1 , . . . , xEi−1) ≥ i + k − 1 = (i − 1) + k. By induction, there is a
matching S ⊂ {E1, . . . ,Ei−1} of size k, and the statement is proved. �

Theorem 6.7 seems to give an interesting bound for the regularity of edge ideals
with a simple proof which may have been overlooked.

When H is a triangulated hypergraph, the lower bound of Theorem 6.5 turns out
to be the exact formula for the regularity of I(H).

Theorem 6.8 Suppose that H is a d-uniform properly-connected triangulated hy-
pergraph. If c is the maximum number of pairwise (d + 1)-disjoint edges of H, then

reg
(
I(H)

) = (d − 1)c + 1.

Proof The proof is similar to the one given by [22] in the case for forests. We proceed
by induction on the number of edges of H. If H only has one edge E, then I(H) =
(xE). Since I(H) is principal, it is clear that reg(I(H)) = d . But then it is clear that
the formula holds since 1 is the maximal number of pairwise (d + 1)-disjoint edges.

So, suppose that H has at least two edges. Since H is triangulated, by Lemma 5.7
there is a splitting edge E ∈ H (H\E is nonempty in this case) such that H\E and
H′ are also d-uniform properly-connected triangulated hypergraphs. Since E is a
splitting edge, by Corollary 6.2 we have

reg
(
I(H)

) = max
{
reg

(
I(H\E)

)
, reg

(
I(H′)

) + d − 1
}
.

By induction reg(I(H\E)) = (d − 1)c1 + 1, where c1 is the maximal number of
pairwise (d + 1)-disjoint edges of H\E, and reg(I(H′)) = (d − 1)c2 + 1, where c2
is the maximal number of pairwise (d + 1)-disjoint edges of H′. So

reg
(
I(H)

) = max
{
(d − 1)c1 + 1, (d − 1)c2 + d

}
.
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If we let c denote the maximal number of pairwise (d + 1)-disjoint edges of H, then
since (d − 1)c2 + d = (d − 1)(c2 + 1) + 1, to complete the proof it suffices for us to
show that c = max{c1, c2 + 1}.

Let E1 be the set of the c1 pairwise (d + 1)-disjoint edges of H\E. The edges of
E1 are also a set of pairwise d + 1-disjoint edges of H. To see this fact, suppose that
H,H ′ are two (d + 1)-disjoint edges in H\E that are not (d + 1)-disjoint in H. That
is, distH(H,H ′) ≤ d . But since H ∩ H ′ = ∅, we must have distH(H,H ′) = d . Let
H = E0, . . . ,Ed = H ′ be the proper irredundant chain of length d in H. Since this
chain is not in H\E, we must have E = Ei for some i = {1, . . . , d − 1}. Consider the
edges Ei−1 and Ei+1 in the chain that occur before and after, respectively, the edge E.
The splitting edge E of Lemma 5.7 is picked so that it contains a vertex x such that
the induced graph on N(x) ∪ {x} is a d-complete hypergraph. We can now adapt the
proof given in Lemma 5.7 that showed that H\E was properly-connected to show that
E can be replaced by an edge E′ ∈ H\E. As a consequence, we get a path of length
d from H to H ′ in H\E. But this contradicts the fact that distH\E(H,H ′) ≥ d + 1.
Thus |E1| = c1 ≤ c.

If E2 is a set of c2 pairwise (d + 1)-disjoint edges of H′, we claim that E2 ∪
{E} is a set of pairwise (d + 1)-disjoint edges of H. Indeed, for any edge H ∈ H′,
distH(E,H) > d , and so in particular, E and H are (d + 1)-disjoint for every edge
H ∈ E2. Thus |E2 ∪ {E}| = c2 + 1 ≤ c. Thus c ≥ max{c1, c2 + 1}.

Suppose that c > max{c1, c2 + 1}. Let E be a set of c pairwise (d + 1)-disjoint
edges of H. If E /∈ E , then E also is a set of pairwise (d + 1)-disjoint edges of H\E,
and so c = |E | ≤ c1, a contradiction. If E ∈ E , then E\{E} is a set of pairwise (d +1)-
disjoint edges of H′, since any other edge H ∈ E must have distH(E,H) > d . But
this would imply that c−1 ≤ c2, again a contradiction. Hence c = max{c1, c2 +1}. �

Theorem 6.8 gives the following interesting corollary for simple graphs, which
was first proved by Zheng [33] in the special case that G was a forest.

Corollary 6.9 Suppose that G is chordal graph. If c is the maximum number of
pairwise 3-disjoint edges of G, then

reg
(
I(G)

) = c + 1.

Example 6.10 The bounds for the regularity in Theorems 6.5 and Theorem 6.7
are sharp. If H is any triangulated hypergraph, then the lower bound in Theo-
rem 6.5 is achieved by Theorem 6.8. To show that the upper bound in Theo-
rem 6.7 is achieved, consider the edge ideal of C5, the five-cycle. So I(G) =
(x1x2, x2x3, x3x4, x4x5, x5x1). Then α′(G) = 2 (for example, take edges E1 = x1x2
and E2 = x3x4). So reg(I(G)) ≤ 3. In fact we have equality, since the resolution of
I(G) is

0 → R(−5) → R5(−3) → R5(−2) → I(G) → 0.

In the study of squarefree monomial ideals, the theory of Alexander duality has
proved to be significant in many ways. We round out this section by relating some
algebraic invariants of edge ideals and their Alexander duals.
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Definition 6.11 Let I = (x11 · · ·x1i1, . . . , xr1 · · ·xrir ) ⊆ k[x1, . . . , xn] be a squarefree
monomial ideal. Then the Alexander dual of I is defined to be

I∨ = (x11, . . . , x1i1) ∩ · · · ∩ (xr1, . . . , xrir ).

Definition 6.12 Let G be a graph. A subset V of the vertices of G is called a vertex
cover if every edge in G is incident to at least a vertex in V ; a minimal vertex cover
is a vertex cover V with the property that no proper subset of V is. The smallest size
of a minimal vertex cover of G is denoted by ν(G). The graph G is unmixed if all its
minimal vertex covers have the same cardinality ν(G).

Remark 6.13 The operation of taking the Alexander dual of a squarefree monomial
ideal brings generators to primary components. The minimal generators of I(G)∨
correspond to minimal vertex covers of G.

Theorem 6.14 Let G be a simple graph.

(1) If G is unmixed, then

reg
(
I(G)

) ≤ htI(G) + 1 ≤ reg
(
I(G)∨

) + 1 and

pdim
(
I(G)∨

) ≤ htI(G) ≤ pdim
(
I(G)

) + 1.

(2) If G is not unmixed, then

reg
(
I(G)

) ≤ htI(G) + 1 ≤ reg
(
I(G)∨

)
and

pdim
(
I(G)∨

) ≤ htI(G) ≤ pdim
(
I(G)

)
.

Proof It suffices to prove the inequalities involving the regularity, since the bounds
on the projective dimension follow from the identities reg(I(G)) = pdim(R/I(G)∨)

and reg(I(G)∨) = pdim(R/I(G)) (see, for example, [24, Theorem 5.59]). Observe
that if E ′ is a matching in G, then any vertex cover must contain at least a vertex of
every edge in E ′. Thus, α′(G) ≤ ν(G) = htI(G). From Theorem 6.7 it follows that
reg(I(G)) ≤ htI(G) + 1. Since ν(G) is the least generating degree of I(G)∨, we
have ν(G) ≤ reg(I(G)∨), and thus (1) follows. To prove (2) observe that when G is
not unmixed, reg(I(G)∨) is at least the largest generating degree of I(G)∨, which is
at least ν(G) + 1. �

7 Properly-connected hypergraphs and linear first syzygies

In [14] Fröberg gave a characterization of edge ideals of simple graphs with linear
resolutions. In this section, we obtain a partial generalization of Fröberg’s result to
the class of properly-connected hypergraphs. Specifically, we describe when I(H)

has linear first syzygies.
Let us first recall Fröberg’s result. If G is a simple graph, then the complement of

G, denoted Gc, is the graph whose vertex set is the same as that of G, but whose edge
set is defined by the rule E ∈ Gc if and only E /∈ G. Fröberg then showed:
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Theorem 7.1 Let G be a simple graph. Then I(G) has a linear resolution if and
only if Gc is a chordal graph.

When H is a d-uniform properly-connected hypergraph, we define the comple-
ment of H, denoted Hc , as

Hc = {
E ⊆ X

∣∣ |E| = d and E /∈ H
}
.

So, one might expect that Theorem 7.1 generalizes to d-uniform properly-connected
hypergraphs as follows: I(H) has a linear resolution if and only if Hc is a triangulated
hypergraph. Unfortunately, this is not the case, as shown below, since Hc need not be
properly-connected.

Example 7.2 Let X = {x1, x2, x3, x4, x5}. Let H = K3
5\{x1x2x3, x3x4x5}, i.e., H is

the 3-uniform complete hypergraph of order 5 with two edges removed. Then Hc =
{x1x2x3, x3x4x5} is not properly-connected, since the two edges intersect at x3, but
there is no properly-irredundant chain of length 2 between the two edges. Since Hc

is not even properly-connected, the notion of a triangulated hypergraph is undefined.
However, the ideal I(H) has the linear resolution

0 → R4(−5) → R11(−4) → R8(−3) → I(H) → 0.

We take the first step towards generalizing Theorem 7.1 by asking when I(H)

must have linear first syzygies. Like our previous results, the distance between edges
is key.

Definition 7.3 The edge diameter of a d-uniform properly-connected hypergraph H
is

diam(H) = max
{
distH(E,H) | E,H ∈H

}
,

where the diameter is infinite if there exist two edges not connected by any proper
chain.

Since I(H) is a monomial ideal, we know that its first syzygy module is generated
by syzygies S(xE, xH ) for E,H ∈ E . Moreover, it is clear that S(xE, xH ) is a linear
syzygy if and only if distH(E,H) = 1. We shall see that these syzygies generate all
of the syzygies on I(H) if the diameter of H is small enough. Indeed, a short enough
proper chain will give us a way of writing S(xE, xH ) as a telescoping sum of linear
syzygies. The next theorem generalizes [33, Theorem 3.17].

Theorem 7.4 Suppose that H is a d-uniform properly-connected hypergraph. Then
I(H) has linear first syzygies if and only if diam(H) ≤ d .

Proof Assume first that diam(H) ≤ d . It follows from the Taylor resolution that the
first syzygy module of I(H) is generated by syzygies S(xE, xH ), where E,H ∈ E .
We shall show that S(xE, xH ) is generated by linear syzygies. Let t = distH(E,H).
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Then, since diam(H) ≤ d , we have t ≤ d . If (E0, . . . ,Et ) is the proper irre-
dundant chain, then by Lemma 4.9 we can write E = E0 = {z1, . . . , zd}, Ei =
{y1, . . . , yi, zi+1, . . . , zd}, where yi /∈ Ej for j < i, and Et = H .

It can be seen that S(xE, xH ) is given by the equality y1 · · ·ytx
E0 − z1 · · · ztx

Et =
0. Furthermore,

y1 . . . ytx
E0 − z1 . . . ztx

Et =
t−1∑
k=0

(
k∏

i=1

zi

t∏
j=k+2

yj

)(
yk+1x

Ek − zk+1x
Ek+1

)
.

Thus, S(xE, xH ) is generated by linear syzygies.
Conversely, suppose that I(H) has linear first syzygies, that is, β1,j (I(H)) = 0 for

j �= d + 1. If diam(H) ≥ d + 1, then this implies that there exist at least two edges
E,H with distH(E,H) ≥ d + 1, i.e., {E,H } is a set of pairwise (d + 1)-disjoint
edges of H. By Theorem 6.5 this implies that β1,2d(I(H)) �= 0. But this contradicts
the fact that I(H) has linear first syzygies. �

Example 7.5 If diam(H) ≤ d is small, I(H) may still have nonlinear second syzy-
gies. For example, if G = C5 is the 5-cycle, then diam(G) = 2. However, I(G) =
(x1x2, x2x3, x3x4, x4x5, x5x1) has nonlinear second syzygies, since β2,5(I(G)) = 1,
as shown in Example 6.10.

Interestingly, if H is triangulated, knowing that I(H) has linear first syzygies is
enough to know that the entire resolution of I(H) is linear.

Corollary 7.6 Suppose that H is a d-uniform properly-connected hypergraph that
also is triangulated. Then the following are equivalent:

(a) I(H) has a linear resolution;
(b) I(H) has linear first syzygies;
(c) diam(H) ≤ d .

Proof The implication (a) ⇒ (b) is immediate, and (b) ⇒ (c) is a consequence of
Theorem 7.4. To show that (c) ⇒ (a), the bound on diam(H) implies that H cannot
have two or more pairwise (d + 1)-disjoint edges (otherwise diam(H) > d). By The-
orem 6.8 this implies that reg(I(H)) = (d − 1) + 1 = d . Since I(H) is generated in
degree d , this forces I(H) to have a linear resolution. �

Restricted to simple graphs, Corollary 7.6 gives the following result.

Corollary 7.7 Suppose that G is a chordal graph. Then the following are equivalent:

(a) I(G) has a linear resolution;
(b) I(G) has linear first syzygies;
(c) diam(G) ≤ 2.
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