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Abstract As a consequence of the classification of the finite simple groups, it has
been possible in recent years to characterize Steiner t-designs, that is t-(v, k,1) de-
signs, mainly for t = 2, admitting groups of automorphisms with sufficiently strong
symmetry properties. However, despite the finite simple group classification, for
Steiner t-designs with t > 2 most of these characterizations have remained long-
standing challenging problems. Especially, the determination of all flag-transitive
Steiner t-designs with 3 ≤ t ≤ 6 is of particular interest and has been open for about
40 years (cf. Delandtsheer (Geom. Dedicata 41, p. 147, 1992 and Handbook of Inci-
dence Geometry, Elsevier Science, Amsterdam, 1995, p. 273), but presumably dating
back to 1965).

The present paper continues the author’s work (see Huber (J. Comb. Theory Ser.
A 94, 180–190, 2001; Adv. Geom. 5, 195–221, 2005; J. Algebr. Comb., 2007, to
appear)) of classifying all flag-transitive Steiner 3-designs and 4-designs. We give a
complete classification of all flag-transitive Steiner 5-designs and prove furthermore
that there are no non-trivial flag-transitive Steiner 6-designs. Both results rely on the
classification of the finite 3-homogeneous permutation groups. Moreover, we survey
some of the most general results on highly symmetric Steiner t-designs.
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1 Introduction

For positive integers t ≤ k ≤ v and λ, we define a t-(v, k, λ) design to be a finite inci-
dence structure D = (X,B, I ), where X denotes a set of points, |X| = v, and B a set
of blocks, |B| = b, with the properties that each block B ∈ B is incident with k points,
and each t-subset of X is incident with λ blocks. A flag of D is an incident point-block
pair (x,B) ∈ I with x ∈ X and B ∈ B. We consider automorphisms of D as pairs of
permutations on X and B which preserve incidence, and call a group G ≤ Aut(D) of
automorphisms of D flag-transitive (respectively block-transitive, point t-transitive,
point t-homogeneous) if G acts transitively on the flags (respectively transitively on
the blocks, t-transitively on the points, t-homogeneously on the points) of D. For
short, D is said to be, e.g., flag-transitive if D admits a flag-transitive group of auto-
morphisms. For historical reasons, a t-(v, k, λ) design with λ = 1 is called a Steiner
t-design (sometimes also known as a Steiner system). We note that in this case each
block is determined by the set of points which are incident with it, and thus can be
identified with a k-subset of X in a unique way. If t < k < v holds, then we speak of
a non-trivial Steiner t-design.

As a consequence of the classification of the finite simple groups, it has been pos-
sible in recent years to characterize Steiner t-designs, mainly for t = 2, admitting
groups of automorphisms with sufficiently strong symmetry properties. However, de-
spite the classification of the finite simple groups, for Steiner t-designs with t > 2
most of these characterizations have remained long-standing challenging problems.
Especially, the determination of all flag-transitive Steiner t-designs with 3 ≤ t ≤ 6 is
of particular interest and has been open for about 40 years (cf. [12, p. 147] and [13,
p. 273], but presumably dating back to 1965).

The present paper continues the author’s work [21, 22, 24] of classifying all flag-
transitive Steiner 3-designs and 4-designs. We give a complete classification of all
flag-transitive Steiner 5-designs in Section 4 and prove furthermore in Section 5 that
there are no non-trivial flag-transitive Steiner 6-designs. Both results rely on the clas-
sification of the finite 3-homogeneous permutation groups, which itself depends on
the finite simple group classification. Summarizing our results in this paper, we state:

The classification of all non-trivial Steiner t-designs with t = 5 or 6 admitting a
flag-transitive group of automorphisms is as follows.

Main Theorem Let D = (X,B, I ) be a non-trivial Steiner t-design with t = 5 or
6. Then G ≤ Aut(D) acts flag-transitively on D if and only if one of the following
occurs:

(1) D is isomorphic to the Witt 5-(12,6,1) design, and G ∼= M12,
(2) D is isomorphic to the Witt 5-(24,8,1) design, and G ∼= PSL(2,23) or

G ∼= M24.

Referring to the author’s work mentioned above, we present the complete deter-
mination of all flag-transitive Steiner t-designs with t ≥ 3 in Section 2. Moreover, we
give in this context a survey on some of the most general results on highly symmetric
Steiner t-designs.
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2 Classifications of highly symmetric combinatorial designs

In the sequel, we survey classification results of highly symmetric Steiner t-designs.
For detailed descriptions of the respective designs and their groups of automorphisms
as well as for further surveys concerning in particular highly symmetric Steiner
2-designs, we refer to [5, Sect. 1, 2], [15, Ch. 2.3, 2.4, 4.4], [28] and [30].

As presumably one of the first most general results, all point 2-transitive Steiner
2-designs were characterized by W. M. Kantor [27, Thm. 1], using the classification
of the finite 2-transitive permutation groups.

Theorem 1 (Kantor 1985). Let D = (X,B, I ) be a non-trivial Steiner 2-design, and
let G ≤ Aut(D) act point 2-transitively on D. Then one of the following holds:

(1) D is isomorphic to the 2-( qd−1
q−1 , q + 1,1) design whose points and blocks are the

points and lines of the projective space PG(d − 1, q), and PSL(d, q) ≤ G ≤
P�L(d, q), or (d − 1, q) = (3,2) and G ∼= A7,

(2) D is isomorphic to a Hermitian unital UH (q) of order q , and PSU(3, q2) ≤ G ≤
P�U(3, q2),

(3) D is isomorphic to a Ree unital UR(q) of order q with q = 32e+1 > 3, and
Re(q) ≤ G ≤ Aut(Re(q)),

(4) D is isomorphic to the 2-(qd, q,1) design whose points and blocks are the points
and lines of the affine space AG(d,q), and one of the following holds (where G0
denotes the stabilizer of 0 ∈ X):

(i) G ≤ A�L(1, qd),
(ii) G0 � SL(d

a
, qa), d ≥ 2a,

(iii) G0 � Sp( 2d
a

, qa), d ≥ 2a,
(iv) G0 � G2(q

a)′, q even, d = 6a,
(v) G0 � SL(2,3) or SL(2,5), v = q2, q = 5,7,9,11,19,23,29 or 59,

(vi) G0 � SL(2,5), or G0 contains a normal extraspecial subgroup E of order
25 and G0/E is isomorphic to a subgroup of S5, v = 34,

(vii) G0 ∼= SL(2,13), v = 36,
(5) D is isomorphic to the affine nearfield plane A9 of order 9, and G0 as in (4)(vi),
(6) D is isomorphic to the affine Hering plane A27 of order 27, and G0 as in (4)(vii),
(7) D is isomorphic to one of the two Hering spaces 2-(93,9,1), and G0 as in

(4)(vii).

As an easy implication, W. M. Kantor [27, Thm. 3] obtained moreover the classi-
fication of all point t-transitive Steiner t-designs with t > 2.

Certainly, among the highly symmetric properties of incidence structures, flag-
transitivity is a particularly important and natural one. Even long before the afore-
mentioned classification of the finite simple groups, a general study of flag-transitive
Steiner 2-designs was introduced by D. G. Higman and J. E. McLaughlin [20] proving
that a flag-transitive group G ≤ Aut(D) of automorphisms of a Steiner 2-design D is
necessarily primitive on the points of D. They posed the problem of classifying all
finite flag-transitive projective planes, and showed that such planes are Desarguesian
if its orders are suitably restricted. Much later W. M. Kantor [29] determined all such
planes apart from the still open case when the group of automorphisms is a Frobenius
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group of prime degree. His proof involves detailed knowledge of primitive permu-
tation groups of odd degree based on the classification of the finite simple groups.
In a big common effort, F. Buekenhout, A. Delandtsheer, J. Doyen, P. B. Kleidman,
M. W. Liebeck, and J. Saxl [6, 14, 31, 34, 38] essentially characterized all finite flag-
transitive linear spaces, that is flag-transitive Steiner 2-designs. Their result, which
also relies on the finite simple group classification, starts with the result of Higman
and McLaughlin and uses the O’Nan-Scott Theorem for finite primitive permutation
groups. For the incomplete case with a 1-dimensional affine group of automorphisms,
we refer to [6, Sect. 4] and [30, Sect. 3].

Theorem 2 (Buekenhout et al. 1990). Let D = (X,B, I ) be a Steiner 2-design, and
let G ≤ Aut(D) act flag-transitively on D. Then one of the following occurs:

(1) D is isomorphic to the 2-(qd, q,1) design whose points and blocks are the points
and lines of the affine space AG(d,q), and one of the following holds:

(i) G is 2-transitive (hence as in Theorem 1 (4)),
(ii) d = 2, q = 11 or 23, and G is one of the three solvable flag-transitive groups

given in [17, Table II],
(iii) d = 2, q = 9,11,19,29 or 59, G

(∞)
0

∼= SL(2,5) (where G
(∞)
0 denotes the

last term in the derived series of G0), and G is given in [17, Table II],
(iv) d = 4, q = 3, and G0 ∼= SL(2,5),

(2) D is isomorphic to a non-Desarguesian affine translation plane. More precisely,
one of the following holds:

(i) D is isomorphic to a Lüneburg-Tits plane Lue(q2) of order q2 with
q = 22e+1 > 2, and Sz(q) ≤ G0 ≤ Aut(Sz(q)),

(ii) D is isomorphic to the affine Hering plane A27 of order 27, and
G0 ∼= SL(2,13),

(iii) D is isomorphic to the affine nearfield plane A9 of order 9, and G is one of
the seven flag-transitive subgroups of Aut(A9), described in [18, §5],

(3) D is isomorphic to one of the two Hering spaces 2-(93,9,1), and G0 ∼= SL(2,13),

(4) D is isomorphic to the 2-( qd−1
q−1 , q + 1,1) design whose points and blocks are the

points and lines of the projective space PG(d − 1, q), and PSL(d, q) ≤ G ≤
P�L(d, q), or (d − 1, q) = (3,2) and G ∼= A7,

(5) D is isomorphic to a Hermitian unital UH (q) of order q , and PSU(3, q2) ≤ G ≤
P�U(3, q2),

(6) D is isomorphic to a Ree unital UR(q) of order q with q = 32e+1 > 3, and
Re(q) ≤ G ≤ Aut(Re(q)),

(7) D is isomorphic to a Witt-Bose-Shrikhande space W(q) with q = 2d ≥ 8, and
PSL(2, q) ≤ G ≤ P�L(2, q),

(8) G ≤ A�L(1, q).

Investigating t-designs D for arbitrary λ, but large t , P. J. Cameron and
C. E. Praeger [9, Thm. 1.1 and 2.1] showed that for t ≥ 7 the flag-transitivity, re-
spectively for t ≥ 8 the block-transitivity of G ≤ Aut(D) implies at least its point
4-homogeneity and proved the following result:
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Theorem 3 (Cameron and Praeger 1993). Let D = (X,B, I ) be a t-(v, k, λ) design.
If G ≤ Aut(D) acts block-transitively on D, then t ≤ 7, while if G ≤ Aut(D) acts
flag-transitively on D, then t ≤ 6.

However, especially the determination of all flag-transitive Steiner t-designs with
3 ≤ t ≤ 6 has remained of particular interest, and even the classification of all flag-
transitive Steiner 3-designs has been known as “a long-standing and still open prob-
lem” (cf. [12, p. 147] and [13, p. 273]). Presumably, H. Lüneburg [36] in 1965 has
been the first dealing with part of this problem characterizing flag-transitive Steiner
quadruple systems (i.e., Steiner 3-designs with block size k = 4) under the additional
strong assumption that every non-identity element of the group of automorphisms
fixes at most two distinct points. This result has been generalized in 2001 by the
author [21], omitting the additional assumption on the number of fixed points. Re-
cently, the author [22, 24] completely determined all flag-transitive Steiner 3-designs
and 4-designs using the classification of the finite 2-transitive permutation groups. In
the present paper, the remaining investigations of all flag-transitive Steiner 5-designs
and 6-designs are given, utilizing the classification of the finite 3-homogeneous per-
mutation groups. Summarizing the author’s results, the complete determination of all
non-trivial Steiner t-designs with t ≥ 3 admitting a flag-transitive group of automor-
phisms can now be stated as follows.

Theorem 4 (Huber 2005/06). Let D = (X,B, I ) be a non-trivial Steiner t-design
with t ≥ 3. Then G ≤ Aut(D) acts flag-transitively on D if and only if one of the
following occurs:

(1) D is isomorphic to the 3-(2d,4,1) design whose points and blocks are the points
and planes of the affine space AG(d,2), and one of the following holds:

(i) d ≥ 3, and G ∼= AGL(d,2),
(ii) d = 3, and G ∼= AGL(1,8) or A�L(1,8),

(iii) d = 4, and G0 ∼= A7,
(iv) d = 5, and G ∼= A�L(1,32),

(2) D is isomorphic to a 3-(qe + 1, q + 1,1) design whose points are the ele-
ments of the projective line GF(qe) ∪ {∞} and whose blocks are the images of
GF(q) ∪ {∞} under PGL(2, qe) (respectively PSL(2, qe), e odd) with a prime
power q ≥ 3, e ≥ 2, and the derived design at any given point is isomorphic to the
2-(qe, q,1) design whose points and blocks are the points and lines of AG(e, q),
and PSL(2, qe) ≤ G ≤ P�L(2, qe),

(3) D is isomorphic to a 3-(q + 1,4,1) design whose points are the elements of
GF(q) ∪ {∞} with a prime power q ≡ 7 (mod 12) and whose blocks are the
images of {0,1, ε,∞} under PSL(2, q), where ε is a primitive sixth root of unity
in GF(q), and the derived design at any given point is isomorphic to the Netto
triple system N(q), and PSL(2, q) ≤ G ≤ P�L(2, q),

(4) D is isomorphic to one of the following Witt designs:
(i) the 3-(22,6,1) design, and G � M22,

(ii) the 4-(11,5,1) design, and G ∼= M11,
(iii) the 4-(23,7,1) design, and G ∼= M23,
(iv) the 5-(12,6,1) design, and G ∼= M12,
(v) the 5-(24,8,1) design, and G ∼= PSL(2,23) or G ∼= M24.
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We remark that the Steiner 3-designs in Part (1) (ii) with G ∼= AGL(1,8)

and (iv) with G ∼= A�L(1,32) as well as the Steiner 5-design in Part (4) with
G ∼= PSL(2,23) are sharply flag-transitive, and furthermore, concerning Part (4) (v),
that M24 as the full group of automorphisms of D contains only one conjugacy class
of subgroups isomorphic to PSL(2,23).

3 Definitions and preliminary results

If D = (X,B, I ) is a t-(v, k, λ) design with t ≥ 2, and x ∈ X arbitrary, then
the derived design with respect to x is Dx = (Xx,Bx, Ix), where Xx = X\{x},
Bx = {B ∈ B : (x,B) ∈ I } and Ix = I |Xx×Bx

. In this case, D is also called an ex-
tension of Dx . Obviously, Dx is a (t − 1)-(v − 1, k − 1, λ) design.

Let G be a permutation group on a non-empty set X. We call G semi-regular if the
identity is the only element that fixes any point of X. If additionally G is transitive,
then it is said to be regular. Furthermore, for x ∈ X, the orbit xG containing x is
called regular if it has length |G|. If {x1, . . . , xm} ⊆ X, let G{x1,...,xm} be its setwise
stabilizer and Gx1,...,xm its pointwise stabilizer (for short, we often write Gx1...xm in
the latter case).

For D = (X,B, I ) a Steiner t-design with G ≤ Aut(D), let GB denote the setwise
stabilizer of a block B ∈ B, and for x ∈ X, we define GxB = Gx ∩ GB .

Let N be the set of positive integers (in this article, 0 /∈ N). For integers m and n,
let (m,n) denote the greatest common divisor of m and n, and we write m | n if m

divides n.
For any x ∈ R, let �x
 denote the greatest positive integer which is at most x.
All other notation is standard.

When considering a Steiner t-design D with t = 2, it is elementary that the
point 2-transitivity of G ≤ Aut(D) implies its flag-transitivity. However, for t ≥ 3,
it can be deduced from a result of R. E. Block [3, Thm. 2] that the converse
holds:

Proposition 5 (cf. [4, 22]). Let D = (X,B, I ) be a Steiner t-design with t ≥ 3. If
G ≤ Aut(D) acts flag-transitively on D, then G also acts point 2-transitively on D.

For t ≥ 5, the flag-transitivity of G ≤ Aut(D) has an even stronger implication due
to the following assertion, which follows from Block’s theorem and a combinatorial
result of D. K. Ray-Chaudhuri and R. M. Wilson [37, Thm. 1].

Proposition 6 (cf. [9]). Let D = (X,B, I ) be a Steiner t-design with t ≥ 2. Then, the
following holds:

(a) If G ≤ Aut(D) acts block-transitively on D, then G also acts point �t/2
-
homogeneously on D.

(b) If G ≤ Aut(D) acts flag-transitively on D, then G also acts point �(t + 1)/2
-
homogeneously on D.
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We note that Propositions 5 and 6 hold also for arbitrary λ, whereas for
a 2-(v, k, λ) design the implication that the point 2-transitivity yields its flag-
transitivity is only true if (r, λ) = 1 (see, e.g., [15, Ch. 2.3, Lemma 8]).

In order to investigate in the following all flag-transitive Steiner 5-designs and
6-designs, we can as a consequence of Proposition 6 (b) make use of the classi-
fication of all finite 3-homogeneous permutation groups, which itself relies on the
classification of all finite simple groups (cf. [8, 19, 26, 33, 35]).

The list of groups is as follows.
Let G be a finite 3-homogeneous permutation group on a set X with |X| ≥ 4. Then

G is either of

(A) Affine Type: G contains a regular normal subgroup T which is elementary
Abelian of order v = 2d . If we identify G with a group of affine transformations

x �→ xg + u

of V = V (d,2), where g ∈ G0 and u ∈ V , then particularly one of the following
occurs:

(1) G ∼= AGL(1,8), A�L(1,8), or A�L(1,32)

(2) G0 ∼= SL(d,2), d ≥ 2
(3) G0 ∼= A7, v = 24

or

(B) Almost Simple Type: G contains a simple normal subgroup N , and
N ≤ G ≤ Aut(N). In particular, one of the following holds, where N and v = |X|
are given as follows:

(1) Av , v ≥ 5
(2) PSL(2, q), q > 3, v = q + 1
(3) Mv , v = 11,12,22,23,24 (Mathieu groups)
(4) M11, v = 12

We note that if q is odd, then PSL(2, q) is 3-homogeneous for q ≡ 3 (mod 4), but
not for q ≡ 1 (mod 4), and hence not every group G of almost simple type satisfying
(2) is 3-homogeneous on X. For required basic properties of the listed groups, we
refer, e.g., to [11], [25], [32, Ch. 2, 5].

We will now recall some standard combinatorial results on which we rely in the
sequel. Let r (respectively λ2) denote the total number of blocks incident with a given
point (respectively pair of distinct points), and let all further parameters be as defined
at the beginning of Section 1.

Lemma 7 Let D = (X,B, I ) be a Steiner t-design. If G ≤ Aut(D) acts flag-
transitively on D, then

r
∣
∣ |Gx |

for any x ∈ X.
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Lemma 8 Let D = (X,B, I ) be a t-(v, k, λ) design. Then the following holds:

(a) bk = vr.

(b)

(
v

t

)

λ = b

(
k

t

)

.

(c) r(k − 1) = λ2(v − 1) for t ≥ 2, where λ2 = λ

(
v−2
t−2

)

(
k−2
t−2

) .

Proposition 9 (cf. [7, 39]). If D = (X,B, I ) is a non-trivial Steiner t-design, then
the following holds:

(a) v ≥ (t + 1)(k − t + 1).

(b) v − t + 1 ≥ (k − t + 2)(k − t + 1) for t > 2. If equality holds, then (t, k, v) =
(3,4,8), (3,6,22), (3,12,112), (4,7,23), or (5,8,24).

We note that (a) is stronger for k < 2(t − 1), while (b) is stronger for k > 2(t − 1).
For k = 2(t − 1) both assert that v ≥ t2 − 1.

As we are in particular interested in the case when 3 ≤ t ≤ 6, we deduce from (b)
the following upper bound for the positive integer k.

Corollary 10 Let D = (X,B, I ) be a non-trivial Steiner t-design with t = 3 + i,
where i = 0,1,2,3. Then

k ≤ ⌊√
v + 3

2 + i
⌋

.

Remark 11 If G ≤ Aut(D) acts flag-transitively on any Steiner t-design D with t ≥ 3,
then applying Proposition 5 and Lemma 8 (b) yields the equation

b =
(
v
t

)

(
k
t

) = v(v − 1)
∣
∣Gxy

∣
∣

|GB | ,

where x and y are two distinct points in X and B is a block in B, and thus
(

v − 2

t − 2

)

= (k − 1)

(
k − 2

t − 2

) ∣
∣Gxy

∣
∣

|GxB | if x ∈ B.

4 The classification of flag-transitive Steiner 5-designs

The classification of all non-trivial Steiner 5-designs admitting a flag-transitive group
of automorphisms is as follows.

Main Theorem 1 Let D = (X,B, I ) be a non-trivial Steiner 5-design. Then
G ≤ Aut(D) acts flag-transitively on D if and only if one of the following occurs:

(1) D is isomorphic to the Witt 5-(12,6,1) design, and G ∼= M12,
(2) D is isomorphic to the Witt 5-(24,8,1) design, and G ∼= PSL(2,23) or

G ∼= M24.

We remark that in Part (2), G ∼= PSL(2,23) acts sharply flag-transitively on D,
and furthermore that M24 as the full group of automorphisms of D contains only one
conjugacy class of subgroups isomorphic to PSL(2,23) (cf. [11]).
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4.1 Groups of automorphisms of affine type

In this subsection, we start with the proof of Main Theorem 1. Using the notation as
before, let D = (X,B, I ) be a non-trivial Steiner 5-design with G ≤ Aut(D) acting
flag-transitively on D throughout the proof. We recall that due to Proposition 6, we
may restrict ourselves to the consideration of the finite 3-homogeneous permutation
groups listed in Section 3. Clearly, in the following we may assume that k > 5 as
trivial Steiner 5-designs are excluded. Let us first assume that G is of affine type.

Case (1): G ∼= AGL(1,8), A�L(1,8), or A�L(1,32).

We may assume that k > 5. For v = 8, we obtain k = 6 by Corollary 10, which is
not possible in view of Lemma 8 (b). If v = 32, then |G| = 5v(v − 1), and Lemma 7
immediately yields that G ≤ Aut(D) cannot act flag-transitively on any non-trivial
Steiner 5-design D.

Case (2): G0 ∼= SL(d,2), d ≥ 2.

Let ei denote the i-th standard basis vector of the vector space V = V (d,2),
and 〈ei〉 the 1-dimensional vector subspace spanned by ei . We will prove by con-
tradiction that G ≤ Aut(D) cannot act flag-transitively on any non-trivial Steiner
5-design D.

We may assume that v = 2d > k > 5. For d = 3, we have v = 8 and k = 6 by
Corollary 10, which is not possible in view of Lemma 8 (b) again. So, we may as-
sume that d > 3. We remark that clearly any five distinct points are non-coplanar
in AG(d,2) and hence generate an affine subspace of dimension at least 3. Let
E = 〈e1, e2, e3〉 denote the 3-dimensional vector subspace spanned by e1, e2, e3. Then
by linear algebra SL(d,2)E , and therefore also G0,E , acts point-transitively on V \ E .
If the unique block B ∈ B which is incident with the 5-subset {0, e1, e2, e3, e1 + e2}
contains some point outside E , then it would already contain all points of V \ E .
But then, we would have k ≥ 2d − 8 + 5 = 2d − 3, a contradiction to Corollary 10.
Hence, B lies completely in E , and by the flag-transitivity of G, it follows that each
block must be contained in a 3-dimensional affine subspace. Thus, clearly k ≤ 8. But,
on the other hand, for D to be a block-transitive 5-design admitting G ≤ Aut(D), we
obtain from [1] the necessary (and sufficient) condition that 2d − 3 must divide

(
k
4

)

,
and hence it follows for each respective value of k that d = 3, contradicting our as-
sumption.

Case (3): G0 ∼= A7, v = 24.

Since v = 24, we obtain from Corollary 10 that k ≤ 7. But, Lemma 7 easily rules
out the cases when k = 6 or 7.

4.2 Groups of automorphisms of almost simple type

Before we consider in this subsection successively those cases where G is of almost
simple type, we indicate some lemmas which will be required for Case (2).

Let q be a prime power pe, and U a subgroup of PSL(2, q). Furthermore, let Nl

denote the number of orbits of length l and let n = (2, q − 1). In [23, Ch. 5], we have
in particular determined the orbit-lengths from the action of subgroups of PSL(2, q)
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on the points of the projective line. For the list of subgroups of PSL(2, q), we thereby
refer to [16, Ch. 12, p. 285f.] or [25, Ch. II, Thm. 8.27].

Lemma 12 Let U be the cyclic group of order c with c | q±1
n

. Then

(a) if c | q+1
n

, then Nc = (q + 1)/c,

(b) if c | q−1
n

, then N1 = 2 and Nc = (q − 1)/c.

Lemma 13 Let U be the dihedral group of order 2c with c | q±1
n

. Then

(i) for q ≡ 1 (mod 4):
(a) if c | q+1

2 , then Nc = 2 and N2c = (q + 1 − 2c)/(2c),

(b) if c | q−1
2 , then N2 = 1, Nc = 2, and N2c = (q − 1 − 2c)/(2c), unless c = 2,

in which case N2 = 3 and N4 = (q − 5)/4,
(ii) for q ≡ 3 (mod 4):

(a) if c | q+1
2 , then N2c = (q + 1)/(2c),

(b) if c | q−1
2 , then N2 = 1 and N2c = (q − 1)/(2c),

(iii) for q ≡ 0 (mod 2):
(a) if c | q + 1, then Nc = 1 and N2c = (q + 1 − c)/(2c),
(b) if c | q − 1, then N2 = 1, Nc = 1, and N2c = (q − 1 − c)/(2c).

Lemma 14 Let U be the elementary Abelian group of order q | q . Then N1 = 1 and
Nq = q/q .

Lemma 15 Let U be a semi-direct product of the elementary Abelian group of order
q | q and the cyclic group of order c with c | q − 1 and c | q − 1. Then N1 = 1,
Nq = 1, and Ncq = (q − q)/(cq).

Lemma 16 Let U be PSL(2, q) with qm = q , m ≥ 1. Then Nq+1 = 1, Nq(q−1) = 1
if m is even, and all other orbits are regular.

Lemma 17 Let U be PGL(2, q) with qm = q , m > 1 even. Then Nq+1 = 1,
Nq(q−1) = 1, and all other orbits are regular.

Lemma 18 Let U be isomorphic to A4. Then

(i) for q ≡ 1 (mod 4):
(a) if 3 | q+1

2 , then N6 = 1 and N12 = (q − 5)/12,

(b) if 3 | q−1
2 , then N4 = 2, N6 = 1, and N12 = (q − 13)/12,

(c) if 3 | q , then N4 = 1, N6 = 1, and N12 = (q − 9)/12,
(ii) for q ≡ 3 (mod 4):

(a) if 3 | q+1
2 , then N12 = (q + 1)/12,

(b) if 3 | q−1
2 , then N4 = 2 and N12 = (q − 7)/12,

(c) if 3 | q , then N4 = 1 and N12 = (q − 3)/12,
(iii) for q = 2e, e ≡ 0 (mod 2): N1 = 1, N4 = 1, and

N12 = (q − 4)/12.
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Lemma 19 Let U be isomorphic to S4. Then

(i) for q ≡ 1 (mod 8):
(a) if 3 | q+1

2 , then N6 = 1, N12 = 1, and N24 = (q − 17)/24,

(b) if 3 | q−1
2 , then N6 = 1, N8 = 1, N12 = 1, and

N24 = (q − 25)/24,
(c) if 3 | q , then N4 = 1, N6 = 1, and N24 = (q − 9)/24,

(ii) for q ≡ −1 (mod 8):
(a) if 3 | q+1

2 , then N24 = (q + 1)/24,

(b) if 3 | q−1
2 , then N8 = 1 and N24 = (q − 7)/24.

Lemma 20 Let U be isomorphic to A5. Then

(i) for q ≡ 1 (mod 4):
(a) if q = 5e , e ≡ 1 (mod 2), then N6 = 1 and N60 = (q − 5)/60,
(b) if q = 5e , e ≡ 0 (mod 2), then N6 = 1, N20 = 1, and

N60 = (q − 25)/60,
(c) if 15 | q+1

2 , then N30 = 1 and N60 = (q − 29)/60,

(d) if 3 | q+1
2 and 5 | q−1

2 , then N12 = 1, N30 = 1, and
N60 = (q − 41)/60,

(e) if 3 | q−1
2 and 5 | q+1

2 , then N20 = 1, N30 = 1, and
N60 = (q − 49)/60,

(f) if 15 | q−1
2 , then N12 = 1, N20 = 1, N30 = 1, and

N60 = (q − 61)/60,
(g) if 3 | q and 5 | q+1

2 , then N10 = 1 and N60 = (q − 9)/60,

(h) if 3 | q and 5 | q−1
2 , then N10 = 1, N12 = 1, and

N60 = (q − 21)/60,
(ii) for q ≡ 3 (mod 4):

(a) if 15 | q+1
2 , then N60 = (q + 1)/60,

(b) if 3 | q+1
2 and 5 | q−1

2 , then N12 = 1 and N60 = (q − 11)/60,

(c) if 3 | q−1
2 and 5 | q+1

2 , then N20 = 1 and N60 = (q − 19)/60,

(d) if 15 | q−1
2 , then N12 = 1, N20 = 1, and N60 = (q − 31)/60.

We shall now turn to the examination of those cases where G ≤ Aut(D) is of
almost simple type.

Case (1): N = Av , v ≥ 5.

We may assume that v ≥ 7. But then Av , and hence also G, is 5-transitive and
does not act on any non-trivial Steiner 5-design D in view of [27, Thm. 3].

Case (2): N = PSL(2, q), v = q + 1, q = pe > 3.

Here Aut(N) = P�L(2, q), and |G| = (q + 1)q
(q−1)

n
a with n = (2, q − 1) and

a | ne. We may assume that q ≥ 5. We will show that only the flag-transitive design
given in Part (2) of Main Theorem 1 with G ∼= PSL(2,23) can occur.

We will first assume that N = G. Then, by Remark 11, we obtain

(q − 2)(q − 3) |PSL(2, q)0B | · n = (k − 1)(k − 2)(k − 3)(k − 4). (1)
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In view of Proposition 9 (b), we have

q − 3 ≥ (k − 3)(k − 4), (2)

and thus it follows from equation (1) that

(q − 2) |PSL(2, q)0B | · n ≤ (k − 1)(k − 2). (3)

If we assume that k ≥ 9, then clearly

(k − 1)(k − 2) < 2(k − 3)(k − 4),

and hence we obtain

(q − 2) |PSL(2, q)0B | · n < 2(q − 3)

due to Proposition 9 (b) again, which is obviously only possible when
|PSL(2, q)0B | ·n = 1. Thus, in particular q has to be even. But then, considering
equation (1) yields that the left hand side of the equation is not divisible by 4, whereas
obviously the right hand side is always divisible by 8, a contradiction. If k < 9, then,
using equation (1) and inequality (2), the very few remaining possibilities for k can
immediately be ruled out by hand, except for the case when k = 8, q = 23 and
|PSL(2, q)0B | = 1. It is well-known that for the parameters t = 5, v = 24 and k = 8
there exists (up to isomorphism) only the unique Witt 5-(24,8,1) design D, which
can be constructed from PSL(2,23) in its natural 3-homogeneous action on the el-
ements of GF(23) ∪ {∞}. Furthermore, it can be shown that the setwise stabilizer
PSL(2,23)B of an appropriate, unique block B ∈ B is a dihedral group of order
8 (see, e.g., [2, Ch. IV, 1.5], [10, Ch. XIV, 115], and [40, Thm. 5] for a uniqueness
proof). Thus, using Lemma 8 (b), we obtain b = 759 = [

PSL(2,23) : PSL(2,23)B
]

,
and hence PSL(2,23) acts block-transitively on D. As for q = 23, the dihedral
group of order 8 has only orbits of length 8 in view of Lemma 13 (ii)(a), clearly
PSL(2,23)B acts transitively on the points of B . Since we have |PSL(2,23)0B | = 1,
it follows that PSL(2,23) acts even sharply flag-transitively on D.

Now, let us assume that N < G ≤ Aut(N). We recall that q = pe > 3, and will
distinguish in the following the cases p > 3, p = 2, and p = 3.

First, let p > 3. We define G∗ = G ∩ (PSL(2, q) � 〈τα〉) with
τα∈Sym(GF(pe) ∪ {∞}) ∼= Sv of order e induced by the Frobenius automorphism
α : GF(pe) −→ GF(pe), x �→ xp . Then, by Dedekind’s law, we can write

G∗ = PSL(2, q) � (G∗ ∩ 〈τα〉). (4)

Defining P�L(2, q) = PSL(2, q) � 〈τα〉, it can easily be calculated that
P�L(2, q)0,1,∞ = 〈τα〉, and 〈τα〉 has precisely p + 1 distinct fixed points (cf.,
e.g., [15, Ch. 6.4, Lemma 2]). As p > 3, we conclude therefore that G∗ ∩ 〈τα〉 ≤ G∗

0B
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for some appropriate, unique block B ∈ B by the definition of Steiner 5-designs.
Furthermore, clearly PSL(2, q) ∩ (G∗ ∩ 〈τα〉) = 1. Hence, we have

∣
∣
∣(0,B)G

∗ ∣∣
∣ = [

G∗ : G∗
0B

]

= [

PSL(2, q) � (G∗ ∩ 〈τα〉) : PSL(2, q)0B � (G∗ ∩ 〈τα〉)]

= [

PSL(2, q) : PSL(2, q)0B

]

=
∣
∣
∣(0,B)PSL(2,q)

∣
∣
∣ . (5)

Thus, if we assume that G∗ ≤ Aut(D) acts already flag-transitively on D, then we

obtain
∣
∣
∣(0,B)G

∗ ∣∣
∣ = ∣

∣(0,B)PSL(2,q)
∣
∣ = bk in view of Remark 11. Hence, PSL(2, q)

must also act flag-transitively on D, and we may proceed as in the case when N = G.
Therefore, let us assume that G∗ ≤ Aut(D) does not act flag-transitively on D. Then,
we conclude that

[

G : G∗] = 2 and G∗ has exactly two orbits of equal length on
the set of flags. Thus, by equation (5), we obtain for the orbit containing the flag

(0,B) that
∣
∣
∣(0,B)G

∗ ∣∣
∣ = ∣

∣(0,B)PSL(2,q)
∣
∣ = bk

2 . As it is well-known the normalizer of

PSL(2, q) in Sym(X) is P�L(2, q), and hence in particular PSL(2, q) is normal in
G. It follows therefore that we have under PSL(2, q) also precisely one further orbit
of equal length on the set of flags. Then, proceeding similarly to the case N = G for
each orbit on the set of flags, we obtain (representative for the orbit containing the
flag (0,B)) that

(q − 2)(q − 3) |PSL(2, q)0B | · n
2

= (k − 1)(k − 2)(k − 3)(k − 4), (6)

and as here n = 2, this is equivalent to

(q − 2)(q − 3) |PSL(2, q)0B | = (k − 1)(k − 2)(k − 3)(k − 4)

= k(k3 − 10k2 + 35k − 50) + 24. (7)

Hence, we have in particular

k
∣
∣ (q − 2)(q − 3) |PSL(2, q)0B | − 24. (8)

Since PSL(2, q)B can have one or two orbits of equal length on the set of points of
B , we have

k or
k

2
=

∣
∣
∣0PSL(2,q)B

∣
∣
∣ = [

PSL(2, q)B : PSL(2, q)0B

]

. (9)

By the same arguments as in case N = G, we deduce from equation (7) that

(q − 2) |PSL(2, q)0B | ≤ (k − 1)(k − 2), (10)

and assuming that k ≥ 9, we obtain

(q − 2) |PSL(2, q)0B | < 2(q − 3),
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which is clearly only possible when |PSL(2, q)0B | = 1. Hence, it follows that

(q − 2)(q − 3) = (k − 1)(k − 2)(k − 3)(k − 4), (11)

and k | (q − 2)(q − 3) − 24 in view of property (8). On the other hand, for k ≥ 9, we

obtain from equation (9) that k or k
2 = |PSL(2, q)B | ∣∣ |PSL(2, q)| = q3−q

2 , and thus
in particular k | q3 − q . But, it can easily be seen that (q3 − q, (q − 2)(q − 3) − 24) |
23 ·3 ·11, and thus we have only a small number of possibilities for k to check, which
can easily be eliminated by hand using equation (11). For k < 9, the very few remain-
ing possibilities for k can immediately be ruled out by hand using inequality (2) and
equation (7), except for the case when k = 8, q = 23 and |PSL(2, q)0B | = 2. But, as
involutions are fixed point free on the points of the projective line for q ≡ 3 (mod 4)
(cf., e.g., [25, Ch. II, Thm. 8.5]), this is impossible.

Now, let p = 2. Then, clearly N = PSL(2, q) = PGL(2, q), and we have
Aut(N) = P�L(2, q). If we assume that 〈τα〉 ≤ P�L(2, q)0B for some appro-
priate, unique block B ∈ B, then, using the terminology of (4), we have G∗ =
G = P�L(2, q) and as clearly PSL(2, q) ∩ 〈τα〉 = 1, we can apply equation (5).
Thus, PSL(2, q) must also be flag-transitive, which has already been considered.
Therefore, we may assume that 〈τα〉 � P�L(2, q)0B . Let s be a prime divisor of
e = |〈τα〉|. As the normal subgroup H := (P�L(2, q)0,1,∞)s ≤ 〈τα〉 of index s has
precisely ps + 1 distinct fixed points (see, e.g., [15, Ch. 6.4, Lemma 2]), we have
G ∩ H ≤ G0B for some appropriate, unique block B ∈ B by the definition of Steiner
5-designs. It can then be deduced that e = su for some u ∈ N, since if we assume
for G = P�L(2, q) that there exists a further prime divisor s of e with s �= s, then
H := (P�L(2, q)0,1,∞)s ≤ 〈τα〉 and H are both subgroups of P�L(2, q)0B by the
flag-transitivity of P�L(2, q), and hence 〈τα〉 ≤ P�L(2, q)0B , a contradiction. Fur-
thermore, as 〈τα〉 � P�L(2, q)0B , we may, by applying Dedekind’s law, assume that

G0B = PSL(2, q)0B � (G ∩ H).

Thus, by Remark 11, we obtain

(q − 2)(q − 3) |PSL(2, q)0B | |G ∩ H | = (k − 1)(k − 2)(k − 3)(k − 4) |G ∩ 〈τα〉| .
Using that k = |0GB | = [

GB : G0B

]

, we have more precisely

(A) if G = PSL(2, q) � (G ∩ H):

(q − 2)(q − 3) |PSL(2, q)0B | = (k − 1)(k − 2)(k − 3)(k − 4)

with |PSL(2, q)0B | = |PSL(2, q)B |
k

, or

(B) if G = P�L(2, q):

(q − 2)(q − 3) |PSL(2, q)0B | = (k − 1)(k − 2)(k − 3)(k − 4)s

with |PSL(2, q)0B | = |PSL(2, q)B |
k

·
{

s, if GB = PSL(2, q)B � 〈τα〉
1, if GB = PSL(2, q)B � H .
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As far as condition (A) is concerned, we may argue exactly as in the earlier case
N = G. Thus, only condition (B) has to be examined, and we will also show that
here G ≤ Aut(D) cannot act flag-transitively on any non-trivial Steiner 5-design D.
Clearly, there always exists a Klein four-group V4 ≤ PSL(2, q), which fixes some
4-subset S of X and some additional point x ∈ X, and hence must fix the unique block
B ∈ B which is incident with S ∪ {x} by the definition of Steiner 5-designs. Exam-
ining the list of possible subgroups of PSL(2, q) with their orbits on the projective
line (cf. Lemmas 12-20), it follows that we only have to consider the possibility when
PSL(2, q)B is conjugate to PSL(2, q) with qm = q , m ≥ 1, and by Lemma 16, we
conclude that k = q + 1. Applying condition (B) yields then

(q − 2)(q − 3) |PSL(2, q)0B | = q(q − 1)(q − 2)(q − 3)s

with |PSL(2, q)0B | = q(q − 1) ·
{

s, or
1.

(12)

Since q = 2su
, we can write q = 2sw

for some integer 0 ≤ w ≤ u, and q = qm =
qsu−w

. As we may assume that k = q + 1 = 2sw + 1 > 5, it follows in particular that
w ≥ 1, and hence s < 2sw = q . Thus, using equation (12), we obtain

(qsu−w − 2)(qsu−w − 3) = (q − 2)(q − 3) ≤ (q − 2)(q − 3)s < (q2 − 2s)(q − 3).

But, as clearly u−w ≥ 1 (otherwise, k = q + 1, a contradiction to Corollary 10), this
yields a contradiction for every prime s.

Now, let p = 3. We have Aut(N) = P�L(2, q) = PGL(2, q) � 〈τα〉, and as
PGL(2, q) is sharply 3-transitive, it follows that P�L(2, q)0,1,∞ = 〈τα〉. Again, we
define G∗ = G ∩ (PSL(2, q) � 〈τα〉) and may write G∗ = PSL(2, q) � (G∗ ∩ 〈τα〉)
as in equation (4). We distinguish the cases G = G∗ and [G : G∗] = 2. In the fol-
lowing, we will examine the first case in detail, whereas the second may be treated
mutatis mutandis. Let G = G∗. Then, we have Aut(N) = P�L(2, q). If we as-
sume that 〈τα〉 ≤ P�L(2, q)0B for some appropriate, unique block B ∈ B, then G =
P�L(2, q), and as clearly PSL(2, q) ∩ 〈τα〉 = 1, we can apply equation (5). Thus,
PSL(2, q) must also be flag-transitive, which has already been considered. There-
fore, we may assume that 〈τα〉 � P�L(2, q)0B . Let s be a prime divisor of e = |〈τα〉|.
As already mentioned, the normal subgroup H := (P�L(2, q)0,1,∞)s ≤ 〈τα〉 of in-
dex s has precisely ps + 1 distinct fixed points, and hence we have G ∩ H ≤ G0B

for some appropriate, unique block B ∈ B by the definition of Steiner 5-designs.
It can then be deduced exactly as for p = 2 that e = su for some u ∈ N. As
〈τα〉 � P�L(2, q)0B , we may, by applying Dedekind’s law, assume that

G0B = PSL(2, q)0B � (G ∩ H).

Thus, by Remark 11, we obtain

2(q − 2)(q − 3) |PSL(2, q)0B | |G ∩ H | = (k − 1)(k − 2)(k − 3)(k − 4) |G ∩ 〈τα〉| .

Using that k = |0GB | = [

GB : G0B

]

, we have more precisely
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(A∗) if G = PSL(2, q) � (G ∩ H):

2(q − 2)(q − 3) |PSL(2, q)0B | = (k − 1)(k − 2)(k − 3)(k − 4)

with |PSL(2, q)0B | = |PSL(2, q)B |
k

, or

(B∗) if G = P�L(2, q):

2(q − 2)(q − 3) |PSL(2, q)0B | = (k − 1)(k − 2)(k − 3)(k − 4)s

with |PSL(2, q)0B | = |PSL(2, q)B |
k

·
{

s, if GB = PSL(2, q)B � 〈τα〉
1, if GB = PSL(2, q)B � H .

Considering condition (A∗), we may argue exactly as in the earlier case N = G.
Thus, only condition (B∗) has to be examined, and we will show in the following
that here G ≤ Aut(D) cannot act flag-transitively on any non-trivial Steiner 5-design
D. In view of the subgroups of PSL(2, q) with their orbits on the projective line
(Lemmas 12-20), we have to examine the following possibilities:

(i) PSL(2, q)B is conjugate to a cyclic subgroup of order c with c | q±1
2 of

PSL(2, q), and k = c.
(ii) PSL(2, q)B is conjugate to a dihedral subgroup of order 2c with c | q±1

2 of
PSL(2, q), and k = c or 2c.

(iii) PSL(2, q)B is conjugate to an elementary Abelian subgroup of order q | q of
PSL(2, q), and k = q .

(iv) PSL(2, q)B is conjugate to a semi-direct product of an elementary Abelian
subgroup of order q | q with a cyclic subgroup of order c of PSL(2, q) with
c | q − 1 and c | q − 1, and k = q or cq .

(v) PSL(2, q)B is conjugate to PSL(2, q) with qm = q , m ≥ 1, and k = q + 1,
q(q − 1) if m is even, or k = (q + 1)q(q − 1)/2.

(vi) PSL(2, q)B is conjugate to PGL(2, q) with qm = q , m > 1 even, and k =
q + 1, q(q − 1) or k = (q + 1)q(q − 1).

(vii) PSL(2, q)B is conjugate to A4, and k = 6 or 12.
(viii) PSL(2, q)B is conjugate to S4, and k = 6 or 24.

(ix) PSL(2, q)B is conjugate to A5, and k = 10, 12 or 60.

Since q = 3su
, we can write q = 3sw

for some integer 0 ≤ w ≤ u, and q = qm =
qsu−w

.
ad (i): By condition (B∗), we have

2(q − 2)(q − 3) |PSL(2, q)0B | = (c − 1)(c − 2)(c − 3)(c − 4)s

with |PSL(2, q)0B | =
{

s, or
1.

In view of the earlier case N = G, it is sufficient to consider the equation

(q − 2)(q − 3) = (c − 1)(c − 2)(c − 3)(c − 4)s

2
. (13)
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For c | q+1
2 , equation (13) yields

c
∣
∣
(q + 1)(q − 6)

2
= (q − 2)(q − 3)

2
− 6 = (c − 1)(c − 2)(c − 3)(c − 4)s

4
− 6

= cs

4
(c3 − 10c2 + 35c − 50) + 6s − 6,

and thus c | 6s − 6 must hold. If c | q−1
2 , then, by equation (13), we have

c
∣
∣
(q − 1)(q − 4)

2
= (q − 2)(q − 3)

2
− 1 = (c − 1)(c − 2)(c − 3)(c − 4)s

4
− 1

= cs

4
(c3 − 10c2 + 35c − 50) + 6s − 1,

and hence c | 6s − 1 must hold. As clearly c < 6s in both cases, it follows from
equation (13) that in particular

(3su − 2)(3su−1 − 1) <
c4s

6
< 63 · s5,

which implies that su ≤ 7. As c | 6s −6 respectively c | 6s −1, this leaves only a very
small number of possibilities for k to check, which can easily be ruled out by hand
using equation (13).

ad (ii): Let k = c. Applying condition (B∗) yields

2(q − 2)(q − 3) |PSL(2, q)0B | = (c − 1)(c − 2)(c − 3)(c − 4)s

with |PSL(2, q)0B | = 2 ·
{

s, or
1.

First, let k = c. Due to the earlier case N = G, it is sufficient to consider the equation

(q − 2)(q − 3) = (c − 1)(c − 2)(c − 3)(c − 4)s

4
. (14)

If c | q+1
2 , then, by equation (14), we have

c
∣
∣
(q + 1)(q − 6)

2
= (q − 2)(q − 3)

2
− 6 = (c − 1)(c − 2)(c − 3)(c − 4)s

8
− 6

= cs

8
(c3 − 10c2 + 35c − 50) + 3s − 6,

and hence c | 3s − 6 must hold. For c | q−1
2 , it follows from equation (14) that

c
∣
∣
(q − 1)(q − 4)

2
= (q − 2)(q − 3)

2
− 1 = (c − 1)(c − 2)(c − 3)(c − 4)s

8
− 1

= cs

8
(c3 − 10c2 + 35c − 50) + 3s − 1,
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and thus c | 3s − 1 must hold. Obviously, we have c < 3s in both cases, and therefore
equation (14) gives in particular

4(3su − 2)(3su−1 − 1) <
c4s

3
< 33 · s5,

which implies that su ≤ 5. Due to the fact that c | 3s − 6 respectively c | 3s − 1, we
have only a very small number of possibilities for k to check, which can easily be
ruled out by hand using equation (14). Now, let k = 2c. Due to condition (B∗), we
have

2(q − 2)(q − 3) |PSL(2, q)0B | = (2c − 1)(2c − 2)(2c − 3)(2c − 4)s

with |PSL(2, q)0B | =
{

s, or
1.

Again, it suffices to consider the equation

(q − 2)(q − 3)

2
= (2c − 1)(c − 1)(2c − 3)(c − 2)s. (15)

For c | q+1
2 , equation (15) yields

c
∣
∣
(q + 1)(q − 6)

2
= (q − 2)(q − 3)

2
− 6 = (2c − 1)(c − 1)(2c − 3)(c − 2)s − 6

= cs(4c3 − 20c2 + 35c − 25) + 6s − 6,

and thus c | 6s − 6 must hold. If c | q−1
2 , then due to equation (15), we have

c
∣
∣
(q − 1)(q − 4)

2
= (q − 2)(q − 3)

2
− 1 = (2c − 1)(c − 1)(2c − 3)(c − 2)s − 1

= cs(4c3 − 20c2 + 35c − 25) + 6s − 1,

and hence c | 6s − 1 must hold. As clearly c < 6s in both cases, we deduce from
equation (15) that in particular

(3su − 2)(3su−1 − 1) <
(2c)4s

6
< 24 · 63 · s5,

and hence it follows that su ≤ 7. Since we have c | 6s − 6 respectively c | 6s − 1, this
leaves only a very small number of possibilities for k to check, which can easily be
ruled out by hand using equation (15).

ad (iii): In view of condition (B∗), we have

2(q − 2)(q − 3) |PSL(2, q)0B | = (q − 1)(q − 2)(q − 3)(q − 4)s

with |PSL(2, q)0B | =
{

s, or
1.

It suffices to consider the equation

2(q − 2)(q − 3) = (q − 1)(q − 2)(q − 3)(q − 4)s. (16)
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As we may assume that k = q = 3sw
> 5, we have in particular w ≥ 1, and hence

s < 3sw = q . Thus, using equation (16), we obtain

(qsu−w − 2)(qsu−w − 3) = (q − 2)(q − 3) < q4s < q5.

But, as clearly u − w ≥ 1 (otherwise, k = q , a contradiction to Corollary 10), this
yields a contradiction for s ≥ 3. If s = 2, then (q2u−w − 2)(q2u−w − 3) < 2q4 must
hold, which cannot be true for u−w > 1. Thus, let u−w = 1. Hence, it follows from
equation (16) that in particular

q − 2
∣
∣ (q − 2)(q − 3) = q4 − 5q2 + 6.

But, it is easily seen that (q4 − 5q2 + 6, q − 2) = (2, q − 2) = 1, yielding a contra-
diction.

ad (iv): Let k = q . By condition (B∗), we have

2(q − 2)(q − 3) |PSL(2, q)0B | = (q − 1)(q − 2)(q − 3)(q − 4)s

with |PSL(2, q)0B | = c ·
{

s, or
1.

As c | q − 1, we may argue, mutatis mutandis, as in subcase (iii). For k = cq , condi-
tion (B∗) yields

2(q − 2)(q − 3) |PSL(2, q)0B | = (cq − 1)(cq − 2)(cq − 3)(cq − 4)s

with |PSL(2, q)0B | =
{

s, or
1.

We may consider only the equation

2(q − 2)(q − 3) = (cq − 1)(cq − 2)(cq − 3)(cq − 4)s. (17)

Then, surely (q − 2)(q − 3) = q2 − 5q + 6 must be divisible by cq − 3. Polynomial
division with remainder gives

q2 − 5q + 6 =
( m

∑

i=1

3i−1 q2

(cq)i
+

m
∑

j=1

3j−1

(( 3
c

)m − 5
)

q

(cq)j

)(

cq − 3

)

+
(3

c

)m
(( 3

c
)m − 5

)

q

qm
+ 6

for a suitable m ∈ N (such that

deg

((3

c

)m
(( 3

c

)m − 5
)

q

qm
+ 6

)

< deg

(

cq − 3

)

as is well-known). As c | q − 1, clearly c is not divisible by 3. Thus, the remainder
can be rewritten as

(( 3
c

)m − 5
)

cm
· 3su−m(sw−1) + 6,
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and hence in order for the remainder to vanish, necessarily su − m(sw − 1) = 1 must
hold. But then, we obtain 3m = (−2cm + 5)cm, a contradiction.

ad (v): Let k = q + 1. In view of condition (B∗), we have

2(q − 2)(q − 3) |PSL(2, q)0B | = q(q − 1)(q − 2)(q − 3)s

with |PSL(2, q)0B | = q(q − 1)

2
·
{

s, or
1.

Again, it suffices to consider the equation

(q − 2)(q − 3) = (q − 2)(q − 3)s. (18)

As we may assume that k = q + 1 = 3sw + 1 > 5, it follows in particular that w ≥ 1,
and hence s < 3sw = q . Thus, using equation (18), we obtain

(qsu−w − 2)(qsu−w − 3) = (q − 2)(q − 3) = (q − 2)(q − 3)s < (q2 − 2s)(q − 3).

But, as clearly u−w ≥ 1 (otherwise, k = q + 1, a contradiction to Corollary 10), this
yields a contradiction for every prime s. If m > 1 even and k = q(q − 1), then, in
view of condition (B∗), we have

2(q − 2)(q − 3) |PSL(2, q)0B | = (q2 − q − 1)(q2 − q − 2)(q2 − q − 3)(q2 − q − 4)s

with |PSL(2, q)0B | = (q + 1)

2
·
{

s, or
1.

We may consider only the equation

(q − 2)(q − 3)(q + 1) = (q2 − q − 1)(q2 − q − 2)(q2 − q − 3)(q2 − q − 4)s.

As obviously (q2 −q −1, q +1) = 1, it follows that q2 −q −1 | (q −2)(q −3) must
hold. But, for m > 1 even, polynomial division with remainder gives

q2 − 5q + 6 =
(m−1

∑

i=1

ni

q2

qi+1
+

m
∑

j=1

(nj · nm + nj−1(nm−1 − 5))
q

qj

)(

q2 − q − 1

)

+ (nm+1 · nm + nm(nm−1 − 5))q + n2
m + nm−1(nm−1 − 5) + 6,

where ni denote the i-th Fibonacci number recursively defined via

n0 = 0, n1 = n2 = 1, ni = ni−1 + ni−2 (i ≥ 3).

As it can easily be seen the remainder never vanishes, and hence we obtain a contra-
diction. For k = (q + 1)q(q − 1)/2, condition (B∗) yields

2(q − 2)(q − 3) |PSL(2, q)0B | = (
q3 − q

2
− 1)(

q3 − q

2
− 2)(

q3 − q

2
− 3)(

q3 − q

2
− 4)s

with |PSL(2, q)0B | =
{

s, or
1.
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It suffices to consider the equation

2(q − 2)(q − 3) = (
q3 − q

2
− 1)(

q3 − q

2
− 2)(

q3 − q

2
− 3)(

q3 − q

2
− 4)s. (19)

If we assume that q = 3, then k = 12. Thus, we obtain from equation (19) that su < 5.
Hence, there are only a very small number of possibilities to check, which can easily
be ruled out by hand. Therefore, let us assume that q > 3. Then, we have in particular
w ≥ 1, and hence s < 3sw = q . Thus, using equation (19), we obtain

2(q − 2)(q − 3) < (
q3 − q

2
)4s <

1

16
q12s <

1

16
q13.

On the other hand, it follows that

2(q − 2)(q − 3) = (
q3 − q

2
− 1)(

q3 − q

2
− 2)(

q3 − q

2
− 3)(

q3 − q

2
− 4)s

≥ 2(
q3 − q

2
− 1)(

q3 − q

2
− 2)(

q3 − q

2
− 3)(

q3 − q

2
− 4)

= 1

8
q12 − l

with l = 1
2q10 + 5

2q9 − 3
4q8 − 15

2 q7 −17q6 + 15
2 q5 + 279

8 q4 + 95
2 q3 − 35

2 q2 −50q −48.
As for q > 3, clearly l < 1

16q12 holds, we obtain

2(q − 2)(q − 3) ≥ 1

16
q12.

But as 2(q − 2)(q − 3) = 2(q2m − 5qm + 6), this leaves at most only m = 6, which
clearly cannot occur since m = su−w .

ad (vi): We may argue, mutatis mutandis, as in subcase (v).
ad (vii): In view of condition (B∗), we have

2(q − 2)(q − 3) |PSL(2, q)0B | = (k − 1)(k − 2)(k − 3)(k − 4)s

with |PSL(2, q)0B | = 12

k
·
{

s, or
1.

It is sufficient to consider the equation

(3su − 2)(3su − 3) = k(k − 1)(k − 2)(k − 3)(k − 4)

24
· s.

Thus, for k = 6 respectively k = 12, we obtain su ≤ 2 respectively su < 5, and thus
we have only a very small number of possibilities to check, which can easily be ruled
out by hand.

ad (viii) and (ix): These subcases can be treated similarly to subcase (vii), com-
pleting the examination of condition (B∗).

Case (3): N = Mv , v = 11,12,22,23,24.
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If v = 12 or 24, then G = Mv is always 5-transitive, and thus [27, Thm. 3] yields
the designs described in Main Theorem 1. Obviously, flag-transitivity holds as the
5-transitivity of G implies that Gx acts block-transitively on the derived Steiner
4-design Dx for any x ∈ X. By Corollary 10, we obtain for v = 11 that k ≤ 6, and for
v = 22 or 23 that k ≤ 8, and the very small number of cases for k can easily be ruled
out by hand using Lemma 7.

Case (4): N = M11, v = 12.

As it is known, this exceptional permutation action occurs inside the Mathieu
group M24 in its action on 24 points. This set can be partitioned into two sets X1

and X2 of 12 points each such that the setwise stabilizer of X1 is the Mathieu group
M12. The stabilizer in this latter group of a point x in X1 is isomorphic to M11 and
operates (apart from its natural 4-transitive action on X1 \ {x}) 3-transitively on the
12 points of X2. The geometry preserved by the 3-transitive action of M11 is not a
Steiner t-design, but a 3-(12,6,2) design (e.g. [2, Ch., IV, 5.3]).

This completes the proof of Main Theorem 1.

5 The non-existence of flag-transitive Steiner 6-designs

We prove the following result:

Main Theorem 2 There are no non-trivial Steiner 6-designs D admitting a flag-
transitive group G ≤ Aut(D) of automorphisms.

5.1 Groups of automorphisms of affine type

In the following, we begin with the proof of Main Theorem 2. Using the notation
as before, let us assume that D = (X,B, I ) is a non-trivial Steiner 6-design with
G ≤ Aut(D) acting flag-transitively on D throughout the proof. Clearly, in the sequel
we may assume that k > 6 as trivial Steiner 6-designs are excluded. We will examine
in this subsection successively those cases where G is of affine type.

Case (1): G ∼= AGL(1,8), A�L(1,8), or A�L(1,32).

We may assume that k > 6. If v = 8, then Corollary 10 would imply that k = 6. For
v = 32, we have |G| = 5v(v − 1) and Lemma 7 immediately yields that G ≤ Aut(D)

cannot act flag-transitively on any non-trivial Steiner 6-design D.

Case (2): G0 ∼= SL(d,2), d ≥ 2.

We may argue, mutatis mutandis, as in the corresponding case in Main Theorem 1.

Case (3): G0 ∼= A7, v = 24.

As v = 24, we have k ≤ 8 by Corollary 10. But, Lemma 8 (c) obviously eliminates
the cases when k = 7 or 8.
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5.2 Groups of automorphisms of almost simple type

We will examine in this subsection successively those cases where G is of almost
simple type.

Case (1): N = Av , v ≥ 5.

We may assume that v ≥ 8. But then Av , and hence also G, is 6-transitive and
does not act on any non-trivial Steiner 6-design D due to [27, Thm. 3].

Case (2): N = PSL(2, q), v = q + 1, q = pe > 3.

For the existence of flag-transitive Steiner 6-designs, necessarily

r = q(q − 1)(q − 2)(q − 3)(q − 4)

(k − 1)(k − 2)(k − 3)(k − 4)(k − 5)

∣
∣
∣ |G0|

∣
∣
∣ |P�L(2, q)0| = q(q − 1)e

must hold in view of Lemma 7. Thus, we have in particular

(q −2)(q −3)(q −4)
∣
∣ (k−1)(k−2)(k−3)(k−4)(k−5)e, where e ≤ log2q. (20)

But, on the other hand, Corollary 10 yields k ≤ ⌊√
q + 1 + 9

2

⌋

< q
1
2 + 5. Hence, in

view of property (20), we have only a small number of possibilities to check, which
can easily be ruled out by hand using Lemma 8 (c). Therefore, G ≤ Aut(D) cannot
act flag-transitively on any non-trivial Steiner 6-design D. This has also been proven
in [9, Cor. 4.3], whereas our estimation is slightly better.

Case (3): N = Mv , v = 11,12,22,23,24.

Due to Corollary 10, we obtain for v = 11 or 12 that k ≤ 7, and for v = 22,23 or
24 that k ≤ 9, and the very small number of cases for k can easily be eliminated by
hand using Lemma 7.

Case (4): N = M11, v = 12.

By the same arguments as in the corresponding case in Main Theorem 1, it follows
that G ≤ Aut(D) cannot act on any Steiner t-design D.

This completes the proof of Main Theorem 2.
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