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Abstract Given a finite group G and a natural number n, we study the structure
of the complex of nested sets of the associated Dowling lattice Qn(G) (Proc. In-
ternat. Sympos., 1971, pp. 101–115) and of its subposet of the G-symmetric par-
titions Q0

n(G) which was recently introduced by Hultman (http://www.math.kth.se/
~hultman/, 2006), together with the complex of G-symmetric phylogenetic trees T G

n .
Hultman shows that the complexes T G

n and ˜�(Q0
n(G)) are homotopy equivalent and

Cohen–Macaulay, and determines the rank of their top homology.
An application of the theory of building sets and nested set complexes by Feichtner

and Kozlov (Selecta Math. (N.S.) 10, 37–60, 2004) shows that in fact T G
n is subdi-

vided by the order complex of Q0
n(G). We introduce the complex of Dowling trees

Tn(G) and prove that it is subdivided by the order complex of Qn(G). Application of
a theorem of Feichtner and Sturmfels (Port. Math. (N.S.) 62, 437–468, 2005) shows
that, as a simplicial complex, Tn(G) is in fact isomorphic to the Bergman complex of
the associated Dowling geometry.

Topologically, we prove that Tn(G) is obtained from T G
n by successive coning

over certain subcomplexes. It is well known that Qn(G) is shellable, and of the same
dimension as T G

n . We explicitly and independently calculate how many homology
spheres are added in passing from T G

n to Tn(G). Comparison with work of Gottlieb
and Wachs (Adv. Appl. Math. 24(4), 301–336, 2000) shows that Tn(G) is intimely
related to the representation theory of the top homology of Qn(G).
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Introduction

Dowling lattices are named after T.A. Dowling, who first studied a particular class of
arrangements of hyperplanes whose intersection lattices can be obtained by enriching
the partition lattice with sets of elements of the cyclic groups Zn [8]. In a separate
work [9], Dowling took a step to a general combinatorial point of view, and thor-
oughly studied what he called ‘posets based on finite groups.’ We wish to point to [9]
as a very readable and comprehensive introduction to the subject.

Both approaches to these structures were followed since the work of Dowling. Let
us mention, as two examples, the work of Ehrenborg and Readdy [10, 11], who intro-
duced the notion of Dowling transform of an arrangement of hyperplanes and showed
that this transformation preserves supersolvability, and the study of a combinatorial
generalization of Dowling lattices by Hanlon [20].

The theory of building sets and nested set complexes was initiated and developed
by Feichtner and Kozlov in [14] as the combinatorial framework of the De Concini–
Procesi models for hyperplane arrangements. A complex of nested sets is associated
to any meet-semilattice and any of its building sets—i.e., subsets of the semilattice
satisfying some conditions that are inspired by the special properties of the set of
irreducible elements in a geometric lattice.

The study of such structures was carried out in different contexts (see [6, 7, 12, 13,
15–17]), leading to new results or sharpening the understanding of previously studied
objects. In particular, this theory has proved to be a very useful tool for the study of
complexes of trees of various kind (see [7, 12]).

The study of abstract simplicial complexes whose cells are indexed by combina-
torial types of rooted trees on a fixed number of leaves was recently brought to a
broad attention by the work of Billera, Holmes and Vogtmann [3]. They considered
the space of all possible phylogenetic trees of a certain set of biological species, with
lengths on edges representing the genetic distance of two mutations. This space is
a cone with apex the unique tree with all edge lengths equal to zero. The base of
this cone (the link of the apex) is obtained by considering the trees with unit edge
lengths (i.e., cutting the cone by a transversal hyperplane). This space has a natural
stratification, with each cell corresponding to a combinatorial type of trees—this is
the complex of phylogenetic trees.

Complexes of trees were studied for different purposes, before and after [3], see
[5, 19, 21, 23, 25, 26]. In particular, in [23] Robinson and Whitehouse determined
the homotopy type of the complex of phylogenetic trees on n leaves to be a wedge
of (n − 1)! spheres of dimension n − 3. Later on, shellability of these complexes was
proved by Trappmann and Ziegler [25] and, independently, by Wachs (unpublished,
acknowledged in [12]). Ardila and Klivans [2] proved that the complex of trees can be
subdivided by the order complex of the partition lattice. One of the recent applications
of the theory of nested set complexes sharpened this last result: in [12], Feichtner
showed that the order complex of the partition lattice is obtained from the complex
of trees by a sequence of stellar subdivisions. This property was proven to hold even
in the more general class of k-trees (see [7]).

This strong topological and combinatorial connection between the order complex
of different kinds of partition posets and the corresponding complexes of trees sharp-
ens the homotopy equivalences proved in [19, 21, 23].
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In all these cases, the motivation for introducing and studying variations of the
complex of trees came from the connection of their top cohomology groups with
the homogeneous component of certain associated free Lie algebras, both viewed as
modules over the symmetric group (see [21, 23]).

Our purpose is to study the nested set complexes of Dowling lattices and look for
a corresponding complex of trees (in combinatorial, topological and algebraic sense).
The initial input came from the work of Hultman [22], who defined the complex of
G-symmetric phylogenetic trees and showed that it has the same homotopy type as
a particular subposet of the Dowling lattice. We sharpen this homotopy equivalence
by showing that it is in fact a homeomorphism: the two complexes are related by
a sequence of stellar subdivisions (Theorem 3.4). Moreover, we put these objects
into the classical theory of Dowling lattices by introducing a combinatorially and
topologically suitable notion of Dowling trees (Definition 4.3, Corollary 4.5) and
by studying their topological relationship with Hultman’s complexes (Theorem 4.11,
Remark 4.12).

After a first version of this paper was circulating, Federico Ardila [1] pointed out
that Gottlieb and Wachs defined a certain complex of trees associated to Dowling
lattices [18]. Their aim was to encode the generators of the top homology group
of the Dowling lattice, thereby relating this group to certain Lie superalgebras in a
way that generalize the results of [21, 23] on philogenetic trees and k-trees (for the
precise statement see Remark 4.7 or [18]). It turns out that our complex of Dowling
trees is isomorphic to Gottlieb and Wachs’ complex as a simplicial complex (see
Remark 4.7). Thus, our Corollary 4.5 sharpens the homotopy equivalence of [18] in
the same way as [12] and [7] do for [23] and [21].

Moreover, Ardila [1] pointed out that, in unpublished joint work with Caroline
Klivans, he proved that the complex of trees of [18] equals the Bergman complex
of the associated Dowling geometry (i.e., the matroid whose lattice of flats is the
corresponding Dowling lattice). Using our description in terms of nested sets we can
use a theorem by Feichtner and Sturmfels [16] to prove that the Bergman complex
of a Dowling geometry equals the nested set complex of the minimal building set
of the associated Dowling lattice. This implies Ardila and Klivans’ result and shows
that the order complex of the Dowling lattice can be obtained from the corresponding
Bergman complex by a sequence of stellar subdivisions.

This paper is organized as follows: in Sects. 1 and 2 we give a detailed picture of
Dowling lattices and G-symmetric phylogenetic trees, reviewing the basics and de-
veloping a notation that will prove to be appropriate for a direct application of the the-
ory of nested set complexes. This theory will enter the picture in Sect. 3, where the re-
sult of Hultman is sharpened by showing that the complex of G-symmetric phyloge-
netic trees actually is subdivided by the associated subposet of the Dowling lattice. In
Sect. 4 the notion of a Dowling tree is introduced as naturally associated to the nested
set complex of the full Dowling lattice, thus being probably the appropriate Dowling
generalization of the complex of phylogenetic trees. We support our definition by de-
scribing the connection with Gottlieb and Wachs’ complex of trees and the relation
with the Bergman complex of the corresponding Dowling geometry. The complex of
Dowling trees contains the complex of G-symmetric phylogenetic trees as a simpli-
cial subcomplex. In the last section we describe explicitly how the bigger complex
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can be obtained from the smaller one by successively coning over certain subcom-
plexes. By keeping under control the topology of those subcomplexes, we calculate
how many homology spheres arise at each step, thus explicitly relating the “numero-
logically” suggestive expressions of the top homology ranks of the two complexes.

1 Posets based on finite groups

Before starting out, let us fix some general notations. In this paper we will deal with
finite partially ordered sets, briefly called posets. The main topological structure as-
sociated to a poset P is its order complex �(P ), the (abstract) simplicial complex of
the totally ordered subsets of P . We will almost never distinguish between an abstract
simplicial complex and its geometric realization, thus speaking of ‘topological prop-
erties’ of an abstract simplicial complex. It is easily seen that if P possesses a max-
imal element (that is customarily denoted 1̂), then �(P ) is a cone over �(P \ {1̂}).
An analogous statement holds of course if P has a minimal element (usually de-
noted 0̂). To capture the ‘essential’ topological information we define the reduced

order complex ˜�(P ) as the order complex of the poset obtained from P by removing
the maximal and the minimal element, if P has any.

In considering partitions, we will switch between the set-theoretic notation σ =
S0 � S1 � · · · � Sk and the (more customary) ‘block notation’ σ = S0| · · · |Sk . Sets
of partitions can be ordered by refinement, i.e., setting σ ′ < σ if every block of σ ′ is
contained in a block of σ .

1.1 Dowling lattices

Definition 1.1 Let G be a finite group and n a natural number. Consider the action
of G on the set {0} ∪ ([n] × G) defined by g((i, h)) = (i, gh) and g(0) = 0. The
partitions of {0} ∪ ([n] × G) such that this action induces an action on the blocks are
called G-symmetric partitions. A block of a G-symmetric partition is called simple
if its orbit under this action has length |G|.

We call Qn(G) the set of G-symmetric partitions such that the only non-simple
block is the block containing 0. The ordering by refinement turns it into a lattice,
called the Dowling lattice.

The ‘forgetful’ map {0} ∪ ([n] × G) → {0} ∪ [n] defined by (i, g) �→ i and 0 �→ 0
induces a mapping of Qn(G) onto the poset �n,0 of partitions of the set {0} ∪ [n].
This map sends ω ∈Qn(G) to its associated partition ω ∈ �n,0 ∼= �n+1. An element
of �n,0 will be written as α := A0|A1| . . . |Ak , where we agree to choose the indexing
such that 0 is always contained in the block indexed by 0. Of course, α = ω has one
block Ai for every orbit of blocks in ω, and the Ai with i > 1 correspond to the
simple blocks.

We now see that we can encode in a unique way any ω ∈ Qn(G) in the following
data:

• A partition α ∈ �n,0, called the associated partition of ω.
• For every block Aj = {i1, . . . , ik} of α with j > 0 an |Aj |-tuple AG

j := (id, gα
i2
, gα

i3
,

. . . , gα
ik
) ⊂ Gk .
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This gives a good encoding of G-symmetric partitions if we agree to always order
the elements in the blocks Aj in increasing order: i1 < i2 < · · · < ik .

The order relation of the poset translates to the following: ω1 < ω2 if and only if

• the associated partitions satisfy ω1 < ω2
• for every block B of ω2, if C1, . . . ,Ck are the blocks of ω1 that subdivide it, there

are elements h1, . . . , hk in G such that for every j ∈ B ∩ Ci we have g
ω2
j = hig

ω1
j .

Dowling gave a complete and very readable survey on these objects in his seminal
paper [9], to which we point as a general reference. Although the definition we gave
is inspired by the setting of [22], it can be easily seen to be equivalent to the definition
of Dowling, e.g. by thinking in terms of the encoding we presented above.

The main statement on the topology of these lattices that can be deduced from [9]
is summarized in the following proposition.

Proposition 1.1 The reduced order complex ˜�(Qn(G)) is homotopy equivalent to a
wedge of (|G| + 1)(2|G| + 1) · · · ((n − 1)|G| + 1) spheres of dimension (n − 2).

Proof The proof is a concatenation of arguments from [9] (where Qn(G) is shown
to be supersolvable), [4] (where it is proved that supersolvable lattices are shellable),
and [24] (for the enumeration of the number of homology spheres). Details are left to
the reader. �

1.2 The subposet Q0
n(G)

In [22], the author introduces a subposet of Qn(G) that is of particular interest in
connection with G-symmetric phylogenetic trees.

Definition 1.2 We define Q0
n(G) to be the subposet of Qn(G) consisting of the par-

titions with trivial zero block.

Remark 1.3 Our definition is slightly different from the one given in [22], because
we allow the minimal element of Qn(G) to be in Q0

n(G).

In particular, given σ ∈ Q0
n(G), every element of [n] × G is contained in a simple

block of σ .
In general, Q0

n(G) is not a lattice. Indeed, consider the following two elements of
Q0

3(Z2):
σ1 := {0}{(1,0), (2,0)}{(1,1)(2,1)}{(3,0)}{(3,1)},
σ2 := {0}{(1,0), (2,1)}{(1,1)(2,0)}{(3,0)}{(3,1)}.

Their join is not contained in QZ2
3 , where there is no element that is bigger than both

σ1 and σ2.
Nevertheless, Q0

n(G) is a meet-semilattice. We prove the following easy lemma.

Lemma 1.4 For any σ ∈Q0
n(G), we have an isomorphism

(Q0
n(G))≤σ � (�n)≤σ .
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Fig. 1 The lattice Q3(Z2) and its subposet Q0
3(Z2) (underlined). The bold elements give a modular chain,

the dashed chains are the 15 homology chains of the corresponding shelling

Proof The map defined by σ �→ σ is clearly a poset morphism, and obviously sur-
jective. For injectivity note that, given σ ′ ≤ σ , any set of representatives of the orbit
blocks for σ forces the choice of the �-tuples associated to the blocks to σ ′. Indeed,
if B is a block of σ that is associated to (id, gσ

2 , . . . , gσ
� ), then if C = {i1, . . . , ik} ⊆ B

is a block of σ ′, the only possibility for a partition associated to σ ′ to be below σ is
to associate to C the k-tuple (id, gσ

i2
(gσ

i1
)−1, . . . , gσ

ik
(gσ

i1
)−1). �

This makes the work of Sect. 3 possible, where the theory of building sets and
nested set complexes will be applied to the posets Q0

n(G).
As an example, we depict in Fig. 1 the Dowling lattice Q3(Z2), where we write

only one representative for every nonsingleton block. The numbers refer to the as-
sociated partitions, and an overline over an element indicates that this number is
associated with the nonidentity element of Z2. Thus we will write 01|23 instead
of {0, (1,0), (1,1)}{(2,0), (3,1)}{(2,1), (3,0)}. The elements of Q0

3(Z2) are under-
lined.

The homotopy type of ˜�(Q0
n(G)) was determined in [22] by comparison with

the complex of G-symmetric phylogenetic trees (see Sect. 2), as an application of
discrete Morse theory.

2 G-Symmetric phylogenetic trees

Recall that we fixed once and for all a natural number n. In this context, given a finite
group G, a G-tree is a rooted tree whose leaves are in bijection with the set [n] × G.
The group G acts on the set of leaves by means of the ‘standard’ action described in
the previous section.

We now specify a class of G-trees that will be the object of our study.

Definition 2.1 A G-symmetric phylogenetic tree is a G-tree satisfying the following
additional conditions:

(1) Every internal vertex (except the root) has degree at least 3.
(2) The tree is invariant under the G-action.
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(3) For any two different elements g,h ∈ G and any i ∈ [n], the (unique) shortest
path connecting the leaves labelled (i, g) and (i, h) passes through the root.

The set of G-symmetric phylogenetic trees is denoted by T G
n .

This is Definition 3.1 of [22], where some properties of those trees are listed. Here
we need only recall that every internal edge t of a tree T ∈ T G

n generates an orbit
o(t) (called inner orbit) of cardinality |G| under the action of G. Following [22],
one can associate to o(t) the partition π(o(t)) of [n] × G obtained by putting in
the same block all labels of leaves that are in the same connected component of T

after removing all the edges in o(t), and adding 0 to the block corresponding to the
component containing the root. We want to slightly modify this definition.

2.1 Some notation

Note that in all partitions of {0} ∪ [n] that are associated to some σ ∈ Q0
n(G) the

element 0 is alone in its block. Therefore we may reconstruct every such partition
from the corresponding partition of [n] by just adding the block {0}. We then agree
that, for σ ∈Q0

n(G), in this section we will let σ ∈ �n.
Now consider a tree T satisfying Definition 2.1. For any vertex v of T let λv

denote the set of leaf labels such that the path connecting them to the root traverses v.
Let

λGv :=
⋃

g∈G

λgv

denote the set of labels of leaves that are separated from the root by a vertex of the
form gv for some g ∈ G.

Then, given an inner edge t of T , let λt := λv where v is the vertex of t that
is further from the root. For every internal edge t we can then define a partition
σ(t) ∈ Q0

n(G) as
∐

(i,g)/∈λGt

{(i, g)}
∐

g∈G

λgt .

It is clear that λgt = {(i, gh)|(i, h) ∈ λt } = gλt , and therefore we see that σ(t) has
only one nonsingleton orbit. Thus the associated partition σ(t) ∈ �n has only one
nonsingleton block.

The next two subsections present some material of [22] in a language and from a
viewpoint that are well-suited to our methods.

2.2 Inner orbit contraction

The contraction of all edges in an inner orbit o(t) turns a G-symmetric tree T into
another tree T ′ ∈ T G

n . We can then define the following partial order on T G
n .

Definition 2.2 Given T ,T ′ ∈ T G
n , define T ≤ T ′ if and only if T ′ can be obtained

from T by a sequence of inner orbit contractions.

The importance of this ordering is shown in the following proposition.
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Proposition 2.1 [22, Corollary 3.5] With the partial ordering of Definition 2.2, T G
n

is the face poset of a pure simplicial complex of dimension n − 2.

Before turning our attention to the operation of inner orbit extension, which is
inverse to the contraction defined above, let us see what kind of relation one can draw
between partitions associated to different contractions on the same tree.

So suppose again a tree T ∈ T G
n be given, and consider two inner edges t, t ′ of

T that are not in the same G-orbit. We have seen that the associated partition σ(t)

(respectively σ(t ′)) has exactly one nonsingleton block, say B (resp. B ′), associated
to the unique nonsingleton orbit of σ(t) (σ(t ′)), of which we consider a representative
block S (S′). Suppose we first contract the edges in the orbit o(t).

If S′ ⊆ hS for some h ∈ G, then by definition gS′ ⊆ g(hS) for all g ∈ G. We
conclude that in this case σ(t) > σ(t ′). Therefore, the unique nonsingleton block B ′
of the partition σ(t ′) is contained in B , so σ(t ′) < σ(t).

If for some h ∈ G the reverse inclusion S′ ⊃ hS holds, then of course the conclu-
sion above holds with t and t ′ switched.

The fact that T is a tree excludes the possibility that, if neither of the previous
cases enters, S′ ∩ hS �= ∅ for some h ∈ G.

We summarize the conclusion for later reference.

Remark 2.3 If t, t ′ are two inner edges of a G-symmetric tree T such that o(t) �=
o(t ′) and if σ(t) and σ(t ′) are incomparable, then the sets λGt and λGt ′ are disjoint.
In particular the associated nonsingleton blocks B , B ′ of σ(t) and σ(t ′) are either
contained in one another, or are disjoint.

In particular, we can associate to every tree T ∈ T G
n a subset N(T ) ⊂ Q0

n(G)

defined as

N(T ) := {

σ(t) | t is (a representative of the orbit of) an inner edge of T
}

.

N(T ) has the property that the unique nonsingleton block orbits of any incomparable
σ,σ ′ ∈ N(T ) are disjoint.

2.3 Inner orbit extension

We now discuss the inverse of the above operation: inner orbit extension.
For this, we suppose a tree T ∈ T G

n to be given together with a partition σ ∈
Q0

n(G) that has exactly one nonsingleton orbit o (of which we consider a representa-
tive block S). The preceding observations suggest to require the following condition
to be satisfied by σ :

(∗) For any inner edge t of T , if neither S ⊂ λt nor S ⊃ λt then S ∩ λt = ∅.
In the following we will show how these data give rise to a tree T ′ ∈ T G

n such that
T is obtained from T ′ by an inner orbit contraction that is represented by σ .

First of all it is clear that there is a unique vertex v of T such that the component
that is separated from the root by removing v is minimal with the property of con-
taining all leaves labelled by elements of S. The family of sets {λgv \ gS|g ∈ G} can
be obtained from the representative λv \ S by the action of G.
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Because of property (∗), we may partition the edges f incident to v and with
λf ⊂ λv into the two following classes:

F := {f |λf ⊂ S}, E := {f |λf ∩ S = ∅}.
All is now prepared for the extension. We first delete all edges f ∈ E ∪ F , and for

each of them we get a connected component Tf not containing the root.
We then grow an edge t below v appending all edges in E (and their whole com-

ponents) to v, and the edges of F (with their connected components) to the other
vertex of t .

In the tree that we have now constructed we clearly have λt = S. Of course we
may repeat the whole process inserting edges gt below gv for any g ∈ G, eventually
reaching a tree T ′ satisfying the requirements.

The tree T could have been reached by a sequence of inner orbit extensions. If we
consider the set N of all partitions that correspond to an edge orbit of T we indeed
may reconstruct T starting from the unique tree without inner edges by recursively
performing the above process on all elements of N . We have seen that the unique
condition enabling to perform such an extension is given at each step by (∗). We
summarize our considerations with the following two statements.

Condition N: Given a subset X ⊂ Q0
n(G) of partitions that have only one orbit con-

sisting of non-singleton blocks, we say that X satisfies condition N if for any two
incomparable σ,σ ′ ∈ X the only non-singleton blocks of σ,σ ′ are disjoint.

Remark 2.4 To any set N of one-nonsingleton-orbit partitions from Q0
n(G) satisfying

condition N we can naturally associate a tree T , and this is such that, with the notation
of Remark 2.3, N = N(T ).

3 Homeomorphism through subdivisions

The reader familiar with the subject will have already noticed that in the previous
section all the material has been prepared for a direct application of the theory of
building sets and nested set complexes. This theory was first developed by Feichtner
and Kozlov in [14] as the combinatorial framework of the De Concini–Procesi models
for hyperplane arrangements. We refer to that paper for a thorough introduction to this
subject. Here we recall only the main definitions.

Definition 3.1 Let L be a meet-semilattice. A building set of L is a subset G ⊆ L\{0̂}
such that for any x ∈ L \ 0̂ there is an isomorphism

ϕx :
∏

z∈maxG≤x

[0̂, z] → [0̂, x]

with ϕx(0, . . . ,0, z,0, . . . ,0) = z for z ∈ maxG≤x .
We call a set N ⊆ G nested (G-nested, if specification is needed) if, for any set

{x1, . . . , x�} ⊆ N (� ≥ 2) of incomparable elements, the join x1 ∨ . . .∨x� exists and is
not an element of G. The nested set complex of L with respect to G, denoted N (L,G),



486 J Algebr Comb (2007) 26: 477–494

is the abstract simplicial complex of all nonempty G-nested sets. If L has a maximal
element 1̂ and G contains it, then the nested set complex is a cone with apex {1̂}. The
base of this cone is the reduced nested set complex ˜N (L,G).

One of the main topological features of this theory is the following theorem which
first appeared in [15] in a version for atomic lattices. It was then extended to its full
generality in [6, 7], and to these papers we refer for a careful topological treatment
of the concept of stellar subdivision of an abstract simplicial complex. Here we only
mention that the geometric realizations of two abstract simplicial complexes that are
related by subdivisions are homeomorphic (see [7, Definition 2.1]).

Theorem 3.2 Consider two building sets G1, G2 in a meet-semilattice L. If G1 ⊂ G2,
then the simplicial complex N (L,G2) can be obtained from N (L,G1) by a sequence
of stellar subdivisions.

Note that, for any semilattice, there is a unique minimal building set. It is given
by the set of all elements x such that the interval [0̂, x] cannot be decomposed in
a product of smaller principal order ideals. For example, in the partition lattice �n

those elements are the partitions with only one nonsingleton block. The minimal
building set of �n will be denoted by I .

On the other hand, for any meet-semilattice the maximal building set is the whole
poset, and the associated reduced nested set complex is then ˜N (L,L) = ˜�(L). This
proves the following corollary.

Corollary 3.3 Let L be a meet-semilattice and G a building set in L. Then ˜�(L) can
be obtained from ˜N (L,G) by a sequence of stellar subdivisions.

In analogy with the partition poset let us define a subset IG ⊂ Q0
n(G) as follows:

IG := {

σ ∈ Q0
n(G) | σ ∈ I

}

.

The following proposition shows that this is indeed “the right definition”.

Proposition 3.1 IG is the minimal building set of Q0
n(G).

Proof With Lemma 1.4 the claim follows immediately by comparison with �n. �

Proposition 3.2 The complexes T G
n and N (IG,Q0

n(G)) are isomorphic.

Proof The condition of being nested in IG is equivalent to condition N of the previ-
ous section. �

We are ready to state the main result of this section, which is now an easy appli-
cation of Corollary 3.3.

Theorem 3.4 The order complex ˜�(Q0
n(G)) is obtained from the complex of

G-symmetric trees T G
n by a sequence of stellar subdivisions.
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Hultman calculated the homotopy type of T G
n in [22]. We include this result in the

following corollary, that is intended to summarize our topological knowledge about
G-symmetric partitions and G-symmetric phylogenetic trees.

Corollary 3.5 The simplicial complexes ˜�(Q0
n(G)) and T G

n are PL-homeomorphic.
They are homotopy equivalent to a wedge of

(|G| − 1)(2|G| − 1) · · · ((n − 1)|G| − 1)

spheres of dimension (n − 2).

4 Dowling trees

The natural task at this point is to study the nested set complexes of the full Dowling
lattice Qn(G).

4.1 Nested set complexes in Qn(G)

We want to determine the minimal building set J G of Qn(G). By an easy check (or
by comparing to Theorem 2 of [9]) one sees that, given any ω ∈ Qn(G) with zero
block S0 and fixed chosen orbit representatives Si , i = 1, . . . , k, there is a natural
isomorphism

(Qn(G))≤ω
∼−→ �G

m(ω) × �|S1| × · · · × �|Sk |

where m(ω) := (|S0|−1)
|G| .

With this decomposition, we see that any element of J G having a nonzero block
that is not a singleton must have S0 = {0}, thus be an element of IG. Moreover,
JG \ IG consists of the partitions where all simple blocks are singletons.

We will distinguish these two types of elements in JG by calling any x ∈ J G∩IG

of type 1, while we will refer to the elements in JG \ IG as to those of type 0.

Remark 4.1 A subset X of JG is nested if and only if, for any ω,ω′ ∈ X, the only
nonsingleton blocks of the associated partitions ω,ω′ of {0} ∪ [n] are either disjoint
or contained in one another.

The following facts are now at hand, and we collect them for later reference.

Lemma 4.2 Let JG denote the minimal building set of Qn(G).

(1) J G ∩Q0
n(G) = IG.

(2) N (IG,Q0
n(G)) ⊆ N (J G,Qn(G)).

(3) For any X ∈N (J G,Qn(G)), X ∩ IG ∈ N (IG,Q0
n(G)).

(4) If X ∈ N (J G,Qn(G)), the subset X \ IG given by the elements of type 0 is
linearly ordered.
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4.2 Dowling trees

The last question we want to address is whether the nested set complex of the full
Dowling lattice has an interpretation in terms of trees. The answer is positive, and
leads to the definition of what we would like to call the complex of Dowling trees.

Definition 4.3 Given a natural number n and a finite group G, a Dowling tree is a
G-tree T with some distinguished vertices, called zero vertices, satisfying the follow-
ing conditions:

(0) The root is a zero vertex.
(1) Every internal vertex (except the root) has degree at least 3.
(2) The tree is invariant under the G-action, and the zero vertices are fixed by this

action.
(3) For any two different elements g,h ∈ G and any i ∈ [n], the (unique) shortest

path connecting the leaves labelled (i, g) and (i, h) passes through exactly one
zero vertex.

(4) The zero vertices are the vertices of a path beginning at the root.

On Dowling trees the operation of inner orbit contraction and extension are defined
analogously as in T G

n with the only difference that for every edge t that connects
two zero vertices we have o(t) = {t}. Therefore the Dowling trees form an abstract
simplicial complex that we will denote by Tn(G).

We state the theorem relating Dowling trees and Nested set complexes of Dowling
lattices. The way of encoding trees with nested sets is the same as in [12].

Theorem 4.4 Tn(G) is isomorphic to ˜N (J G,Qn(G)) as an abstract simplicial com-
plex.

Proof Consider a simplex X ∈ ˜N (J G,Qn(G)). Since Q0
n(G) is an order ideal in

Qn(G), we may choose a linear extension of the ordering in X such that all elements
of type 1 come before all those of type 0. We will perform our inner orbit extensions
according to the chosen linear order of X. After having exhausted all elements of
type 1 we are clearly left with a tree T ∈ T G

n , that can be turned into a good Dowling

Fig. 2 a The tree corresponding to {1,2}. b The Dowling tree constructed from the nested set {12,012}.
The zero vertices are black. As above, only a representative of every nonsingleton orbit is indicated. See
Fig. 1
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tree just by declaring the root as the only zero vertex. On this tree we now have to
perform the ‘type 0’-orbit extensions.

So let ω be a type-0 partition, with zero block S0. As above, there is a vertex v of
T such that the union of the leaves in the connected components T1, . . . , Ts of T not
containing the root that arise by deleting v is minimal with the property of containing
the set S0\{0}. In particular, this v is fixed by the action of G and therefore is a
zero vertex; by 4.2(4) we know that the type 0 elements of X that correspond to
already performed extensions lie on a chain below ω, so that their zero blocks are all
contained in S0. Thus, v can be only the root.

Let τ1, . . . , τk denote the elements of X that are maximal among those below ω.
By construction, to every τi corresponds an inner orbit of edges that are incident
to the root. Again by construction, all elements in S0\{0} that are not contained in
a nonsingleton block of some τi are directly appended to the root. We may then
renumber the Ti ’s in such a way that the union of the labels of the leaves of the first
s′ trees is exactly S0 \ {0}. Note that s′ < s because 1̂ �∈ X (in Fig. 2 we have s′ = 2
and the corresponding trees T1, T2 are indicated).

Then we build a tree starting with an edge t that joins the root to a new vertex
w (which we declare to be a zero vertex). Below w we grow s′ edges e1, . . . es′ , and
append to those the trees T1, . . . Ts′ . The trees Ts′+1, . . . , Ts will be appended directly
to the root via edges es′+1, . . . , es .

Now check that this is again a Dowling tree: we only have to worry about the
zero vertices. Both sets

⋃

i≤s′ λei
and

⋃

i>s′ λei
contain the full orbit of each of their

elements, and therefore properties (1), (2) and (3) follow immediately. For property
(4) recall Lemma 4.2 to see that all zero vertices (except the root) are in some Ti with
i ≤ s′.

We have thus constructed a unique Dowling tree T (X) from a nested set X ∈
N (JG,Qn(G)). The inverse operation is now easy: given a Dowling tree T identify
the orbits of all inner edges under the action of G, and note that the set of correspond-
ing one-block-orbit elements of Qn(G) is nested.

It is clear that the bijection T : ˜N (J G,Qn(G)) → Tn(G) extends to an isomor-
phism of simplicial complexes, if we take the operation of orbit contraction as bound-
ary operator in Tn(G). �

Summarizing, we can formulate the following corollary, that is a suggestive coun-
terpart of Corollary 3.5.

Corollary 4.5 The complex of Dowling trees Tn(G) is a pure simplicial complex of
dimension (n − 2). It is subdivided by the reduced order complex ˜�(Qn(G)) of the
Dowling lattice. Their realizations are therefore PL-homeomorphic. They are homo-
topy equivalent to a wedge of

(|G| + 1)(2|G| + 1) · · · ((n − 1)|G| + 1)

spheres.

Example 4.6 For the examples considered above, where n = 3 and G = Z2, we have
that the complexes ˜�(Q0

3(Z2)) and T Z2
3 are each homotopy equivalent of a wedge of
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(2 − 1)(4 − 1) = 3 circles, while ˜�(Q3(Z2)) and T3(Z2) have the homotopy type of
a wedge of (2 + 1)(2 · 2 + 1) = 15 circles.

Remark 4.7 After the last version of this paper was posted on the ArXiv, Federico
Ardila pointed out to me that a complex of trees associated with Dowling lattices was
defined by Gottlieb and Wachs in [18] and that, together with Caroline Klivans, he
could directly prove that it equals the Bergman complex of the Dowling geometry
(i.e., the matroid whose lattice of flats is Qn(G)) [1], thus being subdivided by the
order complex of the Dowling lattice (see [2]).

In fact, the complex defined in [18] can be seen to be isomorphic to our complex of
Dowling trees by simply changing the way of drawing trees: Gottlieb and Wachs ap-
pend the leaves corresponding to elements of the zero block to one of the deepest in-
ternal nodes, while we append them directly to the root. The goal of [18] was to study
the representation of the wreath product Sn � G on the cohomology of Qn(G). More
precisely, it was proved that, as a Sn � G-module, the only nonvanishing cohomol-
ogy group Hn−3(Qn(G)) is isomorphic to the multilinear component of the envelop-
ing algebra of the fixed point subalgebra of the free Lie (super)algebra on [n] × G.
This result was achieved by explicitly describing the generators of Hn−3(Qn(G)) in
terms of certain binary trees. The involved Sn � G-equivariant isomorphism between
Hn−3(Qn(G)) and Hn−3(Tn(G)) follows from the homeomorphism of simplicial
complexes of our Corollary 4.5.

Motivated by Ardila’s observation, we prove the following fact.

Corollary 4.8 The complex of Dowling Trees Tn(G) equals the Bergman complex
of the associated Dowling geometry (i.e., the matroid having Qn(G) as its lattice
of flats). Thus, Corollary 4.5 implies in particular that the Bergman complex of a
Dowling geometry is subdivided by the order complex of the corresponding Dowling
lattice.

Proof The Dowling geometries satisfy the necessary and sufficient condition given
in [16, Theorem 5.3] for the complex of nested sets of a geometric lattice L to be
equal to the Bergman complex of the corresponding matroid M. Indeed, the con-
dition is that the matroid obtained from M by restricting to any connected flat G

and then contracting any flat F ⊂ G is connected. Translated in the language of geo-
metric lattices, this means that any interval [F,G] in L is indecomposable if L≤G

is indecomposable (see e.g. [27, Theorem 5.3.2]). Since a poset is indecomposable
if and only if it is not isomorphic to a nontrivial product of posets, we conclude that
Qn(G)≤ω is indecomposable if and only if the associate partition ω ∈ �n+1 has only
one nonsingleton block, and then we know Qn(G)≤ω

∼= (�n+1)≤ω . So, any interval
[ω1,ω2] in Qn(G) with ω2 indecomposable is isomorphic to the interval [ω1,ω2]
in �n+1 with ω2 indecomposable. Since �n+1 is the lattice of flats of the graphic
matroid associated to the complete graph on n + 1 vertices, indecomposability of
intervals [ω1,ω2] as above follows from [12, Remark 3.4.(2)]. �
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4.3 From T G
n to Tn(G)

The description in terms of nested set complexes allows us to explicitly reconstruct
Tn(G) from T G

n by successively coning over subcomplexes having the homotopy
type of wedges of (n − 3)-spheres. This gives another proof of the fact that T G

n is
Cohen–Macaulay and allows to explicitly calculate the difference between the num-
bers of spheres in the homotopy type of T G

n and Tn(G).
First of all we want to distinguish three types of simplices in Tn(G). We call

simplices of type 0, respectively of type 1, those simplices consisting only of elements
of type 0, respectively of type 1. The nested sets containing elements of both types
will be called simplices of mixed type. We remark that the subcomplex given by the
simplices of type 1 is exactly T G

n , and that any simplex X of mixed type is contained
in the star of a unique maximal simplex X0 of type 0, namely X0 = X \ IG.

The idea is therefore to start with T G
n and glue successively the stars of all sim-

plices of type 0. Topologically, this means coning over the link of those simplices: to
keep track of the change of topology, we need some definitions and a lemma.

Definition 4.9 Let TJ denote the subcomplex of Tn(G) consisting of all simplices of
type 0, i.e.

TJ := {

X ∈ Tn(G) | X ⊂ J G \ IG
}

.

From the above considerations we know that any X ∈ TJ is a chain ω = ω1 < ω2 <

· · · < ω� of elements of type 0. The length of the chain is the number of its elements
and will be denoted �(ω) = �(X). The associated partitions ωi ∈ �n,0 have only one
nonsingleton block, namely the one containing 0, which we call wi . Setting w0 := {0}
and w�+1 := {0,1,2, . . . , n}, we define numbers p0(ω), . . . ,p�(ω) ∈ N as

pi(ω) := |wi+1 \ wi |.
If the chain is understood, we will simply write pi . For m = 1, . . . , n − 1 we define
the subcomplex of Tn(G) consisting of T G

n and the stars of all simplices X ∈ TJ with
�(X) ≤ m:

Km := T G
n ∪ {

X ∈ Tn(G) | ∣∣X ∩J G
∣

∣ ≤ m
}

.

Lemma 4.10 The link of any X ∈ TJ with �(X) = m in Km is

lkKm
(X) � ˜�(Bm) ∗ ˜�(QG

p0
) ∗ · · · ∗ ˜�(QG

pm
),

where Bm denotes the boolean lattice on m elements.

Proof Any simplex Y in the link can be written as

Y = Y ′ � Y0 � · · · � Ym,

where Y ′ is a (proper!) subset of X, and Yi is a nested subset of IG such that the only
nonsingleton block of the associated partitions in �n,0 contains only elements from
wi+1 \ wi . The subcomplex of such Yi can of course be identified with ˜N (IG,QG

pi
),

whereas the possible choices of Y ′ give a subcomplex with a face lattice that can be
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identified with the proper part of Bm, the boolean lattice on m elements. Note that
any choice of Y ′ ∈ Bm \ {1̂} and Yi ∈ ˜N (IG,QG

pi
) gives a simplex in the link.

Since all complexes ˜�(Bm) and ˜N (IG,QG
pi

) are flag complexes, we have that the
link of X is a simplicial complex that is isomorphic to the join

˜�(Bm) ∗ ˜N (IG,QG
p0

) ∗ · · · ∗ ˜N (IG,QG
pm

).

With Corollary 3.3 the claim follows. �

In order to simplify notation, let us define numbers qω
i associated to any chain ω

that gives rise to a simplex in TJ . Recall Definition 4.9 and let

qω
i :=

pi(ω)−1
∏

j=1

(j |G| − 1).

The numbers Q(ω) are then defined for any chain ω as

Q(ω) := qω
0 qω

1 . . . qω
�(ω).

Now we can state a theorem which follows easily from our previous work.

Theorem 4.11 The link of any X ∈ TJ with �(X) = m in Km is homotopy equivalent
to a wedge of Q(ω) spheres of dimension (n − 3), where ω is the chain obtained by
ordering the elements of X. Each of those spheres bounds in Km.

Proof After Hultman [22] we know that, for any pi(ω), ˜�(QG
pi(ω)) is homotopy

equivalent to a wedge of qω
i spheres of dimension (pi(ω) − 2). It is a standard fact

that ˜�(Bm) � S(m−1). We have then to compute the homotopy type of

S(m−1) ∗
∨

qω
0

S(p0−2) ∗ · · · ∗
∨

qω
m

S(pm−2),

where the index under the wedges indicates how many copies of the corresponding
sphere come into play. By basic topological facts we may rewrite this as:

S(m−2) ∗
∨

qω
0 ...qω

m

S
∑m

i=0(pi−2)+m =
∨

Q(ω)

Sm−2+n−2(m+1)+m+1 =
∨

Q(ω)

S(m−3),

where in the second equality we used that p0 + p1 + · · · + pm = n. This proves the
first part of the corollary.

The last assertion is proved by induction on m, after remarking that actually the
link of X in Km is contained in Km−1 (we define K0 = T G

n ). For m = 1 the assertion
holds because T G

n is CM of dimension (n− 2), thus each (n− 3)-sphere bounds. Let
the claim hold for m ≥ 1. Then in particular Km was obtained by repeatedly coning
over spheres that were already boundaries—therefore Km is also CM of dimension
(n − 2), and any of its (n − 3)-cycles bounds. �
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Note Since pi(ω) < n, we need the result of [22] only in dimension strictly smaller
than the one in which the conclusion of the corollary holds. Therefore we may in
principle omit the use of [22], thus reproving fully independently the result, by in-
duction on n. We preferred not to do this in order to keep the argument simpler and
more readable.

Remark 4.12 We have proved that any chain ω ∈ ˜�(Bn) indexes a simplex of TJ

that contributes Q(ω) times to the difference between the numbers of spheres in the
homotopy types of T G

n and Tn(G).

Example 4.13 For our favourite example Q3(Z2), we have 12 chains in ˜�(B3), each
with Q(ω) = 1, therefore

∑

ω∈˜�(B3)
Q(ω) = 12, which in fact gives 12 + 3 = 15.

We may even combine the results of Dowling about ˜�(Qn(G)), of Hultman about
T G

n and our above considerations to state the following arithmetic equality:

Corollary 4.14 Let integers k ≥ 1 and n ≥ 2 be given, and for π ∈ �n let h(π, j)

denote the height of the j -th column of the Young tableau of π . Then

n
∏

j=1

(jk + 1) −
n

∏

j=1

(jk − 1) =
∑

σ∈�n

n
∏

j=1

(jk − 1)h(σ,j).
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