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Abstract A group G is called a CI-group if, for any subsets S, T ⊂ G, whenever
two Cayley graphs Cay(G, S) and Cay(G, T ) are isomorphic, there exists an element
σ ∈ Aut(G) such that Sσ = T . The problem of seeking finite CI-groups is a long-
standing open problem in the area of Cayley graphs. This paper contributes towards a
complete classification of finite CI-groups. First it is shown that the Frobenius groups
of order 4p and 6p, and the metacyclic groups of order 9p of which the centre has
order 3 are not CI-groups, where p is an odd prime. Then a shorter explicit list is given
of candidates for finite CI-groups. Finally, some new families of finite CI-groups are
found, that is, the metacyclic groups of order 4p (with centre of order 2) and of order
8p (with centre of order 4) are CI-groups, and a proof is given for the Frobenius group
of order 3p to be a CI-group, where p is a prime.
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1 Introduction

Let G be a finite group. For a subset S ⊆ G \ {1} with S = S−1 := {s−1 | s ∈ S}, the
Cayley graph of G with respect to S is the graph Cay(G, S) with vertex set G such that
x, y are adjacent if and only if yx−1 ∈ S. Clearly, each automorphism σ of G induces a
graph isomorphism from Cay(G, S) to Cay(G, Sσ ). A Cayley graph Cay(G, S) is called
a CI-graph of G if, whenever Cay(G, S) ∼= Cay(G, T ), there is an element σ ∈ Aut (G)
such that Sσ = T (CI stands for Cayley Isomorphism). A finite group G is called a
CI-group if all Cayley graphs of G are CI-graphs. We remark that, although stated in a
slightly different way, the definition of CI-groups is essentially the same as in [4,27].
This paper contributes towards the complete classification of finite CI-groups.

The problem of seeking CI-groups has received considerable attention over the past
thirty years, beginning with a conjecture of Ádám [1] that all finite cyclic groups were
CI-groups; refer to surveys in [2, 17, 27, 28]. Ádám’s conjecture was disproved by
Elspas and Turner [12]. Since then, many people have worked on classifying cyclic
CI-groups (see Djokovic [9], Babai [4], Alspach and Parsons [3], Pálfy [26] and
Godsil [13]), and finally, a complete classification of cyclic CI-groups was obtained
by Muzychuk [22, 23], that is, a cyclic group of order n is a CI-group if and only if
n = 8, 9, 18, k, 2k or 4k where k is odd and square-free. Babai [4] in 1977 initiated
the study of general CI-groups. Then Babai and Frankl [5] proved that if G is a CI-
group of odd order then either G is abelian, or G has an abelian normal subgroup of
index 3 and its Sylow 3-subgroup is either elementary abelian or cyclic of order 9 or
27. They [6] also showed that if G is an insoluble CI-group, then G = U × V with
(|U |, |V |) = 1, where U is a direct product of elementary abelian groups, and V = A5,
SL(2, 5), PSL(2, 13) or SL(2, 13). Recently the first author [16] proved that all finite
CI-groups are soluble. Moreover, Praeger and the first author obtained a description
of arbitrary finite CI-groups by the work of a series of papers [19–21].

The description for finite CI-groups given by [19–21] was obtained as a consequence
of a description of the so-called finite m-CI-groups (groups, all of whose Cayley graphs
of valency at most m are CI-graphs) for small values of m. The argument of [19–21]
is dependent on the classification of finite simple groups. One of the purposes of this
paper is to give an improvement of the description of finite CI-groups obtained in [21],
and moreover the argument used in the paper is independent of the classification of
finite simple groups. The first result of this paper shows that some groups in the list
of CI-group candidates given in [21] are not CI-groups.

Theorem 1.1. Let p be an odd prime, and let G be a group such that either G is a
Frobenius group of order 4p or 6p, or G is a metacyclic group of order 9p of which
the centre is of order 3. Then G is not a CI-group.

To state our description for finite CI-groups, we need some notation. For groups
G and H , denote by G � H a semidirect product of G by H , and denote by exp(G)
the largest integer which is the order of an element of G. In our list of candidates
for CI-groups, most members contain a direct factor defined as follows. Let M be an
abelian group of odd order for which all Sylow subgroups are elementary abelian, and
let n ∈ {2, 3, 4, 8} be such that (|M |, n) = 1. Let

E(M, n) = M � 〈z〉
Springer
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such that o(z) = n, and if o(z) is even then z inverts all elements of M , that is, xz = x−1

for all x ∈ M ; while if o(z) = 3 then xz = xl for all x ∈ M , where l is an integer
satisfying l3 ≡ 1 (mod exp(M)) and (l(l − 1), exp(M)) = 1. Let CI denote the class
of finite groups G defined by one of the following two items:

(1) G = U × V with (|U |, |V |) = 1, where all Sylow subgroups of G are elementary
abelian, or isomorphic to Z4 or Q8; moreover, U is abelian, and V = 1, Q8, A4,
Q8 × E(M, 3), E(M, n) where n ∈ {2, 3, 4}, or E(M, n) × E(M ′, 3) where n = 2
or 4, and |M |, |M ′| and 6 are pairwise coprime.

(2) G is one of the groups: Z8, Z9, Z18, Z9 � Z2 (= D18), Z9 � Z4 with centre of
order 2, Z2

2 � Z9 with centre of order 3, E(M, 8), or Zd
2 × Z9.

Then the following theorem shows that all finite CI-groups are in CI.

Theorem 1.2. Let G be a finite CI-group.

(a) If G does not contain elements of order 8 or 9, then G = H1 × H2 × H3, where
the orders of H1, H2, and H3 are pairwise coprime, and

(i) H1 is an abelian group, and each Sylow subgroup of H1 is elementary abelian
or Z4;

(ii) H2 is one of the groups E(M, 2), E(M, 4), Q8, or 1;
(iii) H3 is one of the groups E(M, 3), A4, or 1.

(b) If G contains elements of order 8, then G ∼= E(M, 8) or Z8.
(c) If G contains elements of order 9, then G is one of the groups Z9 � Z2, Z9 � Z4,

Z2
2 � Z9, or Z9 × Zn

2 with n ≤ 5.

However, the problem of determining whether or not a member of CI is really a
CI-group is difficult. Nowitz [25] proved that the elementary abelian group Z6

2 is not
a CI-group, and recently Muzychuk [24] proved that the elementary abelian group Zn

p

with n ≥ 2p − 1 + (
2p−1

p

)
is not a CI-group. Actually, finite CI-groups are very rare,

and the previously known examples are the following, where p is a prime:

Zn , where either n ∈ {8, 9, 18}, or n divides 4k and k is odd square-free
(Muzychuk [22, 23]);

Z2
p (Godsil [13] ); Z3

p (Dobson [10]);

Z4
p (Conder and Li [7] for p = 2, Hirasaka and Muzychuk [14] for p > 2);

D2p (Babai [4]); F3p, the Frobenius group of order 3p, (see [6]);
Z2

2 × Z3, Z5
2 (Conder and Li [7]); Q8; Z3 � Z8 (see [29]);

A4 (see [17]); Z3 � Z4, Z9 � Z2, Z9 � Z4, Z2
2 � Z9 (Conder and Li [7]).

Here we find some new families of CI-groups:

Theorem 1.3. For any odd prime p, the group

G = 〈a, z | a p = 1, zr = 1, z−1az = a−1〉, where r = 4 or 8,

of order 4p or 8p is a CI-group.
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In [6] the authors refer to a paper of Babai “in preparation” that would contain—
among others—the proof of the following result (Theorem 1.4). Since this paper has
never appeared, we find it appropriate to include a proof here. We also noticed that
Dobson [11] gave some results regarding the isomorphism problem of metacirculants
of order pq with p, q distinct primes.

Theorem 1.4. For a prime p ≡ 1 (mod 3), the Frobenius group of order 3p is a
CI-group.

Muzychuck’s result [23] and Theorems 1.3 and 1.4 motivate the following conjec-
ture, regarding a more general critical case for classifying CI-groups.

Conjecture 1.5. Let G be a meta-cyclic group which is a member of CI. Then G is a
CI-group.

After collecting some preliminary results in Section 2, Theorems 1.1 and 1.2 will
be proved in Sections 3 and 4, respectively. Theorems 1.3 and 1.4 will then be proved
in Sections 5 and 6, respectively.

2 Preliminary results

In this section, we collect some notation and results which will be used later.
Let G be a group. We use Z(G), �(G) and F(G) to denote the centre, the Frattini

subgroup and the Fitting subgroup of G, respectively. For H ≤ G, that is, H is a sub-
group of G, by H 
 G and H char G we mean H is a normal subgroup, a characteristic
subgroup, respectively, of G. Further, NG(H ) and CG(H ) denote the normaliser and
the centraliser of H in G, respectively. For a prime divisor p of |G|, by G p, G p′ and
Op(G) we mean a Sylow p-subgroup, a Hall p′-subgroup and the maximal normal
p-subgroup of G, respectively.

Let G be a permutation group on �. For a subset � ⊆ � and α ∈ �, we use G� and
Gα to denote the setwise stabiliser of � in G and the stabiliser of α in G, respectively.
For a G-invariant partition B of �, we use GB to denote the permutation group on B
induced by the action of G on B.

For a group G, let Ĝ denote the regular subgroup of the symmetric group Sym(G)
induced by the elements of G acting by right multiplication. Let Γ = Cay(G, S) be a
Cayley graph of the group G. It easily follows from the definition that Ĝ is a regular
subgroup of AutΓ . And, for X ≤ AutΓ , we always use X1 to denote the stabiliser of
the vertex 1 (corresponding to the identity of G) in X .

For a positive integer n and a graph Γ , denote by nΓ a graph which is a disjoint
union of n isomorphic copies of Γ . For graphs Γ and Σ , the wreath product Γ [Σ]
of Γ and Σ is a graph that has vertex set V Γ × V Σ such that {(a1, a2), (b1, b2)} is
an edge if and only if either {a1, b1} ∈ EΓ or a1 = b1 and {a2, b2} ∈ EΣ . A graph
Γ is said to be X-vertex-transitive or X-edge-transitive, where X ≤ Aut Γ , if X is
transitive on the vertex set or the edge set, respectively, of Γ .

The following simple property about CI-groups will be often used later.
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Lemma 2.1. If G is a CI-group, then all cyclic subgroups of the same order are
conjugate under Aut(G).

The next simple lemmas about CI-groups will be used in the proof of Theorem 1.2.

Lemma 2.2 ([5, Lemmas 3.2 and 3.5]). Let G be a CI-group. Then every subgroup
of G is a CI-group, and if N is a characteristic subgroup of G then G/N is a CI-group.

Lemma 2.3 (see [5, Lemma 5.1] and [23]). Let G be a CI-group. Then

(1) for any a ∈ G, o(a) = 8, 9, 18, k, 2k, or 4k, where k is odd and square-free;
(2) any Sylow subgroup of G is elementary abelian, Z4, Z8, Z9, or Q8.

To prove Theorems 1.3 and 1.4, we need a criterion of Babai for a Cayley graph to be
a CI-graph. Let Ĝ be the regular subgroup of Sym(G) induced by right multiplications
of elements of G, that is, Ĝ = {ĝ | g ∈ G}, where

ĝ : x �→ xg, for all x ∈ G.

Theorem 2.4 (Babai [4]). Let Γ be a Cayley graph of a finite group G. Then Γ is a
CI-graph if and only if, for any τ ∈ Sym(G) with Ĝτ ≤ Aut Γ , there exists α ∈ Aut Γ
such that Ĝα = Ĝτ .

The next lemma will be used to decide whether two given Cayley graphs are
isomorphic.

Lemma 2.5. Let G be a finite group, and let S, T ⊆ G \ {1} be such that S−1 = S
and T −1 = T . Then a permutation φ ∈ Sym(G) is an isomorphism from Cay(G, S) to
Cay(G, T ) if and only if (Sg)φ = T gφ for all elements g ∈ G.

Proof: Set Γ = Cay(G, S) and Σ = Cay(G, T ). If φ is an isomorphism from Γ to
�, then for each g ∈ G, we have (Sg)φ = (Γ (g))φ = Σ(gφ) = T gφ , where Γ (g) and
Σ(gφ) are the sets of neighbors of g and gφ in Γ and Σ , respectively.

On the other hand, let φ ∈ Sym(G) be such that (Sg)φ = T gφ for all g ∈ G. Then
for any x, y ∈ G, we have

{x, y} ∈ EΓ ⇐⇒ x ∈ Sy
⇐⇒ xφ ∈ (Sy)φ = T yφ

⇐⇒ {xφ, yφ} ∈ E�.

Thus φ is an isomorphism from Γ to Σ . �

Finally, we have a simple property about automorphisms of a metacyclic group.

Lemma 2.6. Let G = 〈a〉 � 〈z〉 such that Z(G) < 〈z〉. Then for each automorphism
σ ∈ Aut(G), we have zσ = ai z1+r , for some integers i and r, where zr ∈ Z(G).
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Proof: Let σ ∈ Aut(G). Then aσ = am and zσ = ai z j for some integers m, i, j . Now
z−1az = al for some integer l. Then

z− j am z j = (ai z j )−1am(ai z j ) = (z−1)σ aσ zσ = (z−1az)σ

= (al)σ = alm = (z−1az)m = z−1am z.

Thus z j−1 centralises am , and so z j−1 ∈ Z(G), that is, zσ = ai z1+( j−1). �

3 Proof of Theorem 1.1

The proof of Theorem 1.1 will be given in this section, consisting of three lemmas.
Throughout this section, p is an odd prime. For a positive integer n and two sets I ,
J of integers, by I ≡ J (mod n) we mean that each element of I is congruent to an
element of J , and vice versa.

Lemma 3.1. Let G be a Frobenius group of order 4p. Then G has Cayley graphs of
valency 6 which are not CI-graphs. In particular, G is not a CI-group.

Proof: Write

G = 〈a, z | a p = 1, z4 = 1, zaz−1 = al〉,

where l is of order 4 modulo p, that is, l2 ≡ −1 (mod p). Let

S = {az, a−1z, az2, a−1z2, al z3, a−l z3},
T = {al z, a−l z, az2, a−1z2, az3, a−1z3}.

As (az)−1 = al z3, (a−1z)−1 = a−l z3, (al z)−1 = a−1z3, (a−l z)−1 = az3, and
(a±1z2)2 = 1, we see that S−1 = S, T −1 = T , and |S| = |T | = 6. We claim that the
Cayley graphs Γ := Cay(G, S) and Σ := Cay(G, T ) are isomorphic.

Let φ be a permutation of G defined as follows:

φ : ai z j �−→ a(−1) j i z− j .

For any element g = ai z j ∈ G, straightforward calculation shows that

(Sg)φ = {a(−1) j+1(il+ε)z3− j , a(−1) j+1(i+ε)z2− j , a(−1) j (i+ε)l z1− j | ε = 1, −1},
T gφ = {a(−1) j+1il+εz3− j , a(−1) j+1i+εz2− j , a((−1) j i+ε)l z1− j | ε = 1, −1}.

It is easily shown that for any integers r, s and m, {(−1)m(r + s), (−1)m(r − s)} ≡
{(−1)mr + s, (−1)mr − s}. It follows that (Sg)φ = T gφ . By Lemma 2.5, φ is an iso-
morphism from Γ to Σ .
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Suppose that Sα = T for some α ∈ Aut(G). Then by Lemma 2.6, we have (a±1z)α =
a±l z, (a±1z2)α = a±1z2, and (a±l z3)α = a±1z3. It follows that (a±1z2)α = a±l z2,
which is a contradiction. Thus Γ is not a CI-graph, and G is not a CI-group. �

We can proceed similarly for the Frobenius groups of order 6p.

Lemma 3.2. Let G be a Frobenius group of order 6p. Then G has Cayley graphs of
valency 9 which are not CI-graphs. In particular, G is not a CI-group.

Proof: Now p is a prime such that p ≡ 1 (mod 6), and the group G has the following
presentation:

G = 〈a, z | a p = 1, z6 = 1, zaz−1 = al〉, where l is of order 6 modulo p.

In particular, l3 ≡ −1 (mod p), l4 ≡ −l (mod p), and l5 ≡ −l2 (mod p).
We take two subsets S and T of G\{1} as follows:

S = {az2, al2

z2, al4

z2, az3, al2

z3, al4

z3, al z4, al3

z4, al5

z4},
T = {al z2, al3

z2, al5

z2, az3, al2

z3, al4

z3, az4, al2

z4, al4

z4}.

Then S−1 = S, T −1 = T and |S| = |T | = 9. Set Γ = Cay(G, S) and Σ = Cay(G, T ).
Let φ be a permutation of G defined by

φ : ai z j �−→ al4 j i z− j = a(−1) j l j i z− j , where 0 ≤ i ≤ p − 1 and 0 ≤ j ≤ 5.

Then, for each element g = ai z j ∈ G, straightforward calculation (using the definition
of φ) shows that the two subsets (Sg)φ and T gφ satisfy:

(Sg)φ =

⎧⎪⎪⎨⎪⎪⎩
al4 j (l2−li)z4− j , al4 j (−l−li)z4− j , al4 j (1−li)z4− j ,

al4 j (1−i)z3− j , al4 j (l2−i)z3− j , al4 j (−l−i)z3− j ,

al4 j (−l2+l2i)z2− j , al4 j (l+l2i)z2− j , al4 j (−1+l2i)z2− j

⎫⎪⎪⎬⎪⎪⎭
T gφ =

⎧⎪⎨⎪⎩
al2−l4 j li z4− j , a−l−l4 j li z4− j , a1−l4 j li z4− j ,

a1−l4 j i z3− j , al2−l4 j i z3− j , a−l−l4 j i z3− j ,

a−l2+l4 j l2i z2− j , al+l4 j l2i z2− j , a−1+l4 j l2i z2− j

⎫⎪⎬⎪⎭
Noting that l6 ≡ 1 (mod p), we have that {l4 j , −ll4 j , l2l4 j } ≡ {1, −l, l2} (mod p). This
implies that (Sg)φ = T gφ . Thus by Lemma 2.5, the permutation φ is an isomorphism
from Γ to Σ .

Suppose that there exists α ∈ Aut(G) such that Sα = T . Then by Lemma 2.6, we
have aα = ai , and zα = a j z, where 0 ≤ i, j ≤ p − 1. Thus for k ∈ {0, 1, 2}, we have
(al2k

z2)α = ail2k+ j+ jl z2 ∈ T , and so il2k + j + jl ≡ l, l3 or l5 (mod p). Adding the
preceding three equations together and using the fact that 1 + l2 + l4 ≡ 0 (mod 4),
it follows that 3 j(l + 1) ≡ 0 (mod p). Hence j ≡ 0 (mod p) and so i ≡ −l2t ≡ l3+2t
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(mod p) for some t ∈ {0, 1, 2}. But then (az3)α = a−l2t
z3 = al3+2t

z3 �∈ T , which is a
contradiction since az3 ∈ S and Sα = T . Thus Γ is not a CI-graph, and G is not a
CI-group. �

The final lemma treats metacyclic groups of order 9p with centre of order 3.

Lemma 3.3. Let G be a metacyclic group of order 9p such that the centre of G
has order 3. Then G has Cayley graphs of valency 20 which are not CI-graphs. In
particular, G is not a CI-group.

Proof: We write G = 〈a, z | a p = z9 = 1, zaz−1 = al〉, where l �≡ 1(mod p) and l3 ≡
1(mod p). Noting that 3 divides p − 1, we have that p ≥ 7. Take two subsets of G as
follows:

S = {(am zk)±1 | m ∈ {0, 1, 3}, k ∈ {1, 4, 7}} ∪ {az3, a−1z6},
T = {(am zk)±1 | m ∈ {0, 1, 3}, k ∈ {1, 4, 7}} ∪ {a−1z3, az6}.

Then S−1 = S, T −1 = T and |S| = |T | = 20. Set Γ = Cay(G, S) and Σ = Cay(G, T ).
Let τ = (3 6)(4 7)(5 8) ∈ S9, and define a permutation φ of G as follows:

φ : ai z j �−→ ai z j τ

, where 0 ≤ i ≤ p − 1 and 0 ≤ j ≤ 8.

We claim that φ is an isomorphism from Γ to Σ . In the following, for an integer k,
kτ denotes kτ

0 , where k ≡ k0 (mod 9) and 0 ≤ k0 ≤ 8. For any g = ai z j ∈ G, noting
that l3 ≡ 1 (mod p), straightforward calculation shows that

(Sg)φ = {am+il z( j+k)τ , a(i−m)l−1

z( j−k)τ | m = 0, 1, 3, k = 1, 4, 7}⋃
{ai+1z( j+3)τ , ai−1z( j+6)τ },

T gφ = {am+il z j τ +k, a(i−m)l−1

z j τ −k | m = 0, 1, 3, k = 1, 4, 7}⋃
{ai−1z j τ +3, ai+1z j τ +6}.

Then further calculation shows that, for 0 ≤ j ≤ 8,

{( j + t)τ | t = 1, 4, 7, −1, −4, −7} ≡ { j τ + t | t = 1, 4, 7, −1, −4, −7},
( j + 3)τ ≡ j τ + 6, ( j + 6)τ ≡ j τ + 3. (mod 9).

It follows that (Sg)φ = T gφ . Therefore, φ is an isomorphism from Γ to Σ .
Now assume by way of contradiction that there exists an automorphism σ ∈ Aut(G)

such that Sσ = T . By Lemma 2.6, the automorphism σ has the form aσ = ar , zσ =
as z1+3t for 1 ≤ r ≤ p − 1, 0 ≤ s ≤ p − 1, 0 ≤ t ≤ 2. If we fix r, s, t then

Sσ = {(am ′
zk ′

)±1 | m ′ ∈ {s, r + s, 3r + s}, k ′ ∈ {1, 4, 7}} ∪ {ar z3, a−r z6}.
Springer
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Comparing Sσ with T we must have {s, r + s, 3r + s} ≡ {0, 1, 3} and r ≡
−1 (mod p). This leads to p ≤ 5, which is a contradiction. Thus Γ is not a CI-graph,
and hence G is not a CI-group. �

4 An explicit list of candidates for CI-groups

This section is devoted to proving Theorem 1.2. A group G is said to be coprime-
indecomposable if whenever G = A × B with (|A|, |B|) = 1 then A = 1 or B = 1.
We first treat a special case.

Lemma 4.1. Let G ∼= Zd
p � Zn, where p is a prime, d ≥ 1, n ≥ 2 and (p, n) = 1,

be a coprime-indecomposable CI-group. Then G is isomorphic to Z2
2 � Z3 (∼= A4),

Z2
2 � Z9, or E(Zd

p, n) with n ∈ {2, 3, 4, 8}; in particular, G ∈ CI.

Proof: Write G = N � L , where N ∼= Zd
p and L = 〈z〉 ∼= Zn . It is easily shown

using Lemma 2.1 and the coprime-indecomposable assumption that N ∩ Z(G) = 1,
and hence Z(G) = CL (N ).

Assume first that there exists an element a ∈ N such that z does not normalise 〈a〉.
Let b := az and c ∈ N \(〈a〉 ∪ 〈b〉); let S = {a, a−1, b, b−1}, and T = {a, a−1, c, c−1}.
Then 〈S〉 ∼= 〈T 〉, and Cay(〈S〉, S) ∼= Cay(〈T 〉, T ). Thus Cay(G, S) ∼= Cay(G, T ). Since
G is a CI-group, Sσ = T for some σ ∈ Aut(G). Now zσ = f zi for some f ∈ N and
some integer i , and so z−i aσ zi = (z−1az)σ = bσ . Thus {aσ , (aσ )−1, bσ , (bσ )−1} =
Sσ = T = {a, a−1, c, c−1}. It follows that {c, c−1} is conjugate by zi or z−i to {a, a−1}.
Thus, letting � = {{x, x−1} | x ∈ N \{1}}, we have that L = 〈z〉 acts by conjugation
transitively on �. The kernel of the L-action on � contains CL (N ) = Z(G). Thus
〈z〉 := 〈z〉/Z(G) is transitive on �, and so |�| = pd−1

(p−1,2)
divides the order of 〈z〉.

Since N is a characteristic subgroup of G, N is invariant under Aut(G). Let A
and I be the groups of automorphisms of N induced by Aut(G) and Inn(G), respec-
tively. Then 〈z〉 = I 
 A ≤ GL(d, p). It follows that A ≤ NGL(d,p)(I ) ∼= 
L(1, pd ) ∼=
Zpd−1 � Zd , see [15, II, 7.3]. In particular, |A| is divisor of (pd − 1)d.

Let � = {{x, x−1, y, y−1} | x, y ∈ N , 〈x, y〉 ∼= Z2
p}. Then for each tuple

{x, x−1, y, y−1} in �, the Cayley graph Cay(G, {x, x−1, y, y−1}) is isomorphic to
Cay(G, S). Since G is a CI-group, {x, x−1, y, y−1} is conjugate in Aut(G) to S. It
follows that A is transitive on �. Thus |�| divides |A|. Now |A| divides (pd − 1)d ,
and

|�| =

⎧⎪⎨⎪⎩
(2d − 1)(2d − 2), if p = 2;

pd − 1

2

( pd − 1

2
− p − 1

2

)
= (pd − 1)(pd − p)

4
, if p is odd.

Therefore, if p = 2, then (2d − 1)(2d − 2) divides (2d − 1)d, so that d = 2; while if p
is odd, then (pd−1)(pd−p)

4
divides (pd − 1)d , which is not possible. Thus (p, d) = (2, 2).

Since G is coprime-indecomposable, L is a cyclic 3-group. By Lemma 2.3, L ∼= Z3

or Z9. Thus G = Z2
2 � Z3

∼= A4, or G = Z2
2 � Z9 with centre of order 3.
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Assume next that z normalises every cyclic subgroup of N . Since G is coprime-
indecomposable, CL (N ) = Z(G) contains no Sylow subgroups of L .

Take an arbitrary element x ∈ N \{1}. Suppose that CL (x) contains a Sylow q-
subgroup Lq of L , where q is a prime divisor of n, that is, Lq ≤ CL (x). Then x lies
in the centre Z(F) of the subgroup F := N � Lq . Now F is a CI-group, and hence
all subgroups of F of order p are conjugate in Aut(F). Since Z(F) is a characteristic
subgroup of F , it follows that N ≤ Z(F), so F is abelian, which is a contradiction
since G is coprime-indecomposable. Thus no Sylow subgroup of L centralises x ; in
particular, z does not centralise x .

Let H = 〈x, z〉, and let H = H/Z(H ) = 〈x〉 � 〈z〉 ∼= Zp � Zm , where m is the
order of the image z. Then Z(H ) = 1, and by the conclusion given in the previous
paragraph, each prime divisor of n divides m. Now H is a CI-group, and so a subgroup
of Aut(H ) is transitive on the set {{zi , z−i } | (i, m) = 1}. By Lemma 2.6, an automor-
phismσ ∈ Aut(H ) is such that zσ = x j z for some j . Thus the set {{zi , z−i } | (i, m) = 1}
contains only one element, and so m = 2, 3, 4 or 6. By Theorem 1.1, we have m = 2
or 3, and by Lemma 2.3, o(z) ∈ {2, 3, 4, 8, 9}. Further, if o(z) is even, then z inverts
all elements of N ; while if o(z) = 3 or 9, then xz = xl where l3 ≡ 1 (mod p), and
l �≡ 1 (mod p). By Theorem 1.1, o(z) �= 9. Therefore, since x is an arbitrary element
of N , we conclude that G = E(Zd

p, n) for some n ∈ {2, 3, 4, 8}. �

Lemma 4.2. If G is a finite CI-group and P is a Sylow p-subgroup of G, then either
P is normal in G, or p ≤ 3 and P is cyclic.

Proof: We know (see [16]) that G is soluble. Let F(G) denote the Fitting subgroup of
G. Let us assume that P is not normal, so P �≤ F(G).

First suppose that P is elementary abelian. Then by Lemma 2.1, all subgroups of
order p are conjugate under Aut(G), and hence we see that P ∩ F(G) = 1. In particular,
(p, | F(G)|) = 1. In a soluble group CG(F(G)) ≤ F(G), and thus P does not centralise
F(G). Then there exists a prime r �= p such that R = Or (G) ≤ F(G) is not centralised
by P . Let H = R P . By Lemma 2.2, H is a CI-group as well, and hence the previous
argument yields that F(H ) = R. Thus |P| divides |Aut(R)|, and so R cannot be a
cyclic 2-group. If R is a cyclic 3-group, then |P| = 2. If R ∼= Q8, then |P| = 3,
since |Aut(Q8)| = 24. If R ∼= Z2

2, then again |P| = 3. So in these cases p = 2 or
3, and P is cyclic, as we have claimed. Therefore, we may assume that R is an
elementary abelian group of order at least 5. Let 1 �= z ∈ P . Then z acts nontrivially on
R. Thus L = R � 〈z〉 is a coprime-indecomposable CI-group, and hence Lemma 4.1
yields that L ∼= E(R, n) with n ∈ {2, 3, 4, 8}. So we see that p = 2 or 3. Moreover,
any other nontrivial element z′ ∈ P acts on R in the same way as z or z−1 does.
Hence P is cyclic, since otherwise z−1z′ or zz′ would act trivially on R, contrary to
CH (R) = CH (F(H )) ≤ F(H ) = R.

If P is not elementary abelian, then by Lemma 2.3 it is either cyclic of order 4,
8, or 9, or P is the quaternion group. We have to exclude the last possibility. We can
proceed similarly as in the previous paragraph, the only difference is that considering
subgroups of order 4 we can deduce just that |F(G) ∩ P| ≤ 2 and so 4 must divide
|Aut(R)|, and further, F(G) is not a 2-group. �
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Lemma 4.3. If G is a CI-group and P is a normal Sylow p-subgroup of G, then
either |G : CG(P)| ≤ 3, or P is the quaternion group and G = P × H with a normal
subgroup H of odd order.

Proof: First let us consider the case when P is the quaternion group. Let H be
a complement to P in G. Then |H | is odd and |H : CH (P)| divides |Aut(P)| = 24.
Hence either H centralises P and so G = P × H , or there is an element z of 3-power
order in H not centralizing P . By Lemma 2.3, z has order 3 or 9, hence P � 〈z〉 is
isomorphic to one of the groups Q8 � Z3 or Q8 � Z9. However, these groups are not
CI-groups (see [7]).

Now let P be a normal abelian Sylow p-subgroup of G. If P is a cyclic 2-group,
then CG(P) = G. If P ∼= Z2

2, then |G : CG(P)| divides 3. If P ∼= Z3 or Z9, then
|G : CG(P)| ≤ 2. So we may assume that P is elementary abelian of order at least
5, by Lemma 2.3. Let H be a complement to P in G, z ∈ H be an element not
centralizing P and set L = P � 〈z〉. Then L/Z(L) is a coprime-indecomposable CI-
group, and hence Lemma 4.1 yields that L/Z(L) ∼= E(P, n) for some n ∈ {2, 3, 4, 8}.
Therefore, for every z ∈ H there is a k such that z−1xz = xk for all x ∈ P and ei-
ther k = −1 or k3 ≡ 1 (mod p). So the group of automorphisms induced by G on
P is cyclic and every induced automorphism has order at most 3. Thus we have
|G : CG(P)| ≤ 3. �

As usual, let Op′
(G) denote the smallest normal subgroup of index not divisible

by p. Obviously, Op′
(G) is a characteristic subgroup; it is the subgroup generated

by all Sylow p-subgroups of G. Clearly, Op′
(Op′

(G)) = Op′
(G) and Op′

(G) has no
non-trivial direct product decompositions with a p′-factor. Recall that H is a Hall
subgroup in G if |H | and |G : H | are coprime.

Lemma 4.4. If G is a CI-group, then O2′
(G) and O3′

(G) are Hall subgroups in G.

Proof: Let p = 2 or 3, let r be a prime divisor of |Op′
(G)| and R a Sylow r -subgroup

of G. We have to show that R ≤ Op′
(G). If r = p, then Op′

(G) contains all Sylow
p-subgroups of G by definition. Let r �= p. If R is elementary abelian, then we can use
Lemma 2.1 to see that Op′

(G) contains all elements of order r . So we may assume that
R is not elementary abelian, that is, either R is cyclic of order 4, 8, or 9, or R ∼= Q8.
The last case is impossible, since by Lemmas 4.2 and 4.3 we would have G = R × H ,
and so O3′

(G) ≤ H would have odd order.
Let P be a Sylow p-subgroup of G. The lemma follows if P is normal. So we may

assume that P is not normal in G in which case Lemma 4.2 gives that P is also cyclic.
Let N be the product of all normal Sylow s-subgroups of G for s ≥ 5 (cf. Lemma 4.2).
Then G/N is a {2, 3}-group and now both the Sylow 2-subgroup and the Sylow 3-
subgroup of G/N are cyclic. Hence G/N is either cyclic, or G/N ∼= Z3i � Z2 j and is
not cyclic. In either case O3′

(G) has odd order, and hence p = 2, r = 3 and i = 2. In
the first case |O2′

(G)| is not divisible by 3, so the second case occurs, and then O2′
(G)

does indeed contain a Sylow 3-subgroup of G. �

Lemma 4.5. If G is a CI-group, then either O2′
(G) ∩ O3′

(G) = 1, or one of these
subgroups contains the other.
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Proof: Using the previous lemma, we see that if 3 divides |O2′
(G)|, then O3′

(G) ≤
O2′

(G). Symmetrically, 2 dividing |O3′
(G)| implies that O2′

(G) ≤ O3′
(G). So let us

suppose that neither of these occurs, that is, the order of the intersection I = O2′
(G) ∩

O3′
(G) is not divisible by 2 and 3.
Assume by way of contradiction that I is nontrivial. We know that I is a normal Hall

subgroup of G. Let r be a prime divisor of |I | and R a Sylow r -subgroup in G. Then
r ≥ 5, and Lemma 4.2 yields that R is normal in G. By Lemma 4.3 |G : CG(R)| ≤ 3.
Suppose that |G : CG(R)| = 3. Then CG(R) ≥ O2′

(G), so R lies in the centre of O2′
(G).

By Burnside Transfer Theorem, R has a complement K2 say in O2′
(G). Then O2′

(G) =
R × K2, which a contradiction. Similarly, the index |G : CG(R)| = 2 leads to a direct
decomposition O3′

(G) = R × K3; and |G : CG(R)| = 1 implies G = R × K1. �

Recall that E(M, 2 j ) = M � Z2 j and M is abelian of odd order whose Sylow sub-
groups are all elementary abelian.

Lemma 4.6. If G is a CI-group with O2′
(G) = G, then G is one of the following

groups: Zn
2 , Z4, Z8, Q8, E(M, 2 j ) ( j = 1, 2, 3), Z9 � Z2, Z9 � Z4.

Proof: Let P be a Sylow 2-subgroup of G. If P is normal in G, then G = O2′
(G) = P

and Lemma 2.3 gives the result. Otherwise, Lemma 4.2 yields that P is cyclic. Then
NG(P) = CG(P), and so P has a normal complement N , that is G = N � P . Let
r ≥ 5 be a prime divisor of |G| and R a Sylow r -subgroup of G. Then R is normal
in G and |G : CG(R)| ≤ 3 (see Lemmas 4.2 and 4.3). Arguing as in the proof of
Lemma 4.5, we obtain that |G : CG(R)| = 2. So R lies in the centre of N . Hence
also the Sylow 3-subgroup of N is normal and N is the direct product of its Sylow
subgroups. It follows from Lemma 2.3 that the Sylow 3-subgroup is either elementary
abelian, or cyclic of order 9. By Lemma 2.3, a CI-group cannot contain elements of
order 9k for k ≥ 3. Hence N is either a direct product of elementary abelian groups
or N ∼= Z9. Let us choose a generator z ∈ P . Applying Lemma 4.1 to R � P for
each Sylow subgroup R of N we obtain that z−1xz = x−1 for every x ∈ N , and thus
G ∼= E(N , 2 j ) or Z9 � Z2 j for j = 1, 2, or 3. In fact, Z9 � Z8 cannot occur, since it
contains elements of order 36. �

Lemma 4.7. If G is a CI-group with O3′
(G) = G, then G is one of the following

groups: Zn
3 , Z9, E(M, 3), Z2

2 � Z3, Z2
2 � Z9.

Proof: Let P be a Sylow 3-subgroup of G. If P is normal in G, then O3′
(G) = P and

Lemma 2.3 gives the result. Otherwise, Lemma 4.2 yields that P is cyclic.
If a Sylow 2-subgroup of G is cyclic, then G has a normal subgroup of index 2,

contrary to the assumption O3′
(G) = G. Now Lemma 4.2 yields that the Sylow 2-

subgroup of G is normal. If it is isomorphic to the quaternion group, then Lemma 4.3
gives a contradiction. So the Sylow 2-subgroup of G is elementary abelian and of
order at least 4.

Let r �= 3 be a prime divisor of |G| and let R be a Sylow r -subgroup in G. Then
R 
 G. Since O3′

(G) = G, we conclude that R P is coprime-indecomposable. Then
Lemma 4.1 gives that R P is either E(R, 3) (if r �= 2) or Z2

2 � Z3 j ( j = 1 or 2). It
remains to show that a prime r ≥ 5 and 2 cannot simultaneously divide the order of G.
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Suppose that |G| is even and |G| has a prime divisor r ≥ 5. Then, by the pre-
vious argument, we may write G = (Z2

2 × M) � Z3, and so there exist elements
a0, a1, b, z ∈ G such that o(a0) = o(a1) = 2, o(b) = r , o(z) = 3 and az

0 = a1 and
bz = bl where l3 ≡ 1 and l �≡ 1 (mod r ). Set S = {a0bl , (a0bl)−1, a1b, (a1b)−1} and
T = {a0b, (a0b)−1, a1bl , (a1bl)−1}. Then 〈S〉 = 〈T 〉 = 〈a0, a1, b〉 = Z2

2 × Zr , and
there exists σ ∈ Aut(〈S〉) ∼= Aut(Z2

2) × Aut(Zr ) such that (a1b)σ = a0b and (a0bl)σ =
a1bl . Thus Cay(〈S〉, S) ∼= Cay(〈T 〉, T ) and so Cay(G, S) ∼= Cay(G, T ). Since G is a
CI-group, Sρ = T for some ρ ∈ Aut(G). Thus (a0bl , a1b)ρ = ((a0b)ε, (a1bl)ε

′
) or

((a1bl)ε
′
, (a0b)ε) where ε, ε′ = ±1. It follows that either

(a0, a1)ρ = (a0, a1) and (bl , b)ρ = (bε, blε′
), or

(a0, a1)ρ = (a1, a0) and (bl , b)ρ = (blε′
, bε).

If the first line above holds, then bρ = blε′
, and bε = (bl)ρ = (bρ)l = bl2ε′

which im-
plies that r = o(b) divides l2 ± 1, which is a contradiction. Hence the second line
holds, and since zρ = czi for some c ∈ Z2

2 × M and some i = 1 or −1, we have
that a0 = aρ

1 = (z−1a0z)ρ = (czi )−1a1czi = z−i a1zi . Thus i = −1, and thus blε′ =
(bl)ρ = (z−1bz)ρ = (cz−1)−1bεcz−1 = zbεz−1 = bl2ε. Therefore, r divides l2 ± l,
which is not possible. �

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2: If O2′
(G) ≥ O3′

(G) > 1, then let H2 = O2′
(G) and H3 = 1.

If O3′
(G) ≥ O2′

(G) > 1, then let H3 = O3′
(G) and H2 = 1. Otherwise, we know from

Lemma 4.5 that O2′
(G) ∩ O3′

(G) = 1. In this case, if O2′
(G) is nonabelian, then let

H2 = O2′
(G), else put H2 = 1, and if O3′

(G) is nonabelian, then let H3 = O3′
(G), else

put H3 = 1. So we have defined H2 and H3 in all cases. Note that both of them are Hall
subgroups of G. If r is a prime not dividing |H2 H3|, then either r = 2 or 3 and Or ′

(G)
is an abelian Sylow r -subgroup of G, or r ≥ 5. In all cases the Sylow r -subgroup is
normal in G, by Lemma 4.2. Finally, let H1 be the product of these Sylow subgroups.

Then it is clear, using Lemmas 4.4 and 4.5, that the orders of H1, H2, and H3 are
pairwise coprime, and G is the direct product of these subgroups. One can see that H1

is abelian, while H2 and H3 are either nonabelian or trivial.
Let us assume first that G does not contain elements of order 8 or 9. Then the Sylow

subgroups of H1 are elementary abelian, except that the Sylow 2-subgroup can also
be Z4. The structure of H2 as described in Theorem 1.2(a) follows from Lemma 4.6,
and for H3 from Lemma 4.7.

If G contains elements of order 8, then it cannot contain any elements of order 8k
with k ≥ 2 (see Lemma 2.3). Exactly one of the direct factors must contain an element
of order 8, hence the group is directly indecomposable. From Lemma 4.7 we see that
H3 cannot contain any element of order 8. Hence either G = H1

∼= Z8, or G = H2
∼=

E(M, 8), as follows from Lemma 4.6. Thus we obtain part (b) of Theorem 1.2.
If G contains elements of order 9, then it cannot contain any elements of order

9k with k ≥ 3, see Lemma 2.3. If H3 contains elements of order 9, then G = H3
∼=

Z2
2 � Z9 by Lemma 4.7. If H2 contains elements of order 9, then G = H2

∼= Z9 � Z2 j

( j = 1 or 2) by Lemma 4.6. Finally, if H1 contains elements of order 9, then H2

could only contain elements of order 2, but then it would be abelian, contrary to the
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construction, so H2 = 1 in this case. Hence G = H1 = Z9 × Zn
2 for some n. By the

result of Nowitz [25], n ≤ 5. Thus we have proved part (c) of Theorem 1.2 as well. �

5 Proof of Theorem 1.3

It is known that the groups Z3 � Z4 and Z3 � Z8 are CI-groups, see Royle [29]. Let
p ≥ 5 be a prime throughout this section, and let

G = 〈a, z | a p = 1, z8 = 1, z−1az = a−1〉.

Let Γ = Cay(G, S) be an undirected Cayley graph, and let A = AutΓ .
Assume that S ⊂ 〈a, z2〉 ∼= Z4p. Then by [23], Cay(〈S〉, S) is a CI-graph of 〈S〉. It is

easily shown that every automorphism of 〈a, z2〉 can be extended to an automorphism
of G. It then follows that Γ is a CI-graph of G.

Thus we assume that S �⊆ 〈a, z2〉. Also, replacing Γ by its complementary graph
if necessary, we may assume that |S| < 4p.

Let P be a Sylow p-subgroup of A with â ∈ P . Consider the action of P on V Γ .
It is easily shown that either P has exactly 8 orbits in V Γ , all of which are of length
p, or p = 5 or 7, and P has exactly one orbit of length p2 and 8 − p orbits of length
p. Accordingly, we use different subsections to treat separate cases.

5.1 |P| = p

By Lemma 2.2, it suffices to only consider Zp � Z8. A simple counting argument
shows that the number of n-cycles in Sn is (n − 1)!. In particular, the number of 8-
cycles in S8 is 24 · 32 · 5 · 7. Further, it is easily shown that S8 has exactly 32 · 5 · 7
Sylow 2-subgroups, all 8-cycles are conjugate in S8, and CS8

(π ) = 〈π〉 for an 8-
cycle π of S8. Hence each Sylow 2-subgroup of S8 contains at least sixteen 8-cycles.
Moreover, the following lemma shows that each Sylow 2-subgroup of S8 contains
exactly sixteen 8-cycles, and so any pair of Sylow 2-subgroups contain no common
8-cycles.

Lemma 5.1. Let μ = (0 2 4 6), ν = (1 2)(3 4)(5 6)(7 0) and τ = (2 6). Set R =
〈μ, τ, ν〉. Then R is a Sylow 2-subgroup of S8, and R contains exactly four cyclic
subgroups of order 8, which are 〈π〉, 〈πτ 〉, 〈πτπ 〉 and 〈πρ〉, where π = μν =
(0 1 2 3 4 5 6 7) and ρ = ττπ = (2 6)(3 7).

Proof: Straightforward calculation shows that R is a Sylow 2-subgroup of S8, and
R contains four cyclic subgroups of order 8, say, 〈π〉, 〈πτ 〉, 〈πτπ 〉 and 〈πρ〉, where
π = μν = (0 1 2 3 4 5 6 7) and ρ = ττπ = (2 6)(3 7). Further, these four subgroups
contain sixteen different 8-cycles.

Since R < S4 � S2 < S8, we may write R ∼= D8 � S2. Now we need only to show D8 �
S2 contains at most sixteen elements of order 8. Set D8 = 〈a, b | a4 = b2 = 1, bab =
a−1〉, and S2 = 〈η〉. Let θ ∈ D8 � S2 be of order 8. Then θ = (x, y; η) for some x, y ∈
D8, and hence θ2 = (xy, yx ; 1) is of order 4. Thus, either x, y ∈ 〈a〉, or x, y ∈ D8\〈a〉.
We first assume that x, y ∈ 〈a〉. Then x = ai and y = a j for some integers i and j , and
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so xy = ai+ j = yx . It follows that ai+ j is of order 4, and hence i + j is odd, where
0 ≤ i, j ≤ 3. Therefore, in this case, (x, y) has at most 8 choices. Now x, y ∈ D8\〈a〉.
Then x = ai b and y = a j b for some integers i and j , and so xy = ai− j = (yx)−1. It
follows that ai− j is of order 4, and hence i − j is odd. Thus, if x, y ∈ D8\〈a〉, then
(x, y) has at most 8 choices. Then, the above argument indicates that D8 � S2 contains
at most sixteen elements of order 8. This completes the proof. �

The next lemma shows that if |P| = p then Γ is a CI-graph. Recall that Ĝ is the
regular subgroup of Sym(G) induced by right multiplications of elements of G.

Lemma 5.2. Assume that A = AutΓ contains another regular subgroup G̃ = 〈ã〉 �
〈z̃〉 ∼= Ĝ. If 〈â〉 and 〈ã〉 are conjugate in A, then Ĝ and G̃ are also conjugate in A. In
particular, if |P| = p then Γ is a CI-graph.

Proof: Suppose that 〈â〉 and 〈ã〉 are conjugate in A. Then, replacing G̃ by a suitable
conjugate if necessary, we may assume that ã = â, and thus ẑ, z̃ ∈ NA(〈â〉) and â ẑ =
â−1 = â z̃ . Let Q be a Sylow 2-subgroup of NA(〈â〉) such that z, z̃ ∈ Q. Then the
length of any orbit of Q is 2r ≥ 8, and hence there exists an orbit � of length 8. Since
〈ẑ〉 and 〈z̃〉 are semi-regular, they are transitive on �. Since Ĝ is transitive on V Γ , we
may assume that 1 ∈ �, so that � = {1, z, z2, . . . , z7}.

Let π and π̃ be the permutations on the set {0, 1, . . . , 7} induced by the ac-
tions of ẑ and z̃ on � such that (zi )ẑ = ziπ

and (zi )z̃ = zi π̃

, respectively. Then
π = (0 1 2 3 4 5 6 7). Consider the action of z̃ on V Γ . For integers i and j , since
(zi a j )z̃ = (zi )â j z̃ = (zi )z̃â− j = ((zi )z̃)â− j = zi π̃

a− j , the action of z̃ on � is indepen-
dent of j . Hence π̃ uniquely determines the action of z̃ on V Γ , and so uniquely
determines the element z̃ of G̃. By Lemma 5.1, a Sylow 2-subgroup of S8 contains ex-
actly four cyclic subgroups of order 8, 〈π〉, 〈πτ 〉, 〈πτπ 〉 and 〈πρ〉, where τ = (2 6) and
ρ = ττπ = (2 6)(3 7). Then we may assume that 〈π̃〉 is one of these four subgroups.

Next we prove that Ĝ and G̃ are conjugate in A. For ω ∈ S8, let fω ∈ Sym(V Γ )
be such that for any integers i and j , (zi a j ) fω = ziω

a j . Then (zi a j ) f −1
ω â fω = (zi a j )â

and (zi a j ) fω fω′ = ziωω′
a j = (zi a j ) fωω′ , for all integers i, j , and so â fω = f −1

ω â fω = â
and fω fω′ = fωω′ , for any ω, ω′ ∈ S8. In particular, f −1

ω = fω−1 for ω ∈ S8, fτ and
fρ centralise â, and further, 〈z̃〉 is one of 〈ẑ〉, 〈ẑ fτ 〉, 〈ẑ fτπ 〉 and 〈ẑ fρ 〉. Without loss of
generality, we assume Ĝ �= G̃. Then, replacing z̃ by a power of z̃ if necessary, we may
assume that z̃ = ẑ fτ , ẑ fτπ or ẑ fρ .

Assume first that z̃ = ẑ fτ . Then f −1
τ Ĝ fτ = G̃; in particular, f −1

τ ẑ fτ ∈ G̃ ≤ A.

Thus we only need to show fτ ∈ A. For integers i and j , we have (zi a j ) f −1
τ ẑ fτ ẑ−1 =

(zi τ

a j z) fτ ẑ−1 = (zi τ +1a− j ) fτ ẑ−1 = (zi τπ

a− j ) fτ ẑ−1 = (zi τπτ

a− j )ẑ−1 = zi τπτπ−1

a j = (zi a j ) fσ ,

and hence f −1
τ ẑ fτ ẑ−1 = fσ with σ = τπτπ−1 = (1 5)(2 6), and fσ ∈ A1. Further,

f
σπk = ẑ−k fσ ẑk ∈ A1, where k ∈ {0, 1, 2, 3}, and hence S f

σπk = S. It follows
that zi a j ∈ S if and only if zi+4a j ∈ S. Taking zi a j , zi ′

a j ′ ∈ V Γ , we have

(zi ′
a j ′

)(zi a j )−1 = zi ′−i a(−1)i ( j ′− j) and (zi ′
a j ′

) fτ ((zi a j ) fτ )−1 = zi ′τ −i τ

a(−1)iτ ( j ′− j). Not-
ing that (i ′)τ − i τ ≡ i ′ − i (mod 4) and (−1)i τ = (−1)i , we see that zi ′−i a(−1)i ( j ′− j) ∈ S
if and only if z(i ′)τ −i τ

a(−1)iτ ( j ′− j) ∈ S. It follows that fτ ∈ A.
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Assume now that z̃ = ẑ fτπ . Calculation shows that ẑ fτπ = (ẑ fτ )ẑ . Then G̃ =
〈ã, z̃〉 = 〈â, ẑ fτπ 〉 = 〈â, (ẑ fτ )ẑ〉 = Ĝ fτ ẑ . By the previous paragraph, fτ ∈ A and so
fτ ẑ ∈ A. Hence G̃ and Ĝ are conjugate in A.

Assume finally that z̃ = ẑ fρ . Then fρ centralises â, and hence Ĝ fρ = G̃. More-
over, we have f −1

ρ ẑ fρ ẑ−1 = fσ ′ with σ ′ = (1 5)(3 7) and ẑ−1 f −1
ρ ẑ fρ = fρ ′ with

ρ ′ = (0 4)(2 6). It is now easily shown that fσ ′ , fρ ′ ∈ A. A similar argument as above
leads to fρ ∈ A.

Therefore, in all the cases, Ĝ and G̃ are conjugate in A.
In particular, if |P| = p, then 〈â〉 and 〈ã〉 are two Sylow p-subgroups of A, hence

they are conjugate (in A). It follows that Ĝ and G̃ are conjugate (in A), and so Γ is a
CI-graph. �

5.2 |P| > p and P has exactly 8 orbits, of length p

Hereafter, we assume that |P| = pn for some integer n > 1.

Lemma 5.3. Assume that |P| > p and P has 8 orbits of length p. Then Γ is a CI-
graph.

Proof: By the assumption, â ∈ P , and |P| = pn for some n > 1. Let B =
{B0, B1, . . . , B7} be the set of the 8 orbits of P . Then 〈â〉 is transitive on each Bi ,
and further, 〈ẑ〉 is regular on B. Without loss of generality, assume that Bẑ

i = Bi+1

(reading the subscripts modulo 8).
Let �(P) be the Frattini subgroup of P . Since â ∈ P and P has exactly 8 orbits

on V Γ , all of which have length p, the subgroup �(P) fixes all vertices of Γ . Thus
�(P) = 1, and so P ∼= Zn

p is elementary abelian.

Let Pi be the kernel of P acting on Bi , for 0 ≤ i ≤ 7. Then Pi
∼= Zn−1

p , and P =
〈â〉Pi . Further, Pẑ = 〈â〉ẑ P ẑ

i = 〈â〉Pi+1 = P , and so ẑ normalises P .
Let M = NA(P). Then Ĝ ≤ M , and in particular, M is transitive on V Γ . Since P

is normal in M , B is an M-invariant partition of V Γ .
Let K be the kernel of M acting on B. Then 〈â〉 ≤ P ≤ K 
 M ; in particular,

K is transitive on each Bi . Let Ki be the kernel of K acting on Bi , where 0 ≤ i ≤
7. Then Pi ≤ Ki = K ẑi

0 ; in particular |Ki | = |K0|, for 0 ≤ i ≤ 7, and pn−1 divides
|Ki |. In particular, Ki �= 1. Since |Bi | = p and K0 
 K , the action of K0 on Bi is
either transitive or trivial. Suppose that K0 is trivial on Bi for some i . Then K0 ≤
Ki , and hence K0 = Ki = K ẑi

0 . If i is odd, then it follows that K0 = K j for all j ∈
{0, 1, . . . , 7}, so K0 fixes all vertices of Γ , which is not possible. Thus i is even, and so
K0 is transitive on B j for j = 1, 3, 5 or 7. It follows that S ∩ B j = ∅ or B j , where j ∈
{1, 3, 5, 7}. Noting that |S| < 4p, S �⊆ 〈a, z2〉, B−1

1 = B7 and B−1
3 = B5, we conclude

that exactly one of B1 ∪ B7 and B3 ∪ B5 is contained in S, say B1 ∪ B7 ⊆ S. Then we
may write S = B1 ∪ B7 ∪ S0, where S0 = S ∩ 〈a, z2〉.

Let Γ1 = Cay(G, B1 ∪ B7) and Γ0 = Cay(G, S0). Then Γ is an edge-disjoint union
of Γ1 and Γ0. Since K0 ≤ M1 (the stabilizer of 1 in M) and K0 is transitive on B1, the
subgraph Γ1 is M-edge-transitive. Since |S| < 4p, the subgraph Γ0 has valency less
than 2p, and hence Γ0 is an edge-disjoint union of M-edge-transitive subgraphs of Γ .

Let T ⊂ G be such that Σ := Cay(G, T ) ∼= Γ , and let Y = AutΣ . Let Q be a
Sylow p-subgroup of Y which contains â, and let N = NY (Q). Arguing as above,
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we have that T = (Bi ∪ B8−i ) ∪ T0, where i = 1 or 3, and T0 ⊂ 〈a, z2〉, such that
Σ1 := Cay(G, Bi ∪ B8−i ) is N -edge-transitive, and Σ0 := Cay(G, T0) is an edge-
disjoint union of N -edge-transitive subgraphs of Σ and has valency less than 2p.

Let σ be an isomorphism from Γ to Σ . Then σ ∈ Sym(V Γ ) is such that σ−1 Aσ =
Y . Since σ−1 Pσ and Q are Sylow p-subgroups of Y , there exists y ∈ Y such that
y−1σ−1 Pσ y = Q. Since N is transitive on V Σ , there exists x ∈ N such that (1σ y)x =
1. Let τ = σ yx . Then τ is an isomorphism fromΓ toΣ such that 1τ = 1, and τ−1 Pτ =
Q. Thus τ−1 Mτ = N . Note that Γ1 is the unique M-edge-transitive subgraph of Γ

and Σ1 is the unique N -edge-transitive subgraph of Σ , of valency 2p. We conclude
that Γ τ

1 = Σ1. Hence also Γ τ
0 = Σ0.

Since S0, T0 ⊂ H := 〈a, z2〉, it follows that Cay(H, S0) ∼= Cay(H, T0). Since H ∼=
Z4p is a CI-group, there exists α0 ∈ Aut(H ) such that Sα0

0 = T0. It is easily shown
that there exists α ∈ Aut(G) such that the restriction of α to H equals α0, so Sα

0 = T0.
Obviously, (B1 ∪ B7)α = B1 ∪ B7 or B3 ∪ B5.

Let ρ ∈ Aut(G) be such that aρ = a−1 and zρ = z3. Then (B1 ∪ B7)ρ = B3 ∪ B5,
and for each g ∈ H , we have gρ = g−1. Since T0 = T −1

0 , we conclude that T ρ

0 =
T0, and so (B1 ∪ B7 ∪ T0)ρ = (B3 ∪ B5 ∪ T0). It then follows that either Sα = T , or
Sαρ = T . So Γ is a CI-graph. �

5.3 |P| > p and P has an orbit of length p2

In this case, it is easily shown that p = 5 or 7. This subsection proves the following
lemma.

Lemma 5.4. Assume that |P| > p and that P has an orbit of length p2. Then Γ is a
CI-graph.

Proof: Suppose that A is primitive on V Γ . Since Γ is not a complete graph, A is
not 2-transitive on V Γ . Now |V Γ | = 8p = 40 or 56. By [8, Appendix B], either
p = 5 and soc(A) = PSL(4, 3) or PSU(4, 2), or p = 7 and soc(A) = A8 or PSL(3, 4).
In either case, it follows that p2 does not divide |A|, which is a contradiction.

Thus A is imprimitive. Let B := {B0, B1, . . . , Bt−1} be a non-trivial A-invariant
partition of V Γ such that 1 ∈ B0. Let � be the orbit of P of length p2, and let
C := {B0, B1, . . . , Bs−1} be the orbit of P on B such that � ⊆ ∪s−1

i=0 Bi . Then s is a
power of p, and as 2p2 > 8p, we have s ≤ t < 2p. Thus s = p. For each element
x ∈ P and each i < s, (Bi ∩ �)x = Bx

i ∩ �x = B j ∩ � for some j < s. Since P is
transitive on � and C, it follows that P acts transitively on {Bi ∩ � | 0 ≤ i < s}.
In particular, |Bi ∩ �| = |B0 ∩ �| for all i < s. Now p2 = |�| = | ∪s−1

i=0 (Bi ∩ �)| =
s|B0 ∩ �| = p|B0 ∩ �|. Hence |B0 ∩ �| = p, and it then follows that |B0| = p or 8.
Since |B0 ∩ �| = p, we know that PB0

is non-trivial on B0, and so AB0

B0
contains an

element of order p. Further, sinceB is G-invariant, it follows that â or ẑ lies in AB0
, and

hence AB0

B0
contains a cyclic regular subgroup. If |B0| = p then AB0

B0
is primitive, while

if |B0| = 8 then since p divides |AB0
| it follows that AB0

B0
is primitive too. Hence AB0

B0
is

primitive. Since A is transitive on B, AB
B is primitive for each B ∈ B. Since s = p, P

is non-trivial on B, and so AB contains elements of order p. Now |B| = 8p
|B0| = 8 or p.

If |B| = p then AB is primitive; if |B| = 8 then since p divides |AB| it follows that AB

is primitive. Further, it is easily shown that AB contains a cyclic regular subgroup. It is
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known that the primitive permutation groups X containing a cyclic regular subgroup
of order m = p or 8 are as follows, see for example [18, Corollary 1.2]:

(i) m = p, and X is one of the groups: Zp:Zl with l divides p − 1, GL(3, 2) with
p = 7, Ap or Sp;

(ii) m = 8, and X = PGL(2, 7) or S8.

We observe that each non-trivial normal subgroup of X is primitive.
Let K be the kernel of A acting on B. Then G/G ∩ K ∼= G K/K < AB, and it

follows that â or ẑ2 lies in K ; so in particular, K �= 1. It then follows that 1 �= K B 
 AB
B

for each B ∈ B, and hence K B is primitive.
Assume that K ∼= K B , where B ∈ B. If |B| = p, then K B = Zp:Zl ′ with l ′ dividing

p − 1, GL(3, 2), Ap or Sp, and AB = PGL(2, 7), or S8. On the other hand, if |B| = 8,
then K B = PSL(2, 7), PGL(2, 7), A8 or S8, and AB = Zp:Zl ′ with l ′ dividing p − 1,
GL(3, 2), Ap or Sp. It then follows that either A = K .AB = K × L where L ∼= AB,
or A = K .AB ∼= (K × L).Z2 where L is a subgroup of AB of index 2. Let G̃ =
〈ã〉 � 〈z̃〉 ∼= G be a regular subgroup of A. Note that K × L is transitive on V Γ , the
set of orbits of L form a non-trivial A-invariant partition of V Γ and none of A/K and
A/L has a subgroup isomorphic to Zp � Z8 with centre Z4. Then, in either case, â
and ã lie in one of K and L , and hence 〈â〉, 〈ã〉 are conjugate in K or L , and of course,
in A. By Lemma 5.2, all regular subgroups of A isomorphic to G are conjugate. Thus
Γ is a CI-graph.

Assume now that K acts unfaithfully on Bi . Let Ki be the kernel of K acting
on Bi , where 0 ≤ i ≤ |B|. Since G is transitive on V Γ and normalises K , we have
Ki = K x

0 for some x ∈ G. In particular |Ki | = |K0|. Since K0 �= 1, we have that

K
B j

0 �= 1 for some j , and as K
B j

0 
 K B j and K B j is primitive, K
B j

0 is transitive. Thus the
subgraph [B0, B j ], with vertex set B0 ∪ B j and edge set {{u, v} ∈ EΓ | u ∈ B0, v ∈
B j }, contains no edge or is isomorphic to the complete bipartite graph Kb,b, where
b = |B j |. Suppose that |B j | = p. Then AB is a 2-transitive permutation group of
degree |B| = 8, and the quotient graph ΓB ∼= K8. It follows that [B0, B] ∼= Kp,p for
all B ∈ B\{B0}. Thus Γ has valency at least 7p, which is a contradiction. Hence
|B j | = 8.

Then AB is primitive of degree p, and the quotient graph ΓB has valency 2, 4 or 6.
Further, K B

0 is transitive for all B ∈ B\{B0}. Since the valency of Γ is less than 4p
which is less than 32, it follows that ΓB is of valency 2, and ΓB ∼= Cp. Note that K
is 2-transitive on each B ∈ B. Then the subgraph [B], with vertex set B and edge set
{{u, v} ∈ EΓ | u, v ∈ B}, contains no edge or is isomorphic to the complete graph
K8. It is easily shown that Γ ∼= Cp[8K1] or Cp[K8], and hence S = ai 〈z〉 ∪ a−i 〈z〉,
or ai 〈z〉 ∪ a−i 〈z〉 ∪ 〈z〉\{1}, where 1 ≤ i ≤ 3. Let T ⊂ G be such that Cay(G, T ) ∼=
Cay(G, S). Then similarly we have T = a j 〈z〉 ∪ a− j 〈z〉, or a j 〈z〉 ∪ a− j 〈z〉 ∪ 〈z〉\{1},
respectively, where 1 ≤ i ≤ 3. It is now easily shown that there exists σ ∈ Aut(G) such
that Sσ = T . Thus Γ is a CI-graph. �

5.4 Proof of Theorem 1.3

Here is a summary of the argument for proving Theorem 1.3.
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Proof of Theorem 1.3: Let G = 〈a〉 � 〈z〉 ∼= Zp � Z8 with centre of order 4, where p
is an odd prime. If p = 3, then Γ is a CI-graph, see [29]. Thus we assume that p ≥ 5.
Let Γ = Cay(G, S) be a Cayley graph of G. As observed in the beginning of this
section, if S ⊂ 〈a, z2〉 ∼= Z4p then Γ is a CI-graph. Also we may assume that Γ has
valency less than 4p. Let P be a Sylow p-subgroup of AutΓ containing â. Since 〈â〉 is
semi-regular on V Γ , P has at most 8 orbits in V Γ . If |P| = p, then by Lemma 5.2, Γ
is a CI-graph. Assume that |P| > p. If P has exactly 8 orbits in V Γ , then each of them
has length p. Thus by Lemma 5.3, Γ is a CI-graph. If P has less than 8 orbits, then
P has at least one orbit of length p2. It then follows that p = 5 or 7. By Lemma 5.4,
Γ is a CI-graph. Therefore, all Cayley graphs of G are CI-graphs, and so G is a
CI-group.

Let H ∼= Zp � Z4 with centre of order 2, where p is an odd prime. Then H is isomor-
phic to the factor group of G modulo the characteristic subgroup Z2. By Lemma 2.2,
H is a CI-group. This completes the proof of Theorem 1.3. �

6 Proof of Theorem 1.4

Let p be a prime, and G be a Frobenius group of order 3p. Write G = 〈a, z | z−1az =
al〉, where l �≡ 1 (mod p) and l3 ≡ 1 (mod p). Let S ⊆ G\{1} be such that S−1 = S,
and let Γ = Cay(G, S) and A = Aut Γ .

Assume first that p2 divides |A|. Let N = NA(〈â〉). Then Ĝ ≤ N and p2 divides |N |.
Now N is transitive on V Γ , and since 〈â〉 is normal in N , the N -action is imprimitive.
Let B = {B1, B2, . . . , Bm} be an N -invariant partition of V Γ . It follows since p2

divides |N | that m = 3, |Bi | = p, and Γ = K3[Σ] or 3Σ , where Σ = Cay(Zp, S0) for
some S0 ⊆ Zp \{0}. It is now easily proved that Γ is a CI-graph.

Assume now that p2 does not divide |A|. Let G̃ be a subgroup of A which is
isomorphic to Ĝ and regular on V Γ . Then G̃ ∼= Zp � Z3. By the Sylow Theorem, to
prove that G̃ is conjugate to Ĝ, we may assume that 〈â〉 < G̃ so that G̃ = 〈â〉 � 〈y〉 ∼=
Zp � Z3 for some y ∈ A of order 3. Let N = NA(〈â〉). Then Ĝ ≤ N and G̃ ≤ N . Let
h ∈ N be such that both ỹ := yh and ẑ lie in the same Sylow 3-subgroup N3 of N .
Then G̃h = 〈â〉 � 〈ỹ〉. Since G̃ ∼= Ĝ, we may further assume that â ỹ = âl . In fact, if
necessary, we may replace ỹ with ỹ2.

Consider the actions of N3, ẑ and ỹ on V Γ . We know that N3 has a orbit � of length
3, and ỹ� = ẑ� or (ẑ�)−1. Without loss of generality, we may assume that 1 ∈ �, and
set � = {1, z, z−1}. We have

(zi a j )ỹ = ((zi )â j
)ỹ = (zi )â j ỹ = ((zi )ỹ)â jl = (zi )ỹ�

a jl , for i = 0, 1, −1.

If ỹ� = ẑ�, then (zi a j )ỹ = zi+1a jl = (zi a j )ẑ , so ỹ = ẑ, hence G̃h = 〈â〉 � 〈ỹ〉 =
〈â〉 � 〈ẑ〉 = Ĝ.

Suppose that ỹ� = (ẑ�)−1. Then (zi a j )ỹ = zi−1a jl . Set τ : zi a j �−→ z−i a− j . Then
τ−1âτ = â−1 and τ−1 ẑτ = ỹ. It follows that Ĝτh−1 = G̃. Since h ∈ N ≤ A, we have
to show τ ∈ A. Let σ = (ỹ ẑ)2. Then 1σ = 1 and σ ∈ A, hence Sσ = S. For g1 = zi a j
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and g2 = zi ′
a j ′

, we have

gτ
2 (gτ

1 )−1 = (zi ′
a j ′

)τ ((zi a j )τ )−1 = zi−i ′
ali ( j− j ′) = (zi−i ′

a( j− j ′)l−i ′
)σ

i ′+i

= ((zi a j )(zi ′
a j ′

)−1)σ
i ′+i = ((g2g−1

1 )−1)σ
i ′+i

.

It follows that gτ
2 (gτ

1 )−1 ∈ S if and only if g2g−1
1 ∈ (S−1)σ

−(i+i ′ ) = S. Therefore, τ is
an automorphism of Γ . This completes the proof. �
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