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Abstract In proving the Fermionic formulae, a combinatorial bijection called the
Kerov–Kirillov–Reshetikhin (KKR) bijection plays the central role. It is a bijection
between the set of highest paths and the set of rigged configurations. In this paper,
we give a proof of crystal theoretic reformulation of the KKR bijection. It is the main
claim of Part I written by A. Kuniba, M. Okado, T. Takagi, Y. Yamada, and the author.
The proof is given by introducing a structure of affine combinatorial R matrices on
rigged configurations.

Keywords Fermionic formulae · Kerov–Kirillov–Reshetikhin bijection · Rigged
configuration · Crystal bases of quantum affine Lie algebras · Box-ball systems ·
Ultradiscrete soliton systems

1 Introduction

In this paper, we treat the relationship between the Fermionic formulae and the well-
known soliton cellular automata “box-ball system.” The Fermionic formulae are cer-
tain combinatorial identities, and a typical example can be found in the context of
solvable lattice models. The basis of these formulae is a combinatorial bijection called
the Kerov–Kirillov–Reshetikhin (KKR) bijection [1–3], which gives one-to-one cor-
respondences between the two combinatorial objects called rigged configurations and
highest paths. Precise description of the bijection is given in Sect. 2.2.

From the physical point of view, rigged configurations give an index set for eigen-
vectors and eigenvalues of the Hamiltonian that appears when we use the Bethe ansatz
under the string hypothesis (see, e.g., [4] for an introductory account of it), and high-
est paths give an index set that appears when we use the corner transfer matrix method
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(see, e.g., [5]). Therefore the KKR bijection means that although neither the Bethe
ansatz nor the corner transfer matrix method is a rigorous mathematical theory, two
index sets have one-to-one correspondence.

Eventually, it becomes clearer that the KKR bijection itself possesses a rich struc-
ture, especially with respect to the representation theory of crystal bases [6]. For
example, an extension of the rigged configuration called unrestricted rigged configu-
ration is recently introduced [7, 8], and its crystal structure, i.e., actions of the Kashi-
wara operators on them is explicitly determined. It gives a natural generalization of
the KKR bijection which covers nonhighest weight elements. (See, e.g., [9–11] for
other information.)

On the other hand, the box-ball system has entirely different background. This
model is a typical example of soliton cellular automata introduced by Takahashi and
Satsuma [12, 13]. It is an integrable discrete dynamical system and has a direct con-
nection with the discrete analogue of the Lotka–Volterra equation [14] (see also [15]).
Though the time evolution of the system is described by a simple combinatorial pro-
cedure, it beautifully exhibits a soliton dynamics. Recently, a remarkable correspon-
dence between the box-ball systems and the crystal bases theory was discovered, and
it caused a lot of interests (see, e.g., [16–20] for related topics).

In Part I [21] of this pair of papers, a unified treatment of both the Fermionic for-
mula (or the KKR bijection) and the box-ball systems was presented. It can be viewed
as the inverse scattering formalism (or Gelfand–Levitan formalism) for the box-ball
systems. In Part I, generalizations to arbitrary nonexceptional affine Lie algebras (the
Okado–Schilling–Shimozono bijection [22]) are also discussed.

In this paper, we give a proof of the result announced in Part I for the general
sln case (see Sect. 2.6 “Main theorem” of [21]). The precise statement of the result
is formulated in Theorem 3.3 of Sect. 3 below. According to our result, the KKR
bijection is interpreted in terms of combinatorial R matrices and energy functions of
the crystals (see Sect. 3.1 for definitions). Originally the KKR bijection is defined
in a purely combinatorial way, and it has no representation theoretic interpretation
for a long time. Therefore it is expected that our algebraic reformulation will give
some new insights into the theory of crystals for finite-dimensional representations
of quantum affine Lie algebras [23–25].

Recently, as an application of our Theorem 3.3, explicit piecewise linear formula
of the KKR bijection is derived [26]. This formula involves the so-called tau func-
tions which originate from the theory of solitons [27]. Interestingly, these tau func-
tions have direct connection with the Fermionic formula itself. These results reveal
unexpected link between the Fermionic formulae and the soliton theory and, at the
same time, also give rise to general solution to the box-ball systems.

Let us describe some more details of our results. As we have described before,
main combinatorial objects concerning the KKR bijection are rigged configurations
and highest paths. Rigged configurations are the following set of data:

RC = ((
μ

(0)
i

)
,
(
μ

(1)
i , r

(1)
i

)
, . . . ,

(
μ

(n−1)
i , r

(n−1)
i

))
, (1)

where μ
(a)
i ∈ Z>0 and r

(a)
i ∈ Z≥0 for 0 ≤ a ≤ n − 1 and 1 ≤ i ≤ l(a) (l(a) ∈ Z≥0).

They obey certain selection rule, which will be given in Definition 2.2. On the other
hand, highest paths are the highest weight elements of Bk1 ⊗ Bk2 ⊗ · · · ⊗ BkN

, where
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Bki
is the crystal of ki th symmetric power of the vector (or natural) representation

of the quantum enveloping algebra Uq(sln). We regard elements of Bki
as row-type

semi-standard Young tableaux filled in with ki letters from 1 to n. In this paper, we
only treat a map from rigged configurations to highest paths.

In order to reformulate the KKR bijection algebraically, we notice that the nested
structure arising on rigged configuration (1) is important. More precisely, we intro-
duce the following family of subsets of RC for 0 ≤ a ≤ n − 1:

RC(a) = ((
μ

(a)
i

)
,
(
μ

(a+1)
i , r

(a+1)
i

)
, . . . ,

(
μ

(n−1)
i , r

(n−1)
i

))
. (2)

On this RC(a), we can also apply the KKR bijection. Then we obtain a path whose
tensor factors are represented by tableaux filled in with letters from 1 to n − a. How-
ever, for our construction, it is convenient to add a to each letter contained in the path.
Thus, we assume that the path obtained from RC(a) contains letters a + 1 to n. Let us
tentatively denote the resulting path p(a). Then we can define the following maps:

p(a) Φ(a)◦C(a)−−−−−→ p(a−1). (3)

We postpone a precise definition of these maps Φ(a) ◦ C(a) until Sect. 3.2, but it
should be stressed that the definition uses only combinatorial R matrices and energy
functions. Note that the KKR bijection on RC(n−1) trivially yields a path of the form

p(n−1) = ⊗l(n−1)

i=1 nμ
(n−1)
i , where nμ is a tableaux representation of crystals. There-

fore, by successive applications of Φ(a)C(a) onto p(n−1), we obtain the construction

p = Φ(1)C(1)Φ(2)C(2) · · ·Φ(n−1)C(n−1)

(
l(n−1)⊗

i=1

nμ
(n−1)
i

)

, (4)

where p is the path corresponding to the original rigged configuration RC (1).
The plan of this paper is as follows. In Sect. 2, we review definitions of rigged con-

figurations and the KKR bijection. In Sect. 3, we review combinatorial R matrices
and energy function following the graphical rule in terms of winding and unwinding
pairs introduced in [28]. We then define scattering data in (31) and (34) and define
the operators C(a) and Φ(a). Our main result is formulated in Theorem 3.3. The rest
of the paper is devoted to a proof of this theorem. In Sect. 4, we recall the Kirillov–
Schilling–Shimozono’s result (Theorem 4.1). This theorem describes the dependence
of a resulting path with respect to orderings of μ(0) of RC. We then introduce an
important modification of rigged configurations. More precisely, we replace μ(a) of
RC(a) by μ(a) ∪ μ(a+1) ∪ (1L), where the integer L will be determined by Proposi-
tion 5.1. We then apply Theorem 4.1 to this modified rigged configuration and obtain
the isomorphism of Proposition 4.4. This reduces our remaining task to giving inter-
pretation of modes di (34) in terms of the KKR bijection. Example of these arguments
is given in Example 4.6. In Sect. 5, we connect modes di with rigged configuration in
Proposition 5.1. By using this proposition, we introduce a structure related with the
energy function in Sect. 6. This is described in Theorem 6.1 (see also Examples 6.2
and 6.3 as to the meanings of this theorem). In Sect. 7, we give a proof of Theorem 6.1
and hence complete a proof of Theorem 3.3. We do this by directly connecting the
graphical rule of energy function given in Sect. 3.1 with rigged configuration. In fact,
we explicitly construct a structure of unwinding pairs on the rigged configurations in
Proposition 7.3.
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2 Preliminaries

2.1 Rigged configurations

In this section, we briefly review the Kerov–Kirillov–Reshetikhin (KKR) bijection.
The KKR bijection gives one-to-one correspondences between the set of rigged con-
figurations and the set of highest weight elements in tensor products of crystals of
symmetric powers of the vector (or natural) representation of Uq(sln), which we call
paths.

Let us define the rigged configurations. Consider the following collection of data:

μ(a) = (
μ

(a)
1 ,μ

(a)
2 , . . . ,μ

(a)

l(a)

) (
0 ≤ a ≤ n − 1, l(a) ∈ Z≥0,μ

(a)
i ∈ Z>0

)
. (5)

We use usual Young diagrammatic expression for these integer sequences μ(a), al-
though our μ(a) are not necessarily monotonically decreasing sequences.

Definition 2.1 (1) For a given diagram μ, we introduce coordinates (row, column)
of each boxes just like matrix entries. For a box α of μ, col(α) is column coordinate
of α. Then we define the following subsets:

μ|≤j := {
α|α ∈ μ, col(α) ≤ j

}
, (6)

μ|>j := {
α|α ∈ μ, col(α) > j

}
. (7)

(2) For a sequence of diagrams (μ(0),μ(1), . . . ,μ(n−1)), we define Q
(a)
j by

Q
(a)
j :=

l(a)∑

k=1

min
(
j,μ

(a)
k

)
, (8)

i.e., the number of boxes in μ(a)|≤j . Then the vacancy number p
(a)
j for rows of μ(a)

is defined by

p
(a)
j := Q

(a−1)
j − 2Q

(a)
j + Q

(a+1)
j , (9)

where j is the width of the corresponding row.

Definition 2.2 Consider the following set of data:

RC := ((
μ

(0)
i

)
,
(
μ

(1)
i , r

(1)
i

)
, . . . ,

(
μ

(n−1)
i , r

(n−1)
i

))
. (10)

(1) If all vacancy numbers for (μ(1),μ(2), . . . ,μ(n−1)) are nonnegative,

0 ≤ p
(a)

μ
(a)
i

(
1 ≤ a ≤ n − 1,1 ≤ i ≤ l(a)

)
, (11)

then RC is called a configuration.
(2) If an integer r

(a)
i satisfies the condition

0 ≤ r
(a)
i ≤ p

(a)

μ
(a)
i

, (12)
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then r
(a)
i is called a rigging associated with row μ

(a)
i . For the rows of equal widths,

i.e., μ
(a)
i = μ

(a)
i+1, we assume that r

(a)
i ≤ r

(a)
i+1.

(3) If RC is a configuration and if all integers r
(a)
i are riggings associated with row

μ
(a)
i , then RC is called sln rigged configuration.

In the rigged configuration, μ(0) is sometimes called a quantum space which de-
termines the shape of the corresponding path, as we will see in the next subsection.
In the definition of the KKR bijection, the following notion is important.

Definition 2.3 For a given rigged configuration, consider a row μ
(a)
i and correspond-

ing rigging r
(a)
i . If they satisfy the condition

r
(a)
i = p

(a)

μ
(a)
i

, (13)

then the row μ
(a)
i is called singular.

2.2 The KKR bijection

In this subsection, we define the KKR bijection. In what follows, we treat a bijection
φ to obtain a highest path p from a given rigged configuration RC,

φ : RC −→ p ∈ BkN
⊗ · · · ⊗ Bk2 ⊗ Bk1 (14)

where

RC = ((
μ

(0)
i

)
,
(
μ

(1)
i , r

(1)
i

)
, . . . ,

(
μ

(n−1)
i , r

(n−1)
i

))
(15)

is the rigged configuration defined in the last subsection, and N(= l(0)) is the length
of the partition μ(0). Bk is the crystal of the kth symmetric power of the vector (or
natural) representation of Uq(sln). As a set, it is equal to

Bk = {
(x1, x2, . . . , xn) ∈ Z

n
≥0 |x1 + x2 + · · · + xn = k

}
. (16)

We usually identify elements of Bk as the semi-standard Young tableaux

(x1, x2, . . . , xn) =
x1︷ ︸︸ ︷

1 · · ·1

x2︷ ︸︸ ︷
2 · · ·2 · · · · · ·

xn︷ ︸︸ ︷
n · · ·n , (17)

i.e., the number of letters i contained in a tableau is xi .

Definition 2.4 For a given RC, the image (or path) p of the KKR bijection φ is
obtained by the following procedure.

Step 1: For each row of the quantum space μ(0), we re-assign the indices from 1 to N

arbitrarily and reorder it as the composition

μ(0) = (
μ

(0)
N , . . . ,μ

(0)
2 ,μ

(0)
1

)
. (18)



60 J Algebr Comb (2008) 27: 55–98

Take the row μ
(0)
1 . Recall that μ(0) is not necessarily monotonically decreasing inte-

ger sequence.
Step 2: We denote each box of the row μ

(0)
1 as follows:

μ
(0)
1 = α

(0)
l1

· · · · · α
(0)
2 α

(0)
1 . (19)

Corresponding to the row μ
(0)
1 , we take p1 as the following array of l1 empty boxes:

p1 = · · · · · . (20)

Starting from the box α
(0)
1 , we recursively take α

(i)
1 ∈ μ(i) by the following Rule 1.

Rule 1 Assume that we have already chosen α
(i−1)
1 ∈ μ(i−1). Let g(i) be the

set of all rows of μ(i) whose widths w satisfy

w ≥ col
(
α

(i−1)
1

)
. (21)

Let g
(i)
s (⊂ g(i)) be the set of all singular rows (i.e., its rigging is equal to the

vacancy number of the corresponding row) in a set g(i). If g
(i)
s 
= ∅, then choose

one of the shortest rows of g
(i)
s and denote by α

(i)
1 its rightmost box. If g

(i)
s = ∅,

then we take α
(i)
1 = · · · = α

(n−1)
1 = ∅.

Step 3: From RC remove the boxes α
(0)
1 , α

(1)
1 , . . . , α

(j1−1)

1 chosen above, where j1 −1
is defined by

j1 − 1 = max
0≤k≤n−1, α

(k)
1 
=∅

k. (22)

After removal, the new RC is obtained by the following Rule 2.

Rule 2 Calculate again all the vacancy numbers p
(a)
i = Q

(a−1)
i − 2Q

(a)
i +

Q
(a+1)
i according to the removed RC. For a row which is not removed, take the

rigging equal to the corresponding rigging before removal. For a row which is
removed, take the rigging equal to the new vacancy number of the corresponding
row.

Put the letter j1 into the leftmost empty box of p1:

p1 = j1 · · · · · . (23)

Step 4: Repeat Steps 2 and 3 for the rest of boxes α
(0)
2 , α

(0)
3 , . . . , α

(0)
l1

in this order. Put
the letters j2, j3, . . . , jl1 into empty boxes of p1 from left to right.
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Step 5: Repeat Step 1 to Step 4 for the rest of rows μ
(0)
2 ,μ

(0)
3 , . . . ,μ

(0)
N in this order.

Then we obtain pk from μ
(0)
k , which we identify with the element of B

μ
(0)
k

. Then we

obtain

p = pN ⊗ · · · ⊗ p2 ⊗ p1 (24)

as an image of φ.

Note that the resulting image p is a function of the ordering of μ(0) which we
choose in Step 1. Its dependence is described in Theorem 4.1 below.

The above procedure is summarized in the following diagram.

Step 1: Reorder rows of μ(0), take row μ
(0)
1

Step 2: Choose α
(i)
1 ∈ μ(i)

Step 3: Remove all α
(i)
1 and make new RC

Step 4: Remove all boxes of row μ
(0)
1

Step 5: Remove all rows of μ(0)

�

�

�

�

�

�

Example 2.5 We give one simple but nontrivial example. Consider the following sl3

rigged configuration:

μ(0) μ(1)

1
0

0
0 0 0

μ(2)

We write the vacancy number on the left and riggings on the right of the Young

diagrams. We reorder μ(0) as (1,1,2,1); thus, we remove the following boxes × :

μ(0)

×

μ(1)

1
0

0
0× 0 0

μ(2)

We obtain p1 = 2 . Note that, in this step, we cannot remove the singular row
of μ(2), since it is shorter than 2.
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After removing two boxes, calculate again the vacancy numbers and make the row
of μ(1) (which is removed) singular. Then we obtain the following configuration:

μ(0)

×
0
0

0
0

μ(1)

0 0

μ(2)

Next, we remove the box × from the above configuration. We cannot remove μ(1),

since all singular rows are shorter than 2. Thus, we obtain p2 = 1 , and the new
rigged configuration is the following:

μ(0)

×
0
0

0
0

μ(1)

× 0 0

μ(2)

×

This time, we can remove μ(1) and μ(2) and obtain p2 = 1 3 . Then we obtain
the following configuration:

μ(0)

×
μ(1)

0 0× ∅
μ(2)

From this configuration we remove the boxes × and obtain p3 = 2 , and the new
configuration becomes the following:

μ(0)

× ∅
μ(1)

∅
μ(2)

Finally we obtain p4 = 1 .
To summarize, we obtain

p = 1 ⊗ 2 ⊗ 13 ⊗ 2 (25)

as an image of the KKR bijection.

3 Crystal base theory and the KKR bijection

3.1 Combinatorial R matrix and energy functions

In this section, we formulate the statement of our main result. First of all, let us
summarize the basic objects from the crystal bases theory, namely, the combinatorial
R matrix and associated energy function.

For two crystals Bk and Bl of Uq(sln), one can define the tensor product
Bk ⊗ Bl = {b ⊗ b′ | b ∈ Bk, b

′ ∈ Bl}. Then we have a unique isomorphism R :
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Bk ⊗ Bl
∼→ Bl ⊗ Bk , i.e., a unique map which commutes with actions of the Kashi-

wara operators. We call this map combinatorial R matrix and usually write the map
R simply by �.

Following Rule 3.11 of [28], we introduce a graphical rule to calculate the
combinatorial R matrix for sln and the energy function. Given the two ele-
ments

x = (x1, x2, . . . , xn) ∈ Bk, y = (y1, y2, . . . , yn) ∈ Bl,

we draw the following diagram to represent the tensor product x ⊗ y:

xn︷ ︸︸ ︷• • · · · •

x2︷ ︸︸ ︷• • · · · •

x1︷ ︸︸ ︷• • · · · •

··
··
··
·

yn︷ ︸︸ ︷• • · · · •

y2︷ ︸︸ ︷• • · · · •

y1︷ ︸︸ ︷• • · · · •

··
··
··
·

The combinatorial R matrix and energy function H for Bk ⊗ Bl (with k ≥ l) are
calculated by the following rule.

1. Pick any dot, say •a , in the right column and connect it with a dot •′
a in the left

column by a line. The partner •′
a is chosen from the dots which are in the lowest

row among all dots whose positions are higher than that of •a . If there is no such
a dot, we return to the bottom, and the partner •′

a is chosen from the dots in the
lowest row among all dots. In the former case, we call such a pair “unwinding,”
and, in the latter case, we call it “winding.”

2. Repeat procedure (1) for the remaining unconnected dots (l − 1) times.
3. Action of the combinatorial R matrix is obtained by moving all unpaired dots in

the left column to the right horizontally. We do not touch the paired dots during
this move.

4. The energy function H is given by the number of winding pairs.

The number of winding (or unwinding) pairs is sometimes called the winding (or
unwinding, respectively) number of tensor product. It is known that the resulting
combinatorial R matrix and the energy functions are not affected by the order of
making pairs [28, Propositions 3.15 and 3.17]. For more properties, including that
the above definition indeed satisfies the axiom, see [28].

Example 3.1 The diagram for 1344 ⊗ 234 is
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•

•
• •

•
•
•

�

•

•
•

•
•

• •

By moving the unpaired dot (letter 4) in the left column to the right, we obtain

1344 ⊗ 234 � 134 ⊗ 2344 .

Since we have one winding pair and two unwinding pairs, the energy function is

H
(

1344 ⊗ 234
)

= 1.

By the definition, the winding numbers for x ⊗y and ỹ ⊗ x̃ are the same if x ⊗y �
ỹ ⊗ x̃ by the combinatorial R matrix.

3.2 Formulation of the main result

From now on, we reformulate the original KKR bijection in terms of the combinato-
rial R and energy function. Consider the sln rigged configuration as follows:

RC = ((
μ

(0)
i

)
,
(
μ

(1)
i , r

(1)
i

)
, . . . ,

(
μ

(n−1)
i , r

(n−1)
i

))
. (26)

By applying the KKR bijection, we obtain a path s̃(0).
In order to obtain a path s̃(0) by algebraic procedure, we have to introduce a nested

structure on the rigged configuration. More precisely, we consider the following sub-
sets of given configuration (26) for 0 ≤ a ≤ n − 1:

RC(a) := ((
μ

(a)
i

)
,
(
μ

(a+1)
i , r

(a+1)
i

)
, . . . ,

(
μ

(n−1)
i , r

(n−1)
i

))
. (27)

RC(a) is a sln−a rigged configuration, and RC(0) is nothing but the original RC.
Therefore we can perform the KKR bijection on RC(a) and obtain a path s̃(a) with
letters 1,2, . . . , n − a. However, for our construction, it is convenient to add a to all
letters in a path. Thus we assume that a path s̃(a) contains letters a + 1, . . . , n.

As in the original path s̃(0), we should consider s̃(a) as highest weight elements of
tensor products of crystals as follows:

s̃(a) = b1 ⊗ · · · ⊗ bN ∈ Bk1 ⊗ · · · ⊗ BkN

(
ki = μ

(a)
i , N = l(a)

)
. (28)

The meaning of crystals Bk here is as follows. Bk is crystal of the kth symmetric
power representation of the vector (or natural) representation of Uq(sln−a). As a set,
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it is equal to

Bk = {
(xa+1, xa+2, . . . , xn) ∈ Z

n−a
≥0 |xa+1 + xa+2 + · · · + xn = k

}
. (29)

We can identify elements of Bk as semi-standard Young tableaux containing letters
a + 1, . . . , n. Also, we can naturally extend the graphical rule for the combinatorial
R matrix and energy function (see Sect. 3.1) to this case. The highest weight element
of Bk takes the form

(a + 1)k = (a + 1) · · · (a + 1) ∈ Bk. (30)

This corresponds to the so-called lower diagonal embedding of sln−a into sln.
From now on, let us construct an element of affine crystal s(a) from s̃(a) combined

with information of riggings r
(a)
i ,

s(a) := b1[d1] ⊗ · · · ⊗ bN [dN ] ∈ aff(Bk1) ⊗ · · · ⊗ aff(BkN
). (31)

Here aff(B) is the affinization of a crystal B . As a set, it is equal to

aff(B) = {
b[d] |d ∈ Z, b ∈ B

}
, (32)

where integers d of b[d] are often called modes. We can extend the combinatorial
R: B ⊗ B ′ � B ′ ⊗ B to the affine case aff(B) ⊗ aff(B ′) � aff(B ′) ⊗ aff(B) by the
relation

b[d] ⊗ b′[d ′] � b̃′[d ′ − H(b ⊗ b′)
] ⊗ b̃

[
d + H(b ⊗ b′)

]
, (33)

where b ⊗ b′ � b̃′ ⊗ b̃ is the isomorphism of combinatorial R matrix for classical
crystals defined in Sect. 3.1.

Now we define the element s(a) of (31) from a path s̃(a) and riggings r
(a)
i . Mode

di of bi[di] of s(a) is defined by the formula

di := r
(a)
i +

∑

0≤l<i

H
(
bl ⊗ b

(l+1)
i

)
, b0 := (a + 1)max ki , (34)

where r
(a)
i is the rigging corresponding to a row μ

(a)
i of RC(0) which yielded the

element bi of s̃(a). The elements b
(l+1)
i (l < i) are defined by sending bi successively

to the right of bl under the isomorphism of combinatorial R matrices:

b1 ⊗ · · · ⊗ bl ⊗ bl+1 ⊗ · · · ⊗ bi−2 ⊗ bi−1 ⊗ bi ⊗ · · ·
� b1 ⊗ · · · ⊗ bl ⊗ bl+1 ⊗ · · · ⊗ bi−2 ⊗ b

(i−1)
i ⊗ b′

i−1 ⊗ · · ·
� · · · · · ·
� b1 ⊗ · · · ⊗ bl ⊗ b

(l+1)
i ⊗ · · · ⊗ b′

i−3 ⊗ b′
i−2 ⊗ b′

i−1 ⊗ · · · . (35)

This definition of di is compatible with the following commutation relation of affine
combinatorial R matrix:

· · · ⊗ bi[di] ⊗ bi+1[di+1] ⊗ · · · � · · · ⊗ b′
i+1[di+1 − H ] ⊗ b′

i[di + H ] ⊗ · · · (36)
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where bi ⊗ bi+1 � b′
i+1 ⊗ b′

i is an isomorphism by classical combinatorial R matrix
(see Theorem 4.1 below) and H = H(bi ⊗ bi+1). We call an element of affine crystal
s(a) a scattering data.

For a scattering data s(a) = b1[d1] ⊗ · · · ⊗ bN [dN ] obtained from the quantum
space μ(a), we define the normal ordering as follows.

Definition 3.2 For a given scattering data s(a), we define the sequence of subsets

S1 ⊂ S2 ⊂ · · · ⊂ SN ⊂ SN+1 (37)

as follows. SN+1 is the set of all permutations which are obtained by ŝln−a combi-
natorial R matrices acting on each tensor product in s(a). Si is the subset of Si+1
consisting of all the elements of Si+1 whose ith modes from the left end are maximal
in Si+1. Then the elements of S1 are called the normal ordered form of s(a).

Although the above normal ordering is not unique, we choose any one of the nor-
mal ordered scattering data which is obtained from the path s̃(a) and denote it by
C(a)(s̃(a)). See Remark 6.5 for alternative characterization of the normal ordering.
For C(a)(s̃(a)) = b1[d1] ⊗ · · · ⊗ bN [dN ] (bi ∈ Bki

), we define the following element
of sln−a+1 crystal with letters a, . . . , n:

c = a
⊗d1 ⊗ b1 ⊗ a

⊗(d2−d1) ⊗ b2 ⊗ · · · ⊗ a
⊗(dN−dN−1) ⊗ bN . (38)

In the following, we need the map C(n−1). To define it, we use combinatorial R of
“ŝl1” crystal defined as follows:

nk
d2

⊗ nl
d1

� nl
d1−H

⊗ nk
d2+H

(39)

where H is now H = min(k, l), and we have denoted bk[dk] as bk
dk

. This is a

special case of the combinatorial R matrix and energy function defined in Sect. 3.1,
and ŝl1 corresponds to the sl2 subalgebra generated by e0 and f0.

We introduce another operator Φ(a),

Φ(a) : aff(Bk1) ⊗ · · · ⊗ aff(BkN
) → Bl1 ⊗ · · · ⊗ BlN ′ (40)

where we denote li = μ
(a−1)
i and N ′ = l(a−1). Φ(a) is defined by the following iso-

morphism of sln−a+1 combinatorial R:

Φ(a)
(
C(a)

(
s̃(a)

)) ⊗
(

N⊗

i=1

aki

)

⊗ a
⊗dN � c ⊗

(
N ′⊗

i=1

ali

)

(41)

where c is defined in (38).
Then our main result is the following:

Theorem 3.3 For the rigged configuration RC(a) (see (27)), we consider the KKR
bijection with letters from a + 1 to n. Then its image is given by

Φ(a+1)C(a+1)Φ(a+2)C(a+2) · · ·Φ(n−1)C(n−1)

(
l(n−1)⊗

i=1

nμ
(n−1)
i

)

. (42)
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In particular, the KKR image p of rigged configuration (26) satisfies

p = Φ(1)C(1)Φ(2)C(2) · · ·Φ(n−1)C(n−1)

(
l(n−1)⊗

i=1

nμ
(n−1)
i

)

. (43)

The image of this map is independent of the choice of maps C(a).

In practical calculation of this procedure, it is convenient to introduce the follow-
ing diagrams. First, we express the isomorphism of the combinatorial R matrix

a ⊗ b � b′ ⊗ a′ (44)

by the following vertex diagram:

a

b′

b

a′ .

If we apply combinatorial R successively as

a ⊗ b ⊗ c � b′ ⊗ a′ ⊗ c � b′ ⊗ c′ ⊗ a′′, (45)

then we express this by joining two vertices as follows:

a

b′

b

a′
c

c′

a′′ .

Also, it is sometimes convenient to use the notation a
H⊗ b if we have H = H(a ⊗ b).

Example 3.4 We give an example of Theorem 3.3 along with the same rigged con-
figuration we have considered in Example 2.5.

μ(0) μ(1)

1
0

0
0 0 0

μ(2)

First we calculate a path s̃(2), which is an image of the following rigged configu-
ration (it contains the quantum space only):

μ(2)

The KKR bijection trivially yields its image as

s̃(2) = 3 .
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We define the mode of 3 using (34). We put b0 = 3 and b1 = 3 (= s̃(2)). Since

we have 3
1⊗ 3 and r

(2)
1 = 0, the mode is 0 + 1 = 1. Therefore we have

C(2)
(

3
)

= 3 1.

Note that 3 1 is trivially normal ordered.

Next we calculate Φ(2). Let us take the numbering of rows of μ(1) as (μ
(1)
2 ,μ

(1)
1 ) =

(2,1), i.e., the resulting path is an element of B
μ

(1)
2

⊗ B
μ

(1)
1

= B2 ⊗ B1. From 3 1we

create an element 2 ⊗ 3 (see (38)) and consider the following tensor product (see
the right-hand side of (41)):

2 ⊗ 3 ⊗
(

22 ⊗ 2
)

.

We move 3 to the right of 22 ⊗ 2 and next we move 2 to the right, as in the
following diagram:

2

3

22

23

22

3

2

3

2

2

2

2

We have omitted framings of tableaux ∗ in the above diagram. Therefore we have

Φ(2)
(

3 1

)
= 22 ⊗ 3 .

Note that the result depend on the choice of the shape of path (B2 ⊗ B1).
Let us calculate C(1). First, we determine the modes d1, d2 of 22

d1
⊗ 3

d2
. For

d1, we put b0 = 22 , and the corresponding value of an energy function is 22
2⊗

22 ⊗ 3 , and the rigging is r
(1)
1 = 0; hence we have d1 = 2 + 0 = 2. For d2, we

need the following values of energy functions; 22 ⊗ 22
0⊗ 3

R� 22
1⊗ 2 ⊗ 23 ,

and the rigging is r
(1)
2 = 0. Hence we have d2 = 0 + 1 + 0 = 1. In order to determine

the normal ordering of 22 2 ⊗ 3 1 (
R� 2 1 ⊗ 23 2), following Definition 3.2, we

construct the set S3 as

S3 =
{

22 2 ⊗ 3 1, 2 1 ⊗ 23 2

}
.

Therefore the normal ordered form is

C(1)
(

22 ⊗ 3
)

= 2 1 ⊗ 23 2.
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Finally, we calculate Φ(1). We assume that the resulting path is an element of
B1 ⊗B1 ⊗B2 ⊗B1. From 2 1 ⊗ 23 2 we construct an element 1 ⊗ 2 ⊗ 1 ⊗ 23 .
We consider the tensor product

1 ⊗ 2 ⊗ 1 ⊗ 23 ⊗
(

1 ⊗ 1 ⊗ 11 ⊗ 1
)

(46)

and apply combinatorial R matrices successively as follows:

1

2

1

23

1

2

1

3

1

2

1

3

12

2

1

3

2

1

1

3

2

11

13

23

12

11

11

2

1

1

11

2

1

1

1

1

1

1

1

11

(47)

Hence we obtain a path 1 ⊗ 2 ⊗ 13 ⊗ 2 , which reconstructs a calculation of
Example 2.5.

Remark 3.5 In the above calculation of Φ(2), we have assumed the shape of path as
B2 ⊗B1. Then we calculated modes and obtained 22 2 ⊗ 3 1. Now suppose the path
of the form B1 ⊗ B2 on the contrary. In this case, calculation proceeds as follows:

2

3

2

3

2

3

2

23

22

22

2

2

From the values of energy functions 22
1⊗ 2 ⊗ 23 and 22 ⊗ 2

0⊗ 23
R� 22

2⊗
22 ⊗ 3 and the riggings r

(1)
1 = r

(1)
2 = 0 we obtain an element 2 1 ⊗ 23 2. Com-

paring both results, we have

2 1 ⊗ 23 2

R� 22 2 ⊗ 3 1.

This is a general consequence of the definition of mode (see (34)) and Theorem 4.1
below.

The rest of this paper is devoted to a proof of Theorem 3.3.
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4 Normal ordering from the KKR bijection

In the rest of this paper, we adopt the following numbering for factors of the scattering
data:

bN [dN ] ⊗ · · · ⊗ b2[d2] ⊗ b1[d1] ∈ aff(BkN
) ⊗ · · · ⊗ aff(Bk2) ⊗ aff(Bk1), (48)

since this is more convenient when we are discussing about the relation between the
scattering data and KKR bijection.

It is known that the KKR bijection on rigged configuration RC admits a structure
of the combinatorial R matrices. This is described by the following powerful theorem
proved by Kirillov, Schilling, and Shimozono (Lemma 8.5 of [3]), which plays an
important role in the subsequent discussion.

Theorem 4.1 Pick out any two rows from the quantum space μ(0) and denote these
by μa and μb. When we remove μa at first and next μb by the KKR bijection, then
we obtain tableaux μa and μb with letters 1, . . . , n, which we denote by A1 and B1,
respectively. Next, on the contrary, we first remove μb and second μa (keeping the
order of other removal invariant) and we get B2 and A2. Then we have

B1 ⊗ A1 � A2 ⊗ B2, (49)

under the isomorphism of sln combinatorial R matrix.

Our first task is to interpret the normal ordering which appear in Definition 3.2
in terms of purely KKR language. We can achieve this translation if we make some
tricky modification on the rigged configuration. Consider the rigged configuration

RC(a−1) = ((
μ

(a−1)
i

)
,
(
μ

(a)
i , r

(a)
i

)
, . . . ,

(
μ

(n−1)
i , r

(n−1)
i

))
. (50)

Then modify its quantum space μ(a−1) as

μ
(a−1)
+ := μ(a−1) ∪ μ(a) ∪ (

1L
)
, (51)

where L is some sufficiently large integer to be determined below. For the time being,
we take L large enough so that configuration μ(a) never becomes singular while we
are removing μ(a−1) part from quantum space μ(a−1) ∪ μ(a) ∪ (1L) under the KKR
procedure. Then we obtain the modified rigged configuration

RC(a−1)
+ := ((

μ
(a−1)
+i

)
,
(
μ

(a)
i , r

(a)
i

)
, . . . ,

(
μ

(n−1)
i , r

(n−1)
i

))
, (52)

where μ
(a−1)
+i is the ith row of the quantum space μ

(a−1)
+ . In subsequent discussions,

we always assume this modified form of the quantum space unless otherwise stated.
For the KKR bijection on rigged configuration RC(a−1)

+ , we have two different

ways to remove rows of quantum space μ
(a−1)
+ . We describe these two cases respec-

tively.
Case 1. Remove μ(a) and (1L) from μ

(a−1)
+ . Then the rigged configuration

RC(a−1)
+ reduces to the original rigged configuration RC(a−1). Let us write the KKR
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image of RC(a−1) by p, then the KKR image of modified rigged configuration
RC(a−1)

+ in this case is

p ⊗
(

l(a)⊗

i=1

aμ
(a)
i

)

⊗ a
⊗L

. (53)

Case 2. Remove μ(a−1) from μ
(a−1)
+ in RC(a−1)

+ , then quantum space becomes
μ(a) ∪ (1L). Next, we remove the boxes of (1L) one by one until some rows in μ(a)

become singular. At this time, we choose any one of the singular rows in μ(a) and
call it μ

(a)
1 . We also define an integer d1 (≤ L) such that (1L) part of the quantum

space is now reduced to (1d1). Then we have the following:

Lemma 4.2 In the above setting, we remove row μ
(a)
1 in μ

(a−1)
+ by the KKR proce-

dure (with letters a, . . . , n) and obtain a tableau b1 ∈ Bk1 . On the other hand, con-
sider the KKR procedure (with letters a+1, . . . , n) on rigged configuration RC(a) and
remove row μ

(a)
1 as a first step of the procedure. Then we obtain the same tableau b1.

Proof Consider the rigged configuration RC(a−1)
+ after removing μ(a−1) ∪ (1L−d1)

from μ
(a−1)
+ . When we begin to remove row μ

(a)
1 in the quantum space μ

(a−1)
+ , we

first remove the rightmost box of the row μ
(a)
1 , call box x. Then, by the definition

of d1, the row μ
(a)
1 in the next configuration μ(a) is singular so that we can re-

move the rightmost box of the row μ
(a)
1 ⊂ μ(a). After removing x, the remaining

row μ
(a)
1 \ {x} ⊂ μ(a) is made to be singular again.

In the next step, we remove the box x′ ∈ μ
(a−1)
+ which is on the left of the box x.

Then we can remove the corresponding box x′ ∈ μ(a). Continuing in this way, we
remove both rows μ

(a)
1 in quantum space μ

(a−1)
+ and μ(a) simultaneously. We see

that this box removing operations on μ(a), μ(a+1), . . . ,μ(n−1) of RC(a−1)
+ coincides

with the one that we have when we remove μ
(a)
1 of the quantum space of RC(a). �

Let us return to the description of Case 2 procedure, where we have just removed
both μ

(a)
1 from quantum space μ

(a−1)
+ and μ(a). Again, we remove boxes of (1d1)

part of the quantum space one by one until some singular rows appear in partition
μ(a) and choose any one of the singular rows, which we call μ

(a)
2 . At this moment,

the part (1d1) is reduced to (1d2). We then remove both μ
(a)
2 in quantum space and

μ(a) just as in the above lemma and obtain a tableau b2.
We do this procedure recursively until all boxes of the quantum space are removed.

Therefore the KKR image in this Case 2 is

a
⊗dN ⊗ bN ⊗· · ·⊗ a

⊗(d2−d3) ⊗ b2 ⊗ a
⊗(d1−d2) ⊗ b1 ⊗

(
l(a−1)⊗

i=1

aμ
(a−1)
i

)

(54)

where we write N = l(a) and substitute L in μ
(a−1)
+ by d1. This completes a descrip-

tion of Case 2 procedure.
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Note that, in this expression, the letter a is separated from the letters a + 1, . . . , n

contained in bi . By virtue of this property, we introduce the following:

Definition 4.3 In the above Case 2 procedure, we obtain bi and the associated inte-
gers di by the KKR bijection. From this data we construct the element

C̃(a) := bN [dN ] ⊗ · · · ⊗ b1[d1] ∈ aff(BkN
) ⊗ · · · ⊗ aff(Bk1) (55)

and call this a KKR normal ordered product.

To obtain a KKR normal ordering, we have to refer the actual KKR procedure.
Although the KKR normal ordering C̃(a) has not been identified with the one defined
in Definition 3.2, these two procedures provide the interpretation of Φ(a) operator.
More precisely, for each product

c := a
⊗dN ⊗ bN ⊗ · · · ⊗ a

⊗(d2−d3) ⊗ b2 ⊗ a
⊗(d1−d2) ⊗ b1 (56)

constructed from C̃(a), we have the following isomorphism.

Proposition 4.4 For the rigged configuration RC(a−1)
+ , we have

p ⊗
(

l(a)⊗

i=1

aμ
(a)
i

)

⊗ a
⊗d1 � c ⊗

(
l(a−1)⊗

i=1

aμ
(a−1)
i

)

(57)

where the isomorphism is given by the sln−a+1 combinatorial R matrix with letters
a, . . . , n, and p is a path obtained by the KKR bijection on the original rigged con-
figuration RC(a−1).

Proof From the above construction we see that a difference between Case 1 and
Case 2 is just the difference of order of removing rows of μ

(a−1)
+ in RC(a−1)

+ . Hence
we can apply Theorem 4.1 to claim that both expressions are mutually isomorphic. �

This is just the Φ(a) part of Theorem 3.3. We continue to study further properties
of this KKR normal ordered product C̃(a). Let us perform the above Case 2 procedure
on RC(a−1)

+ and obtain the KKR normal ordered product

biN [diN ] ⊗ · · · ⊗ bi2[di2] ⊗ bi1[di1] (58)

where each tableau bik comes from a row μ
(a)
ik

. However, there is an ambiguity in
the choice of singular rows in Case 2. Assume that we obtain another KKR normal
ordered product

b′
jN

[d ′
jN

] ⊗ · · · ⊗ b′
j2

[d ′
j2

] ⊗ b′
j1

[d ′
j1

] (59)

from the same configuration RC(a−1)
+ . We assume that each tableau b′

jk
comes from

a row μ
(a)
jk

. Then these two products have the following property.
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Lemma 4.5 In this setting, we have

biN ⊗ · · · ⊗ bi2 ⊗ bi1 � b′
jN

⊗ · · · ⊗ b′
j2

⊗ b′
j1

(60)

by sln−a combinatorial R matrices.

Proof By using the argument of the proof of Lemma 4.2, we regard the left-hand
side of (60) as the path obtained from RC(a) by removing rows μ

(a)
i1

, . . . ,μ
(a)
iN

of the
quantum space in this order. Similarly, the right-hand side of (60) is the path obtained
by removing rows μ

(a)
j1

, . . . ,μ
(a)
jN

in this order. Therefore we can apply Theorem 4.1
to obtain the isomorphism. �

Example 4.6 We give an example of general argument given in this section along
with the following rigged configuration RC:

(
μ(0)

) = (
113

)
,(

μ(1), r(1)
) = (

(4,0), (3,1), (1,4)
)
,(

μ(2), r(2)
) = (

(2,0), (1,0)
)
,(

μ(3), r(3)
) = (

(1,0)
);

in the diagrammatic expression, it is

··
··13

μ(0)

9

2

0

4

1

0

μ(1)

0

0

0

0

μ(2)

0 0

μ(3)

For each Young diagram, we assign the vacancy numbers (on the left) and riggings
(on the right) of the corresponding rows (for example, the vacancy numbers of μ(1)

are 0, 2, 9, and the corresponding riggings are 0, 1, 4, respectively). By the usual
KKR bijection, we obtain the following image (path) p:

p = 1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 2 ⊗ 2 ⊗ 3 ⊗ 2 ⊗ 1 ⊗ 4 ⊗ 3 ⊗ 2 ⊗ 2 .

In the next section, we will obtain a formula which determines the mode d1
(Proposition 5.1). Using the formula, we calculate d1 as follows:

d1 = max
{
Q

(1)
1 − Q

(2)
1 + r

(1)
1 , Q

(1)
3 − Q

(2)
3 + r

(1)
3 , Q

(1)
4 − Q

(2)
4 + r

(1)
4

}

= max{3 − 2 + 4, 7 − 3 + 1, 8 − 3 + 0}
= max{5,5,5} = 5. (61)

Thus, in the modified rigged configuration RC(0)
+ (see (52)), we have to take a quan-

tum space as follows:

μ
(0)
+ = μ(1) ∪ (

113) ∪ (
15) = {

4,3,1,118}. (62)

The modified rigged configuration RC(0)
+ in this case takes the following shape:
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··
··18

μ
(0)
+

17

14

13

4

1

0

μ(1)

0

0

0

0

μ(2)

0 0

μ(3)

We remove boxes according to Case 1 procedure given above. In this procedure,
we remove the μ(1) ∪ (15) part from the quantum space μ

(0)
+ . Then the remaining

configuration is exactly equal to the original one whose quantum space is μ(0). Thus,
in this case, we obtain

p ⊗ 1 ⊗ 111 ⊗ 1111 ⊗ 1
⊗5

(63)

as an image of the KKR bijection.
Next, we apply Case 2 procedure to the same modified rigged configuration. First,

we remove the μ(0) = (113) part from the quantum space μ
(0)
+ . Then we obtain 1

⊗13

as a part of the image, and the remaining rigged configuration is

··
··5

μ
(0)
+

4

1

0

4

1

0

μ(1)

0

0

0

0

μ(2)

0 0

μ(3)

At this time, we recognize an implication of the calculation in (61). From the above
diagram we see that the quantum space now is μ

(0)
+ = μ(1) ∪ (1d1), and all three rows

of μ(1) become simultaneously singular. This is implied in the following term in (61):

d1 = max{5, 5, 5}. (64)

(Inside the max term, all factors are 5, and this implies that all three rows in
μ(1) would simultaneously become singular when quantum space becomes μ

(0)
+ =

μ(1) ∪ (15).)
We further proceed along the Case 2 procedure. As we have said above, we have

three possibilities to remove a row of μ(1) ⊂ μ
(0)
+ . Let us remove the row {1} from

μ(1) ⊂ μ
(0)
+ . Then we have 4 as a part of the image, and the remaining rigged con-

figuration is
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··
··5

μ
(0)
+

1

0

1

0

μ(1)

0 0

μ(2)

∅
μ(3)

Again, we encounter two possibilities to remove a row from μ(1) ⊂ μ
(0)
+ with now

μ
(0)
+ = μ(1) ∪ (

1d2
) = μ(1) ∪ (

15). (65)

We can infer this by applying Proposition 5.1:

d2 = max
{
Q

(1)
3 − Q

(2)
3 + r

(1)
3 , Q

(1)
4 − Q

(2)
4 + r

(1)
4

}

= max{6 − 2 + 1, 7 − 2 + 0}
= max{5, 5} = 5. (66)

Let us remove the row {4} from μ(1) ⊂ μ
(0)
+ and remove the box {1} from (1d2) ⊂

μ
(0)
+ . Then we have 1 ⊗ 2233 as a part of the KKR image, and the remaining

rigged configuration is

μ
(0)
+

1 1

μ(1)

∅
μ(2)

∅
μ(3)

At this time, the quantum space μ
(0)
+ becomes μ(1) ∪ (1d3), where we can determine

d3 by Proposition 5.1 as follows:

d3 = max
{
Q

(1)
3 − Q

(2)
3 + r

(1)
3

}

= max{3 − 0 + 1} = 4. (67)

As a final step of the KKR procedure, we remove {3} from μ(1) ⊂ μ
(0)
+ and obtain

1
⊗4 ⊗ 222 as the rest part of the KKR image.
Both Case 1 and Case 2 procedures above differ from each other only in the order

of removal in the quantum space μ
(0)
+ ; thus we can apply the Kirillov–Schilling–

Shimozono theorem (Theorem 4.1) to get the following isomorphism:

p ⊗ 1 ⊗ 111 ⊗ 1111 ⊗ 1
⊗5 � 1

⊗4 ⊗ 222 ⊗ 1 ⊗ 2233 ⊗ 4 ⊗ (
1

⊗13)
.

(68)
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In order to calculate the above isomorphism directly, we use the diagrammatic
method as in (47). That is, we compare the right-hand side of (68) and (46). Then
we can write down a similar vertex diagram as in (47) and obtain the left-hand side
of (68) as an output.

Below we give a list of all the scattering data obtained from the rigged configura-
tion here:

s1 = 222 4 ⊗ 2233 5 ⊗ 4 5,

s2 = 222 4 ⊗ 3 5 ⊗ 2234 5,

s3 = 2222 4 ⊗ 233 5 ⊗ 4 5,

s4 = 2222 4 ⊗ 3 5 ⊗ 234 5,

s1 is what we have considered in detail.

Remark 4.7 By putting letters 1 on both ends of the above path p, we identify this
path as a state of the box-ball systems. For the sake of simplicity, we tentatively omit
frames of tableaux ∗ and tensor products ⊗, i.e., we write the path of the above
example as

p = 1111223214322.

Then its time evolution is given by

t = 1: 1111111122221111332111141111111111111111111111111111111,
t = 2: 1111111111112222111332114111111111111111111111111111111,
t = 3: 1111111111111111222211332411111111111111111111111111111,
t = 4: 1111111111111111111122221343211111111111111111111111111,
t = 5: 1111111111111111111111112232143221111111111111111111111,
t = 6: 1111111111111111111111111121322114322111111111111111111,
t = 7: 1111111111111111111111111112111322111432211111111111111,
t = 8: 1111111111111111111111111111211111322111143221111111111,

t = 5 corresponds to the original path p. We see that there are three solitons of length
4, 3, and 1. Compare this with the lengths of rows of μ(1) above. Furthermore, com-
pare the scattering data s3 at the end of the above example and t = 1 path. Then we
see that these three solitons coincide with three tableaux of s3. This is the origin of the
term “scattering data.” In this setting, normal ordering is the way to obtain physically
correct scattering data.

5 Mode formula and collision states

In the previous section, we introduce the KKR normal ordered product

bN [dN ] ⊗ · · · ⊗ b1[d1]. (69)

In order to determine the ordering of sequence b1, . . . , bN and associated integers
d1, . . . , dN , we have to refer the actual KKR procedure. In this and subsequent sec-
tions, we determine these remaining point by purely crystal bases theoretic scheme.
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In the KKR normal ordered product bN [dN ] ⊗ · · · ⊗ b1[d1], the mode d1 is de-
termined by the following simple formula. This formula also determines the corre-
sponding row μ

(a)
i from which tableau b1 arises.

Proposition 5.1 For the KKR normal ordered product bN [dN ]⊗ · · ·⊗ b1[d1] we ob-
tain from the rigged configuration RC(a−1)

+ (see (52)), the mode d1 has the following
expression:

d1 = max
1≤i≤l(μ(a))

{
Q

(a)

μ
(a)
i

− Q
(a+1)

μ
(a)
i

+ r
(a)
i

}
. (70)

Proof Consider the KKR bijection on rigged configuration RC(a−1)
+ . We have taken

μ
(a−1)
+ = μ(a−1) ∪ μ(a) ∪ (

1d1
)
, (71)

assuming that, while removing μ(a−1), the configuration μ(a) never becomes singu-
lar. Remove μ(a−1) from the quantum space μ

(a−1)
+ . Then we choose d1 so that, just

after removing μ(a−1), some singular rows appear in μ(a) for the first time.
We now determine this d1. To do this, we take arbitrary row μ

(a)
i in the config-

uration μ(a). Then the condition that this row becomes singular when we have just
removed μ(a−1) from μ

(a−1)
+ is

(
d1 + Q

(a)

μ
(a)
i

)
− 2Q

(a)

μ
(a)
i

+ Q
(a+1)

μ
(a)
i

= r
(a)
i , (72)

i.e., the vacancy number of this row is equal to the corresponding rigging at that time.
Thus, we have

d1 = Q
(a)

μ
(a)
i

− Q
(a+1)

μ
(a)
i

+ r
(a)
i . (73)

These d1’s have different values for different rows μ
(a)
i . Since we define d1 so that

the corresponding row is the first to become singular, we have to take the maximum
of these d1’s. This completes the proof of the proposition. �

As a consequence of this formula, we can derive the following linear dependence
of modes di on corresponding rigging r

(a)
i .

Lemma 5.2 Suppose that we have the following KKR normal ordered product from
rigged configuration RC(a−1)

+ :

bN [dN ] ⊗ · · · ⊗ bk[dk] ⊗ · · · ⊗ b1[d1] (74)

where the tableau bk originates from the row μ
(a)
k , and the corresponding rigging

is r
(a)
k . Now we change the rigging r

(a)
k to r

(a)
k + 1 and construct a KKR normal

ordered product. If we can take the ordering of this product to be bN, . . . , bk, . . . , b1
again, then the KKR normal ordering is

bN [dN ] ⊗ · · · ⊗ bk[dk + 1] ⊗ · · · ⊗ b1[d1], (75)

i.e., dj (j 
= k) remain the same, and dk becomes dk + 1.
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Proof Without loss of generality, we can take k = 2. From the assumption that we
have b1[d1] at the right end of (75), we see that the mode d1 does not change after
we change the rigging r

(a)
2 (see Proposition 5.1). We do a KKR procedure in the

way described in Case 2 of the previous section. We first remove the row μ
(a)
1 , and

next remove the (1d1) part of the quantum space μ
(a−1)
+ until some singular rows

appear in the configuration μ(a). At this time, we can apply Proposition 5.1 again
to this removed rigged configuration and obtain the next mode. Since in formula of
Proposition 5.1 we take the maximum of terms, the term corresponding to the row
μ

(a)
2 is the maximum one before we change the rigging r

(a)
2 . Hence it still contributes

as the maximal element even if the rigging becomes r
(a)
2 + 1. From this we deduce

that the next mode is d2 + 1. After removing the row μ
(a)
2 and one more box from the

quantum space by the KKR procedure, then the rest of the rigged configuration goes
back to the original situation so that other terms in the KKR normal ordered product
is not different from the original one. �

To determine modes di ’s, it is convenient to consider the following state.

Definition 5.3 Consider the KKR bijection on RC(a−1)
+ . Remove rows of the quan-

tum space μ
(a−1)
+ by Case 2 procedure in the previous section, i.e., we first remove

μ(a−1) from μ
(a−1)
+ . While removing the (1d) part of the quantum space, if more

than one row of the configuration μ(a) become simultaneously singular, then we de-
fine that these rows are in collision state.

We choose one of the KKR normal ordered products and fix it. Suppose that the
rightmost elements of it is · · · ⊗ B ⊗ A. Then we have the following:

Lemma 5.4 We can always make B and A in collision state by changing a rigging rB
attached to row B .

Proof Let |A| be the width of a tableau A. We can apply the above Lemma 5.2 to
make, without changing the other part of the KKR normal ordered product,

d1 = Q
(a)
|A| − Q

(a+1)
|A| + r

(a)
A = Q

(a)
|B| − Q

(a+1)
|B| + r

(a)
B , (76)

so that A and B are in collision state. �

Example 5.5 Consider s1 and s3 in Example 4.6. In s1, 2233 and 4 are in the

collision state, and, in s3, 233 and 4 are in the collision state.

6 Energy functions and the KKR bijection

In the previous sections, we give crystal interpretation for several properties of the
KKR bijection, especially with respect to combinatorial R matrices. Now it is a point
to determine all modes di in scattering data by use of the H function or the energy
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function of a product B⊗A. We consider the rigged configuration RC(a−1)
+ (see (52));

that is, its quantum space is

μ
(a−1)
+ = μ(a−1) ∪ μ(a) ∪ (

1d1
)
. (77)

In the following discussion, we take a = 1 without loss of generality and remove μ(0)

as a first step.
To describe the main result, we prepare some conventions and notation. For the

KKR normal ordered product, we denote the rightmost part as · · ·B[d2] ⊗ A[d1],
where the lengths of tableaux are |A| = L and |B| = M . Tableaux A and B origi-
nate from rows of μ(1), which we also denote as row A and row B for the sake of
simplicity. The difference of Q

(i)
j ’s before and after the removal of row A is �Q

(i)
j ,

i.e.,

�Q
(i)
j := (

Q
(i)
j just before removal of A

) − (
Q

(i)
j just after removal of A

)
. (78)

Then we have the following theorem.

Theorem 6.1 If A and B in the KKR normal ordered product are successive (i.e.,
· · ·B[d2] ⊗ A[d1]), then we have

�Q
(2)
M = the unwinding number of B ⊗ A. (79)

Proof will be given in the next section. �

We give two examples of this theorem.

Example 6.2 Consider the following sl5 rigged configuration:

μ
(0)
+ = {

1,1,13,3,3,1,3,1,4
}

4

0

0

0

0

0

0

0

0

0

μ(1)

1

2

1

1

1

0× ×

×

μ(2)

< >3

0

0

0

0

μ(3)

0 0

μ(4)

We have assumed that we had already removed the μ(0) part from μ
(0)
+ (the expres-

sion of μ
(0)
+ is reordered form, see Step 1 of Definition 2.4). Then, by the KKR

procedure, we remove rows of μ
(0)
+ from right to left in the above ordering and obtain

the following KKR normal ordered product:

1 ⊗ 2 ⊗ 1
⊗3 ⊗ 222 ⊗ 333 ⊗ 1 ⊗ 244 ⊗ 1 ⊗ 2335 . (80)
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The rightmost part of the product satisfies

the unwinding number of 244 ⊗ 2335 = 2. (81)

In the above diagram, boxes with cross × in μ(2) mean that when we obtain
2335 , these boxes are removed by the KKR procedure. Since the width of 244

is 3, we have �Q
(2)
3 = 2, which agrees with Theorem 6.1.

Example 6.3 Let us consider one more elaborated example in sl6.

μ
(0)
+ = {

14,4,13,4,13,6,1,6,14,8,12,8
}

0
0

0
0

0
0

μ(1)

1
2

4
3

μ(2)

× × ×
× ×

×

8< >

0
0

0

μ(3)

0
0

μ(4)

0

μ(5)

We have suppressed the vacancy numbers for the sake of simplicity. By the KKR
procedure, we have the following KKR normal ordered product:

1
⊗4 ⊗ 2222 ⊗ 1

⊗3 ⊗ 2223 ⊗ 1
⊗3 ⊗ 222334 ⊗ 1 ⊗ 233344

⊗ 1
⊗4 ⊗ 22223345 ⊗ 1

⊗2 ⊗ 22333346 . (82)

The rightmost part of this product satisfies

the unwinding number of 22223345 ⊗ 22333346 = 6. (83)

Since the width of 22223345 is 8, this means that �Q
(2)
8 = 6, and this agrees with

the number of × in μ(2)|≤8 of the above diagram.

Implication of this theorem is as follows. Without loss of generality, we take A

and B as a collision state. We are choosing a normalization for the H function as

H := the winding number of B ⊗ A. (84)

By the above definition, �Q
(i)
M is equal to the number of boxes which are removed

from μ(i)|≤M when we remove the row A by the KKR procedure. Thus, if we remove
row A ⊂ μ(1), then �Q

(1)
M is (recall that M := |B| and L := |A|)

�Q
(1)
M = min{M,L}. (85)
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From the above theorem we have

�Q
(1)
M − �Q

(2)
M = min{M,L} − the unwinding number of B ⊗ A

= the winding number of B ⊗ A

= H(B ⊗ A). (86)

On the other hand, since A and B are in the collision state, from Proposition 5.1
we have

d1 = Q
(1)
|A| − Q

(2)
|A| + rA = Q

(1)
|B| − Q

(2)
|B| + rB (87)

just before we remove the row A. After removing the row A, we again apply Proposi-
tion 5.1 to the rigged configuration which has been modified by removal of the row A

under the KKR procedure. We then have

d2 = Q
(1)
|B| − Q

(2)
|B| + rB (88)

after removing A. By the definition of �Q
(i)
j , we have

d1 − d2 = �Q
(1)
M − �Q

(2)
M , (89)

so that, combining the above arguments, we obtain

d1 − d2 = H, (90)

as a consequence of the above theorem.

Remark 6.4 From the point of view of the box-ball systems, Theorem 6.1 thus as-
serts that minimal separation between two successive solitons is equal to the energy
function of the both solitons.

Proof of Theorem 3.3 What we have to do is to identify the KKR normal ordered
product (Definition 4.3) with normal ordering (Definition 3.2) which is defined in
terms of the crystal base theory. Again, we consider the rigged configuration RC(a−1)

+
(see (52)) with a = 1.

First, we give an interpretation of the above arguments about the collision states
in terms of the normal ordering of Definition 3.2. Consider the following normal
ordered product in the sense of Definition 3.2:

bN [dN ] ⊗ · · · ⊗ b2[d2] ⊗ b1[d1]. (91)

Concentrate on a particular successive pair bi+1[di+1] ⊗ bi[di] within this scattering
data. The isomorphism of the affine combinatorial R then gives

bi+1[di+1] ⊗ bi[di] � b′
i[di − H ] ⊗ b′

i+1[di+1 + H ] (92)

where H is a value of H function on this product, and bi+1 ⊗ bi � b′
i ⊗ b′

i+1 is the
corresponding isomorphism under the classical combinatorial R matrix. Since the
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modes di depend linearly on the corresponding rigging ri (see (34)), we can adjust ri
to make that both

· · ·⊗bi+1[di+1]⊗bi[di]⊗· · · and · · ·⊗b′
i[di −H ]⊗b′

i+1[di+1 +H ]⊗· · · (93)

are simultaneously normal ordered, where the abbreviated parts in the above expres-
sion are unchanged. From Definition 3.2 we see that all normal ordered products
possess the common set of modes {di}. Thus, if this adjustment is already taken into
account, then the modes di+1 and di satisfy

di − di+1 = H, (94)

which is the same relation as what we have seen in the case of KKR normal ordering.
To summarize, both the KKR normal ordering and normal ordering share the fol-

lowing common properties:

1. Each bi is a tableau which is obtained as a KKR image of the rigged configuration
RC(a) (see (27)) with a = 1. They commute with each other under the isomor-
phism of sln−1 combinatorial R matrices with letters from 2 to n.

2. Consider a normal ordered product. If we can change some riggings ri without
changing the order of elements in normal ordering, then each mode di depends
linearly on the corresponding rigging ri .

3. Concentrate on a particular product bi ⊗ bj inside a scattering data; then we can
adjust corresponding rigging ri to make that both

· · · ⊗ bi[di] ⊗ bj [dj ] ⊗ · · · and · · · ⊗ b′
j [d ′

j ] ⊗ b′
i[d ′

i] ⊗ · · ·

where bi ⊗ bj

R� b′
j ⊗ b′

i , are simultaneously normal ordered. If we have already
adjusted the rigging ri in such a way, then the difference of the successive modes
di and dj is equal to

dj − di = H, (95)

i.e., the value of the H function on this product.

From these observations we see that the both modes di defined by Proposition 5.1
and (34) are essentially identical. Thus the KKR normal ordered products are normal
ordered products in the sense of Definition 3.2. On the contrary, we can say that all
the normal ordered products are, in fact, KKR normal ordered. To see this, take one
of the normal ordered products

bN [dN ] ⊗ · · · ⊗ b2[d2] ⊗ b1[d1] ∈ S1 (96)

where S1 is defined in Definition 3.2. From this scattering data we construct the
element

1
⊗dN ⊗ bN ⊗ 1

⊗(dN−1−dN ) ⊗ · · · ⊗ b2 ⊗ 1
⊗(d1−d2) ⊗ b1. (97)

Then, in view of the isomorphism of affine combinatorial R matrices, each power
di−1 − di is larger than the corresponding H function (because if it is not the case,
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then we can permute bi[di] ⊗ bi−1[di−1] to make the (i − 1)th mode as di + H , i.e.,
larger than the original di−1 in contradiction to the definition of the normal order-
ing). From Theorem 6.1 and the arguments following it we see that it is a sufficient
condition to be a KKR normal ordered product (by a suitable choice of riggings r

(1)
i ;

since other information, i.e., RC(1) can be determined from bN, . . . , b1 in the given
scattering data). Thus we can apply the inverse of the KKR bijection and obtain the
corresponding rigged configuration.

In the earlier arguments, we have interpreted the Φ(a) operator in terms of the
KKR bijection (Proposition 4.4). Now we interpret the C(a) operators or, in other
words, the normal ordering in terms of the KKR bijection.

Hence we complete the proof of Theorem 3.3. �

Remark 6.5 In the above arguments, we see that the normal ordered scattering data
can be identified with the paths obtained from the rigged configuration RC(a−1)

+ . In
particular, if the element

s = bN [dN ] ⊗ · · · ⊗ b2[d2] ⊗ b1[d1] (98)

satisfies the two conditions

1. bN ⊗ · · · ⊗ b2 ⊗ b1 is a path of RC(a)

2. Every difference of modes di satisfies the condition di − di+1 ≥ H(bi+1 ⊗ bi)

then s can be realized as an image of RC(a−1)
+ . Therefore we obtain the following

characterization of normal orderings.
Let SN+1 be the set defined in Definition 3.2. Consider an element s = bN [dN ] ⊗

· · ·⊗ b2[d2]⊗ b1[d1] ∈ SN+1. Then s ∈ S1 if and only if the modes di of s satisfy the
condition di − di+1 ≥ H(bi+1 ⊗ bi) for all 1 ≤ i ≤ N − 1.

7 Proof of Theorem 6.1

Proof of the theorem is divided into 6 steps.

Step 1: Let us introduce some notation used throughout the proof. Consider the rigged
configuration RC(a−1)

+ (see (52)) with a = 1. Let the rightmost elements of a KKR
normal ordered product be · · · ⊗ B ⊗ A. When we remove the kth box from the right
end of the row A ⊂ μ(1), we remove the box α

(j)
k from the configuration μ(j) by the

KKR bijection. That is, when we remove the kth box of a row A, the boxes

α
(2)
k , α

(3)
k , . . . , α

(n−1)
k (99)

are also removed. In some cases, we have

α
(j−1)
k 
= ∅, α

(j)
k = ∅, α

(j+1)
k = ∅, . . . , (100)

for some j ≤ n − 1. The box adjacent to the left of the box α
(j)
k is the box α

(j)
k − 1.

We sometimes express a row by its rightmost box. Then we have the following:
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Lemma 7.1 For fixed j , col(α(j)
k ) monotonously decrease with respect to k, i.e.,

col(α(j)
k ) > col(α(j)

k+1).

Proof First, we consider col(α(2)
k ). When we remove α

(1)
k , i.e., the kth box from right

end of a row A ⊂ μ(1), then we remove the box α
(2)
k from μ(2) and continue as far as

possible. In the next step, we remove the box α
(1)
k+1 from the row A which satisfies

col
(
α

(1)
k+1

) = col
(
α

(1)
k

) − 1. (101)

After the box α
(1)
k+1, we remove a box α

(2)
k+1, which has the following two possibili-

ties:

(1) α
(2)
k+1 and α

(2)
k are on the same row, or

(2) α
(2)
k+1 and α

(2)
k are on different rows.

In case (1), we have col(α(2)
k+1) = col(α(2)

k ) − 1. In case (2), we have col(α(2)
k+1) <

col(α(2)
k ) − 1, since if col(α(2)

k+1) = col(α(2)
k ) − 1, then we can choose α

(2)
k+1 from the

same row with α
(2)
k . In both cases, col(α(2)

k ) monotonously decreases with respect
to k.

In the same way, we assume that until some j , col(α(j)
k ) monotonously decreases

with respect to k. Then, from the relation

col
(
α

(j)

k+1

) ≤ col
(
α

(j)
k

) − 1 (102)

we can show that col(α(j+1)
k ) also monotonously decreases with respect to k. By

induction, this gives a proof of the lemma. �

Step 2: When we remove boxes α
(1)
k , α

(2)
k , α

(3)
k , . . . , the vacancy numbers of the

rigged configuration change in a specific way. In this step, we pursue this charac-
teristic pattern before and after the removal.

First, consider the case α
(i+1)
k 
= ∅, i.e., remove the boxes α

(1)
k , α

(2)
k , . . . ,

α
(i+1)
k , . . . . If col(α(i)

k ) < col(α(i+1)
k ), then the vacancy numbers attached to the rows

α(i) (
= α
(i)
k ) of the configuration μ(i) within the region

col
(
α

(i)
k

) ≤ col
(
α(i)

)
< col

(
α

(i+1)
k

)
, (103)

increase by 1 (see Fig. 1). To see this, let us tentatively write col(α(i)) = l. Recall that
the vacancy number p

(i)
l for this row is

p
(i)
l = Q

(i−1)
l − 2Q

(i)
l + Q

(i+1)
l . (104)

After removing boxes α
(i−1)
k , α

(i)
k , α

(i+1)
k , we see that Q

(i−1)
l and Q

(i)
l decrease

by 1, on the other hand, Q
(i+1)
l do not change (because of (103) combined with

col(α(i−1)
k ) ≤ col(α(i)

k )). Summing up these contributions, the vacancy numbers p
(i)
l
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Fig. 1 Schematic diagram of (103). To make the situation transparent, three Young diagrams are taken to
be the same. The shaded region of μ(i) is (103) whose coquantum numbers are increased by 1. Imagine

that we are removing boxes β
(1)
k

, β
(2)
k

, β
(3)
k

, . . . from the left configuration to the right one according to
the KKR procedure (see Step 3). We can think of it as some kind of a “particle” traveling from left to right
until stopped. Then, when we remove a row B , the curved thick line in the figure looks like a “potential
wall” which prevents the particle from going rightwards

increase by 1. It also implies that the coquantum numbers (i.e., the vacancy numbers
minus riggings for the corresponding rows) also increase by 1. Similarly, if we have
the condition col(α(i)

k ) = col(α(i+1)
k ), then the vacancy numbers for rows α(i) of μ(i)

in the region

col
(
α

(i)
k

) ≤ col
(
α(i)

)
(105)

do not change, since Q
(i+1)
l also decrease by 1 in this case.

Next, consider the case α
(i)
k 
= ∅ and α

(i+1)
k = ∅ with i ≤ n − 1. Then the vacancy

numbers for rows α(i) (
= α
(i)
k ) of μ(i) in the region

col
(
α

(i)
k

) ≤ col
(
α(i)

)
(106)

increase by 1, since within the vacancy number p
(i)
l = Q

(i−1)
l − 2Q

(i)
l + Q

(i+1)
l for a

row α(i) (with width l), Q
(i−1)
l and Q

(i)
l decrease by 1; on the other hand, Q

(i+1)
l do

not change, since now α
(i+1)
k = ∅ (see Fig. 2). Therefore its coquantum number also

increase by 1. The above arguments in Step 2 are summarized in (I), (II), and (III) of
Lemma 7.2 below.

In the rest of this Step 2, we show that once regions (103) or (106) of μ(i) become
nonsingular in the way described above, then they never become singular even when
we are removing the rest of a row A. To begin with, consider the effect of α

(i−1)
k+1 ,

α
(i)
k+1, and α

(i+1)
k+1 . In what follows, we first treat α

(i+1)
k 
= ∅ and then α

(i+1)
k = ∅.

We see that if α
(i+1)
k 
= ∅, then α

(i+1)
k+1 
= ∅. This is because: (1) the row α

(i+1)
k − 1

becomes singular, since we have removed a box α
(i+1)
k , and (2) the width of the row

α
(i+1)
k − 1 satisfies

col
(
α

(i)
k+1

) ≤ col
(
α

(i+1)
k

) − 1 = col
(
α

(i+1)
k − 1

)
(107)
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Fig. 2 Schematic diagram of (106). Coquantum numbers of the shaded region in μ(i) are increased by 1
(see (106)). Thick line in the figure shows a “potential wall” as in Fig. 1

because of the relation

col
(
α

(i)
k+1

)
< col

(
α

(i)
k

) ≤ col
(
α

(i+1)
k

)
(108)

(the first < is by Lemma 7.1, and the next ≤ is by the definition of the KKR bijection).
Thus we can remove the row α

(i+1)
k −1 of μ(i+1) (or, if exists, a shorter singular row)

as the next box α
(i+1)
k+1 (
= ∅, as requested).

Now we are assuming that α
(i+1)
k 
= ∅ and thus α

(i+1)
k+1 
= ∅. We have two inequali-

ties

(i) col(α(i−1)
k+1 ) < col(α(i−1)

k ) ≤ col(α(i)
k ) (by the same reason as (108)) and

(ii) col(α(i)
k+1) < col(α(i)

k ) (by Lemma 7.1).

Using these two relations, consider the change of the vacancy number corresponding
to the rows α(i) ∈ μ(i) within the region

col
(
α

(i)
k

) ≤ col
(
α(i)

)
< col

(
α

(i+1)
k

)
, (109)

when we remove boxes α
(i−1)
k+1 , α

(i)
k+1, and α

(i+1)
k+1 (see Fig. 1). Let us write

col(α(i)) = l, then the vacancy number p
(i)
l for a row α(i) is p

(i)
l = Q

(i−1)
l − 2Q

(i)
l +

Q
(i+1)
l . The value for Q

(i−1)
l decreases by 1 when we remove a box α

(i−1)
k+1 , since we

have

col
(
α

(i−1)
k+1

)
< col

(
α

(i)
k

) ≤ col
(
α(i)

) = l (110)

(the first < is by the above inequality (i), and the next ≤ comes from (109)). The
value for Q

(i)
l also decreases by 1 when we remove a box α

(i)
k+1, since we have

col
(
α

(i)
k+1

)
< col

(
α

(i)
k

) ≤ col
(
α(i)

) = l (111)

(the first < is by the above inequality (ii)). Combining these two facts, we see that the
value Q

(i−1)
l − 2Q

(i)
l within p

(i)
l increases by 1 when we remove boxes α

(i−1)
k+1 and

α
(i)
k+1. The value for Q

(i+1)
l decreases by 1 or remains the same according to whether

col
(
α

(i+1)
k+1

) ≤ l or col
(
α

(i+1)
k+1

)
> l. (112)
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However we can say that the vacancy number p
(i)
l itself does not decrease within the

region described in (109), while we are removing boxes α
(i−1)
k+1 , α

(i)
k+1, and α

(i+1)
k+1 .

Next we treat the case α
(i+1)
k = ∅. Consider the region

col
(
α

(i)
k

) ≤ col
(
α(i)

)
, (113)

where α(i) ∈ μ(i) (see Fig. 2). We remove α
(i−1)
k+1 , α

(i)
k+1, and α

(i+1)
k+1 . In this case,

we can again use the above argument to get that within the vacancy number p
(i)
l =

Q
(i−1)
l − 2Q

(i)
l + Q

(i+1)
l , Q

(i−1)
l and Q

(i)
l decrease by 1. Thus, without any further

conditions on the box α
(i+1)
k+1 , we can deduce that the vacancy numbers p

(i)
l do not

decrease within the region described in (113).
So far, we are discussing about the effect of the boxes α

(i−1)
k+1 , α

(i)
k+1, and α

(i+1)
k+1 .

Furthermore, for some k′ > k + 1, we see that if we remove the boxes α
(i−1)

k′ , α
(i)

k′ ,

and possibly α
(i+1)

k′ , then the vacancy numbers for region (103) or region (106) do
not decrease. To see this, note that, by the inequalities

col
(
α

(j)

k′
)
< col

(
α

(j)

k+1

)
(j = i − 1, i), (114)

Q
(i−1)
l and Q

(i)
l in p

(i)
l decrease by 1, thus vacancy numbers do not decrease.

Combining these considerations, we see that, for each k, the vacancy numbers
within regions (103) or (106) do not decrease while removing the rest of the row A.
We summarize the results obtained in Step 2 as the following lemma.

Lemma 7.2 For fixed k, we remove boxes α
(2)
k , α

(3)
k , α

(4)
k , . . . , as far as possible by

the KKR bijection. Then, for each α
(i)
k , we have the following three possibilities:

(I) If α
(i+1)
k 
= ∅ and also col(α(i)

k ) = col(α(i+1)
k ), then the coquantum numbers

(i.e., the vacancy numbers minus riggings for the corresponding rows) for the
rows α(i) of a partition μ(i) within the region

col
(
α

(i)
k

) ≤ col
(
α(i)

)
(115)

do not change.
(II) If α

(i+1)
k 
= ∅ and col(α(i)

k ) < col(α(i+1)
k ), then the coquantum numbers for rows

α(i) within the region

col
(
α

(i)
k

) ≤ col
(
α(i)

)
< col

(
α

(i+1)
k

)
(116)

increase by 1 (see Fig. 1).
(III) If α

(i+1)
k = ∅, then the coquantum numbers for rows α(i) within the region

col
(
α

(i)
k

) ≤ col
(
α(i)

)
(117)

increase by 1 (see Fig. 2).
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Fig. 3 Schematic diagram of “accumulation” of potential walls. Quantum space is suppressed. When we
remove a row A, we obtain letters, say, a1, a2, a3 as image of the KKR bijection (in the diagram, the

positions of boxes α
(ai−1)

i
are indicated as ai ). For each letter, we join all the potential walls of Fig. 1 and

Fig. 2 appearing at each μ(i). Then these potential walls pile up (like this diagram) while removing the
entire row A

For each k and each partition μ(i), removal of boxes α
(2)
k , α

(3)
k , α

(4)
k , . . . produces a

nonsingular region according to the above (I), (II), (III), and all these regions “accu-
mulate” while removing the entire row A (see Fig. 3).

Step 3: We consider the consequences of Lemma 7.2. We have assumed that the
rightmost part of our KKR normal ordered product is · · · ⊗ B ⊗ A. We denote the
width of a row B as |B| = M . For the sake of simplicity, we change the convention
for subscripts k of α

(2)
k so that when we remove a row A, then we remove the boxes

α
(2)
1 , α

(2)
2 , . . . , α(2)

m ∈ μ(2)
∣∣≤M

(118)

in this order. We have col(α(2)
i ) > col(α(2)

i+1), hence M ≥ m holds. We introduce one

more notation. When we remove boxes α
(2)
i , α

(3)
i , α

(4)
i , . . . as far as possible by the

KKR procedure, then we finally obtain a letter ai as an image of the KKR bijection
(i.e., α(ai−1)

i 
= ∅ and α
(ai)
i = ∅). From the arguments in Step 2, we see that if α

(i)
k 
= ∅,

then α
(i)
k+1 
= ∅. Interpreting this in terms of letters ai , we obtain

a1 ≤ a2 ≤ · · · ≤ am. (119)

After removing a row A, we remove a row B . Then we obtain letters bi as image
of the KKR bijection, which satisfy the inequality

b1 ≤ b2 ≤ · · · ≤ bM. (120)

Then the following property holds.

Proposition 7.3 The letters bi satisfy the inequality

bi < ai (1 ≤ i ≤ m). (121)

Proof As a notation, when we remove the kth box from the right end of a row B ,
then we remove the box β

(i)
k of a partition μ(i). First, we consider the letter b1. If

β
(2)
1 = ∅, then b1 = 2. On the other hand, assuming that m ≥ 1, i.e., at least there

exists one box α
(2)
1 ∈ μ(2)|≤M , then a1 ≥ 3, and we obtain that b1 < a1 as requested.
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Thus we assume that β
(2)
1 
= ∅. We also assume that α

(3)
1 
= ∅ (the other possibility

α
(3)
1 = ∅ will be treated later). Then from Lemma 7.2(II) we have that the rows β(2)

of μ(2) within the region

col
(
α

(2)
1

) ≤ col
(
β(2)

)
< col

(
α

(3)
1

)
(122)

are not singular, so that β
(2)
1 do not fall within this region. We have one more re-

striction on β
(2)
1 . Since |B| = M , we have col(β(1)

1 ) = M , thus col(β(2)
1 ) ≥ M (by the

definition of the KKR bijection). On the other hand, by the definition of the present
convention (see beginning of this Step 3), we have col(α(2)

1 ) ≤ M. From these two

inequalities we conclude that β
(2)
1 must satisfy

col
(
α

(2)
1

) ≤ col
(
β

(2)
1

)
. (123)

Combining the above two restrictions on β
(2)
1 , we see that if β

(2)
1 
= ∅, then

col
(
α

(3)
1

) ≤ col
(
β

(2)
1

)
. (124)

Now we inductively remove boxes β
(3)
1 , β

(4)
1 , . . . . Suppose that β

(i)
1 
= ∅ for some

i > 2. First, consider the case i < a1 − 1, i.e., α
(i+1)
1 
= ∅. Then as an induction

hypothesis, we set

col
(
α

(i)
1

) ≤ col
(
β

(i−1)
1

)
. (125)

By the definition of the KKR bijection we have

col
(
β

(i−1)
1

) ≤ col
(
β

(i)
1

)
. (126)

By Lemma 7.2(II) the rows β(i) of a partition μ(i) within the region

col
(
α

(i)
1

) ≤ col
(
β(i)

)
< col

(
α

(i+1)
1

)
(127)

are not singular. Therefore, if β
(i)
1 
= ∅ and α

(i+1)
1 
= ∅, then

col
(
α

(i+1)
1

) ≤ col
(
β

(i)
1

)
. (128)

By induction, the above inequality holds for all i < a1 − 1.
In such a way, we remove boxes β

(i)
1 according to the KKR procedure. Then, in

some cases, it is possible that β
(i)
1 = ∅ for some i ≤ a1 − 2. This means, in terms of

the letters b1 and a1, that b1 < a1. On the contrary, it is also possible that we manage
to get to a partition μ(a1−2) and have β

(a1−2)
1 
= ∅. Then, as the next step, we have to

consider the restrictions imposed on the box β
(a1−1)
1 (if exists). It has to satisfy

col
(
α

(a1−1)
1

) ≤ col
(
β

(a1−2)
1

) ≤ col
(
β

(a1−1)
1

)
, (129)
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where the first ≤ is by (128), and the second ≤ is by the definition of the KKR
bijection. We consider a next restriction. We have that

α
(a1−1)
1 
= ∅, α

(a1)
1 = ∅, (130)

by the definition of a letter a1. Then by Lemma 7.2(III) the rows β(a1−1) ∈ μ(a1−1)

within the region

col
(
α

(a1−1)
1

) ≤ col
(
β(a1−1)

)
(131)

are not singular. Thus we have

col
(
β

(a1−1)
1

)
< col

(
α

(a1−1)
1

)
, (132)

in order β
(a1−1)
1 to exist. Combining these two mutually contradicting inequalities,

we deduce that

β
(a1−1)
1 = ∅ (133)

in any case.
To summarize, from all the above discussions we have

b1 < a1, (134)

whenever there exist α
(2)
1 ∈ μ(2)|≤M .

Let us continue these considerations; this time we remove boxes β
(1)
2 , β

(2)
2 ,

β
(3)
2 , . . . . If α

(2)
2 
= ∅, then it has to satisfy

col
(
α

(2)
2

) ≤ col
(
α

(2)
1

) − 1 ≤ M − 1 = col
(
β

(1)
2

)
. (135)

Under this setting, there is one thing that must be clarified.

Lemma 7.4 When we remove boxes α
(2)
2 , α

(3)
2 , . . . , nonsingular regions appear on

each partition according to Lemma 7.2. Then these regions do not become singular
even after we have removed boxes β

(1)
1 , β

(2)
1 , β

(3)
1 , . . . .

Proof First, consider the case α
(i+1)
1 
= ∅. Then the rows α(i) within the region

col
(
α

(i)
1

) ≤ col
(
α(i)

)
< col

(
α

(i+1)
1

)
(136)

of a partition μ(i) are nonsingular (by Lemma 7.2(II)). Furthermore, since we also
have α

(i+1)
2 
= ∅ in this case, the coquantum numbers for the rows α(i) within the

region

col
(
α

(i)
2

) ≤ col
(
α(i)

)
< col

(
α

(i+1)
2

)
(137)

of a partition μ(i) (after removing the box α
(i)
1 ) increase by 1. Relative locations of

these two regions are described by

col
(
α

(i)
2

)
< col

(
α

(i)
1

)
, col

(
α

(i+1)
2

)
< col

(
α

(i+1)
1

)
. (138)
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Then the following three regions of μ(i) are of interest:

(i) max{col(α(i+1)
2 ), col(α(i)

1 )} ≤ col(α(i)) < col(α(i+1)
1 ). The coquantum number

in this region is at least 1.
(ii) If col(α(i)

1 ) < col(α(i+1)
2 ), then the region col(α(i)

1 ) ≤ col(α(i)) < col(α(i+1)
2 ) is

not an empty set. The coquantum number of this region is at least 2.
(iii) col(α(i)

2 ) ≤ col(α(i)) < min{col(α(i+1)
2 ), col(α(i)

1 )}. The coquantum number in
this region is at least 1.

Region (i) is induced by α
(i)
1 and α

(i+1)
1 , and region (iii) is induced by α

(i)
2 and α

(i+1)
2 .

Region (ii) is a superposition of these two effects.
On the other hand, from (128), we have

col
(
α

(i)
1

) ≤ col
(
β

(i−1)
1

)
(139)

if β
(i−1)
1 
= ∅. This means that Q

(i−1)
l for l < col(α(i)

1 ) do not change when we remove

β
(i−1)
1 . Similarly, when we remove boxes β

(i−1)
1 , β(i)

1 and β
(i+1)
1 , the vacancy number

p
(i)
l = Q

(i−1)
l − 2Q

(i)
l + Q

(i+1)
l (140)

for l < col(α(i)
1 ) do not change because of the inequality

col
(
α

(i)
1

) ≤ col
(
β

(i−1)
1

) ≤ col
(
β

(i)
1

) ≤ col
(
β

(i+1)
1

)
. (141)

As a result, region (iii) in the above do not become singular after removing β
(i−1)
1 ,

β
(i)
1 , and β

(i+1)
1 .

The coquantum number for region (ii) above might decrease by 1 when we remove
β

(i−1)
1 , β

(i)
1 , and β

(i+1)
1 . For example, if

col
(
β

(i−1)
1

) ≤ col
(
α

(i+1)
2

)
< col

(
β

(i)
1

)
, (142)

then Q
(i−1)
l decrease by 1, and Q

(i)
l and Q

(i+1)
l do not change (where l = col(α(i))

for a box α(i) within the region (ii) above). However, the coquantum numbers for
region (ii) are more than 2, thus region (ii) also does not become singular. After all,
we see that nonsingular region (137) (= (ii) ∪ (iii) in the above classification) does
not become singular even if we remove boxes β

(i−1)
1 , β

(i)
1 , and β

(i+1)
1 .

The case α
(i+1)
1 = ∅ is almost similar. We use Lemma 7.2(III) and col(α(i)

1 ) ≤
col(β(i−1)

1 ) (from (128)). In this case, the following two regions of μ(i) are of inter-
est:

(i)′ col(α(i)
2 ) ≤ col(α(i)) < col(α(i)

1 ) if α
(i+1)
2 = ∅, or col(α(i)

2 ) ≤ col(α(i)) <

min{col(α(i+1)
2 ), col(α(i)

1 )} if α
(i+1)
2 
= ∅. The coquantum numbers in these re-

gions are at least 1.
(ii)′ col(α(i)

1 ) ≤ col(α(i)) if α
(i+1)
2 = ∅, or col(α(i)

1 ) ≤ col(α(i)) < col(α(i+1)
2 ) if

α
(i+1)
2 
= ∅ and col(α(i)

1 ) < col(α(i+1)
2 ). The coquantum numbers for these re-

gions are at least 2.



92 J Algebr Comb (2008) 27: 55–98

Region (i)′ is induced by α
(i)
2 , and region (ii)′ is induced by both α

(i)
1 and α

(i)
2 . Since

col(α(i)
1 ) ≤ col(β(i−1)

1 ), region (i)′ does not become singular, and, since coquantum
numbers of region (ii)′ are at least 2, it also does not become singular.

This completes the proof of the lemma. �

Keeping this lemma in mind, let us return to the proof of the proposition.
We remove boxes β

(2)
2 , β

(3)
2 , β

(4)
2 , . . . as far as possible. When we removed boxes

α
(2)
2 , α

(3)
2 , . . . , there are regions of partitions whose coquantum numbers increased

according to Lemma 7.2. Before the above lemma, we have shown that col(α(2)
2 ) ≤

col(β(1)
2 ). Thus we can apply the argument which was used when we removed boxes

β
(1)
1 , β

(2)
1 , β

(3)
1 , . . . to get

b2 < a2. (143)

We can apply the same argument to the remaining letters a3, a4, . . . and get

bi < ai (1 ≤ i ≤ m). (144)

This completes the proof of the proposition. �

Step 4: In this and the following steps, we calculate the unwinding number of B ⊗ A

based on the above considerations. First of all, we make the following distinctions.
The row α of μ(2), which is removed when we remove a row A, is the shortest row
among the rows of μ(2) whose widths w satisfy w ≥ M before we remove a row A.
When we remove a row A, the row α is removed to be the row α′. Then there are the
following three possibilities:

(a) col(α′) > M

(b) col(α′) ≤ M

(c) There is no such a row α, i.e., all boxes of μ(2) which are removed with a row A

are elements of μ(2)|≤M

In this step, we treat case (a).
We continue to use the notation of Step 3; when we remove a row A, then the

elements of μ(2)|≤M

α
(2)
1 , α

(2)
2 , . . . , α(2)

m (145)

are removed in this order. We consider the box

α
(2)
0 ∈ μ(2)

∣∣
>M

(146)

which is the last box among all the boxes of the row α′ that are removed with a row A.
By the KKR procedure, we remove boxes α

(2)
0 , α

(3)
0 , α

(4)
0 , . . . as far as possible and

eventually obtain a letter a0. In other words, we have α
(a0−1)
0 
= ∅ and α

(a0)
0 = ∅.

After removing boxes α
(2)
0 , α

(3)
0 , . . . , the remaining rows α

(2)
0 − 1, α

(3)
0 − 1, . . .

are made to be singular. Then the simplest case is as follows. We assume that these
singular rows remain to be singular even after a row A is entirely removed.
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We remove the rightmost box of a row B , i.e., box β
(1)
1 ∈ μ(1). Then it satis-

fies col(β(1)
1 ) = M . In the next partition μ(2), the row α

(2)
0 − 1 is singular, and

its width is col(α(2)
0 − 1) ≥ M . Thus, in one case, we can remove the boxes β

(1)
1 ,

α
(2)
0 − 1, α

(3)
0 − 1, . . . , α

(a0−1)
0 − 1, . . . , or, in the other case, we remove the boxes

β
(1)
1 , α′(2)

0 , α′(3)
0 , . . . , which satisfy col(α′(i)

0 ) < col(α(i)
0 − 1). In the former case, we

have

b1 ≥ a0. (147)

In the latter case, if i ≤ a0 − 2, then we always have singular rows α
(i+1)
0 − 1 which

satisfy col(α′(i)
0 ) < col(α(i+1)

0 − 1). Thus we can remove the boxes α
(i+1)
0 − 1 if

necessary, so that we have

b1 ≥ a0. (148)

Hence we obtain

bi ≥ a0 (1 ≤ i ≤ M), (149)

because of the inequalities bi+1 ≥ bi .
The next simplest case is as follows. After removing a row A, the rows

α
(2)
0 − 1, α

(3)
0 − 1, . . . , α

(i−1)
0 − 1 (150)

remain singular; on the other hand, the coquantum number of the row α
(i)
0 − 1 for

some i ≤ a0 becomes 1.
Since the coquantum number of the row α

(i)
0 − 1 is increased by 1, we can deduce

the following two possibilities by use of Lemma 7.2; the box α
(i)
0 − 1 is within either

col
(
α

(i)
1

) ≤ col
(
α

(i)
0 − 1

)
< col

(
α

(i+1)
1

)
(151)

if α
(i+1)
1 
= ∅, or

col
(
α

(i)
1

) ≤ col
(
α

(i)
0 − 1

)
(152)

if α
(i+1)
1 = ∅. (In view of col(α(i)

1 ) < col(α(i)
0 ), we have yet another possibility

col
(
α

(i+1)
1

) ≤ col
(
α

(i)
0 − 1

)
(153)

when α
(i+1)
1 
= ∅. However we need not take it into consideration, since, in such a

situation, the vacancy number of the row α
(i)
0 − 1 does not change.)

First, assume that α
(i+1)
1 
= ∅. Under these settings, we further assume that the

rows α
(i+1)
1 − 1, α

(i+2)
1 − 1, . . . , α

(a1−1)
1 − 1 remain singular even after removing a

row A. Then we shall show that the inequality

b2 ≥ a0 (154)

holds in this case. We shall generalize these arguments later.
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When we begin to remove a row B , then we remove β
(1)
1 , β

(2)
1 , β

(3)
1 , . . . as far

as possible and obtain a letter b1 as the image of the KKR bijection. By the above
assumption, the rows α

(2)
0 − 1, α

(3)
0 − 1, . . . , α

(i−1)
0 − 1 are singular, and col(β(1)

1 ) ≤
col(α(2)

0 − 1). Therefore, at least we have

β
(i−1)
1 
= ∅, (155)

i.e., b1 ≥ i, and we also have

col
(
β

(j)

1

) ≤ col
(
α

(j)

0

) − 1 (1 ≤ j ≤ i − 1). (156)

We consider in turn the possible states of β
(i)
1 . When β

(i)
1 = ∅, then the coquantum

number of the row α
(i)
0 − 1 decreases by 1 so that it becomes singular. Next, when

col(β(i)
1 ) > col(α(i)

0 ) − 1, then the coquantum number of the row α
(i)
0 − 1 decreases

by 1 independently of the position of β
(i+1)
1 . In these two cases, if we remove β

(1)
2 ,

at least we can remove

α
(2)
0 − 1, . . . , α

(i)
0 − 1, α

(i+1)
1 − 1, . . . , α

(a1−1)
1 − 1, (157)

or, in terms of letters ai and bi , we have

b2 ≥ a1 ≥ a0. (158)

On the other hand, consider the case col(β(i)
1 ) ≤ col(α(i)

0 ) − 1. Then from the above
discussion (see (151)) we already have the restriction

col
(
α

(i)
0

) − 1 ≤ col
(
α

(i+1)
1 − 1

)
, (159)

thus we can remove α
(i+1)
1 − 1 as β

(i+1)
1 . Therefore we deduce that b1 ≥ a1, i.e.,

b2 ≥ b1 ≥ a1 ≥ a0. (160)

The case α
(i+1)
1 = ∅ is similar. In this case, we also have β

(i−1)
1 
= ∅. Since, in this

case, i = a1 − 1 if β
(i)
1 
= ∅, then b1 ≥ a1, i.e.,

b2 ≥ b1 ≥ a1 ≥ a0. (161)

On the other hand, if β
(i)
1 = ∅, then from the inequality

col
(
β

(i−1)
1

) ≤ col
(
α

(i−1)
0

) − 1 ≤ col
(
α

(i)
0

) − 1 (162)

we have that the coquantum number of the row α
(i)
0 −1 decreases by 1 and it becomes

singular. Thus we conclude that

b2 ≥ a0. (163)

In the above discussion, we have shown that b2 ≥ a0 under some restriction. We
can generalize the arguments as follows.
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(i) In the above arguments, we have assumed that the rows α
(i)
1 − 1, α

(i+1)
1 − 1, . . .

remain singular even if we remove a row A. To generalize it, we consider as fol-
lows. The rows α

(1)
0 − 1, . . . , α

(i1−1)
0 − 1 are singular, however, the coquantum

number of the row α
(i1)
0 −1 becomes 1 as in the above arguments. Next, α(i1+1)

1 −
1, . . . , α

(i2−1)
1 − 1 are singular, however, the coquantum number of α

(i2)
1 − 1 be-

comes 1 because of removal of α
(i2)
2 and others, . . . , α(ik−1+1)

k−1 −1, . . . , α
(ik−1)
k−1 −1

are singular, however, the coquantum number of α
(ik)
k−1 − 1 becomes 1 because of

removal of α
(ik)
k and others, and rows α

(ik+1)
k − 1, . . . , α

(ak−1)
k − 1 remain to be

singular. Then, by applying the above arguments to each step, we see that if we
remove at least k boxes from a row B , then the sequence β

(1)
k+1, β

(2)
k+1, . . . satisfies

β
(ik+1)
k+1 
= ∅; therefore we obtain

bk+1 ≥ ak ≥ a0. (164)

(ii) On the other hand, it is possible that, after removing a row A, the rows
α

(1)
0 − 1, α

(2)
0 − 1, . . . , α

(i−1)
0 − 1 remain singular, but the coquantum number

of the row α
(i)
0 − 1 is k. In this case, we can also apply the above arguments to

show that the coquantum number of the row α
(i)
0 − 1 is raised by k because of

α
(i)
1 , α

(i)
2 , . . . , α

(i)
k (165)

and the adjacent ones. In this case, if we remove at least k boxes from a row B ,
then the row α

(i)
0 − 1 becomes singular. Thus, if we remove β

(1)
k+1, then we can

remove α
(i+1)
k −1, α

(i+2)
k −1, . . . . The fundamental case is that the rows α

(j)
k −1

(j ≥ i + 1) remain singular, and, in this case, we have

bk+1 ≥ ak ≥ a0. (166)

We can combine the above (i) and (ii) to treat the general case. Especially, we notice
that the relevant boxes are

α
(2)
1 , . . . , α(2)

m ∈ μ(2)
∣∣≤M

, (167)

and at least we have

bi ≥ a0 (i ≥ m + 1). (168)

Summarizing the above arguments of Step 4, we obtain the following:

Lemma 7.5 In the above setting, we have that

bi ≥ a0 (i ≥ m + 1) (169)

where m is the number of boxes removed from μ(2)|≤M when we remove the row A.
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Using Lemma 7.5, one can derive the unwinding number of the tensor product
B ⊗ A. By Proposition 7.3 we can connect each bi and ai (1 ≤ i ≤ m) as an unwind-
ing pair. On the other hand, we have

ai ≥ a0 (1 ≤ i ≤ m), (170)

that is, there are only m letters ai greater than a0, and we know that all these letters
are already connected with b1, . . . , bm. By Lemma 7.5, bm+1, . . . , bM are greater than
a0; so they cannot be connected with the rest of the letters produced by the row A.

As a result, if the number of letters removed from μ(2)|≤M while removing the
row A is m and if condition (a) at the beginning of Step 4 is fulfilled, then

the unwinding number of B ⊗ A = m, (171)

as desired.

Step 5: We considered case (b) at the beginning of Step 4. In this case, we can ap-
ply almost similar arguments of Step 4. Suppose that the row α′ which appeared in
case (b) satisfies

M − col(α′) = l. (172)

Then the number of α
(2)
i within μ(2)|<col(α′) is m − l.

In removing the row B , if we remove l boxes from the row B , then Lemma 7.5
becomes applicable. As a notation, if we remove a box α′ +1 (right adjacent of the α′)
while removing the row A, then we obtain a letter a′

0. By Lemma 7.5 we have

bi ≥ a′
0 (i ≥ m − l + 1). (173)

On the other hand, from Proposition 7.3 we have

bi < ai (1 ≤ i ≤ m). (174)

By the definition of α
(2)
i ∈ μ(2)|≤M , we have

a′
0 ≥ a1. (175)

Then by an argument similar to that at the end of Step 4, we have

the unwinding number of B ⊗ A = m (176)

for case (b).

Step 6: In this step, we treat condition (c) at the beginning of Step 4. When we remove
the row A, we remove

α
(2)
1 , . . . , α(2)

m , (177)

and, in this case, all these boxes are elements of μ(2)|≤M . If m = 0, then A = 2L ,
where we set |A| = L, so that the unwinding number of B ⊗ A is always equal to 0,
as was to be shown.
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We assume that m 
= 0. We denote the number of letters 2 in tableau A as

L − m =: t. (178)

These t letters 2 do not contribute to the unwinding number of B ⊗ A. From Propo-
sition 7.3 we have

bi < ai (1 ≤ i ≤ m). (179)

Since t + m = L, we have already checked all letters in A. Thus we also have

the unwinding number of B ⊗ A = m (180)

in this case (c).
Now we have shown that cases (a), (b), and (c) appearing in Step 4 all satisfy

Theorem 6.1. Hence the proof of theorem is finished.

Acknowledgements The author would like to thank Professor M. Wadati for warm encouragements
during the study. He is also grateful to Professors A. Kuniba, S. Naito, M. Okado, D. Sagaki, A. Schilling,
M. Shimozono, T. Takagi, and Y. Yamada for discussions and to referees for numerous suggestions about
this manuscript. He is a research fellow of the Japan Society for the Promotion of Science.

References

1. Kerov, S. V., Kirillov, A. N., & Reshetikhin, N. Y. (1988). Combinatorics, the Bethe ansatz and rep-
resentations of the symmetric group. Journal of Soviet Mathematics, 41, 916–924.

2. Kirillov, A. N., & Reshetikhin, N. Y. (1988). The Bethe ansatz and the combinatorics of Young
tableaux. Journal of Soviet Mathematics, 41, 925–955.

3. Kirillov, A. N., Schilling, A., & Shimozono, M. (2002). A bijection between Littlewood–Richardson
tableaux and rigged configurations. Selecta Mathematica. New Series, 8, 67–135. math.CO/9901037.

4. Schilling, A. (2003). Rigged configurations and the Bethe ansatz. In B. Lulek, T. Lulek, A. Wal (Eds.),
Symmetry and structural properties of condensed matter (Vol. 7, pp. 201–224). Singapore: World
Scientific. math-ph/0210014.

5. Baxter, R. J. (1982). Exactly solved models in statistical mechanics. New York: Academic.
6. Kashiwara, M. (1991). On crystal bases of the q-analogue of universal enveloping algebras. Duke

Mathematical Journal, 63, 465–516.
7. Schilling, A. (2006). Crystal structure on rigged configurations. International Mathematics Research

Notices, 2006, article ID 97376, 1–27. math.QA/0508107.
8. Deka, L., & Schilling, A. (2006). New fermionic formula for unrestricted Kostka polynomials. Journal

of Combinatorial Theory. Series A, 113, 1435–1461. math.CO/0509194.
9. Hatayama, G., Kuniba, A., Okado, M., Takagi, T., & Yamada, Y. (1999). Remarks on fermionic for-

mula. Contemporary Mathematics, 248, 243–291. math.QA/9812022.
10. Hatayama, G., Kuniba, A., Okado, M., Takagi, T., & Tsuboi, Z. (2002). Paths, crystals, and fermionic

formulae. In M. Kashiwara, T. Miwa (Eds.), MathPhys odyssey 2001, integrable models and beyond.
Progress in Mathematical Physics (Vol. 23, pp. 205–272). Basel: Birkäuser. math.QA/0102113.

11. Schilling, A., & Shimozono, M. (2006). X = M for symmetric powers. Journal of Algebra, 295,
562–610. math.QA/0412376.

12. Takahashi, D., & Satsuma, J. (1990). A soliton cellular automaton. Journal of the Physical Society of
Japan, 59, 3514–3519.

13. Takahashi, D. (1993). On some soliton systems defined by using boxes and balls. In Proceedings of
the international symposium on nonlinear theory and its applications (NOLTA ’93) (pp. 555–558).

14. Tokihiro, T., Takahashi, D., Matsukidaira, J., & Satsuma, J. (1996). From soliton equations to inte-
grable cellular automata through a limiting procedure. Physical Review Letters, 76, 3247–3250.

15. Torii, M., Takahashi, D., & Satsuma, J. (1996). Combinatorial representation of invariants of a soliton
cellular automaton. Physica D, 92, 209–220.



98 J Algebr Comb (2008) 27: 55–98

16. Hikami, K., Inoue, R., & Komori, Y. (1999). Crystallization of the Bogoyavlensky lattice. Journal of
the Physical Society of Japan, 68, 2234–2240.

17. Hatayama, G., Kuniba, A., & Takagi, T. (2000). Soliton cellular automata associated with crystal
bases. Nuclear Physics B, 577, 615–645. solv-int/9907020.

18. Fukuda, K., Okado, M., & Yamada, Y. (2000). Energy functions in box-ball systems. International
Journal of Modern Physics A, 5, 1379–1392. math.QA/9908116.

19. Hatayama, G., Hikami, K., Inoue, R., Kuniba, A., Takagi, T., & Tokihiro, T. (2001). The A
(1)
M

au-
tomata related to crystals of symmetric tensors. Journal of Mathematical Physics, 42, 274–308.
math.QA/9912209.

20. Hatayama, G., Kuniba, A., Okado, M., Takagi, T., & Yamada, Y. (2002). Scattering rules in soli-
ton cellular automata associated with crystal bases. Contemporary Mathematics, 297, 151–182.
math.QA/0007175.

21. Kuniba, A., Okado, M., Sakamoto, R., Takagi, T., & Yamada, Y. (2006). Crystal interpretation of
Kerov–Kirillov–Reshetikhin bijection. Nuclear Physics B, 740, 299–327. math.QA/0601630.

22. Okado, M., Schilling, A., & Shimozono, M. (2003). A crystal to rigged configuration bijection
for nonexceptional affine algebras. In N. Jing (Ed.), Algebraic combinatorics and quantum groups
(pp. 85–124). Singapore: World Scientific. math.QA/0203163.

23. Kang, S.-J., Kashiwara, M., Misra, K. C., Miwa, T., Nakashima, T., & Nakayashiki, A. (1992). Affine
crystals and vertex models. International Journal of Modern Physics A, 7(Suppl. 1A), 449–484.

24. Kang, S.-J., Kashiwara, M., Misra, K. C., Miwa, T., Nakashima, T., & Nakayashiki, A. (1992). Perfect
crystals of quantum affine Lie algebras. Duke Mathematical Journal, 68, 499–607.

25. Kang, S.-J., Kashiwara, M., & Misra, K. C. (1994). Crystal bases of Verma modules for quantum
affine Lie algebras. Compositio Mathematica, 92, 299–325.

26. Kuniba, A., Sakamoto, R., & Yamada, Y. Tau functions in combinatorial Bethe ansatz.
math.QA/0610505.

27. Jimbo, M., & Miwa, T. (1983). Solitons and infinite dimensional Lie algebras. Publ. RIMS. Kyoto
University, 19, 943–1001.

28. Nakayashiki, A., & Yamada, Y. (1997). Kostka polynomials and energy functions in solvable lattice
models. Selecta Mathematica. New Series, 3, 547–599. q-alg/9512027.


	Crystal interpretation of Kerov-Kirillov-Reshetikhin bijection II. Proof for sln case
	Abstract
	Introduction
	Preliminaries
	Rigged configurations
	The KKR bijection

	Crystal base theory and the KKR bijection
	Combinatorial R matrix and energy functions
	Formulation of the main result

	Normal ordering from the KKR bijection
	Mode formula and collision states
	Energy functions and the KKR bijection
	Proof of Theorem 6.1
	Acknowledgements

	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


