ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Bar weights of bar partitions and spin character zeros

Christine Bessenrodt
Leibniz Universität Hannover Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Fakultät für Mathematik und Physik Welfengarten 1 D-30167 Hannover Germany

DOI: 10.1007/s10801-006-0050-3

Abstract

The main combinatorial result in this article is a classification of bar partitions of n which are of maximal p-bar weight for all odd primes p \leq  n. As a consequence, we show that apart from very few exceptions any irreducible spin character of the double covers of the symmetric and alternating groups vanishes on some element of odd prime order.

Pages: 107–124

Keywords: keywords bar partitions; bar cores; bar weights; symmetric group; alternating group; spin characters; character zeros

Full Text: PDF

References

1. A. Balog, C. Bessenrodt, J.B. Olsson, and K. Ono, “Prime power degree representations of the symmetric and alternating groups,” J. London Math. Soc. 64(2) (2001), 344-356.
2. C. Bessenrodt, G. Malle, and J.B. Olsson, “Separating characters by blocks,” J. London Math. Soc. 73(2) (2006), 493-505.
3. C. Bessenrodt and J.B. Olsson, “The 2-blocks of the covering groups of the symmetric groups,” Advances in Math. 129 (1997), 261-300.
4. C. Bessenrodt and J.B. Olsson, “Prime power degree representations of the double covers of the symmetric and alternating groups,” J. London Math. Soc. 66(2) (2002), 313-324.
5. C. Bessenrodt and J.B. Olsson, “Weights of partitions and character zeros,” Electron. J. Comb. 11(2) (2004), R5.
6. D. Hanson, “On a theorem of Sylvester and Schur,” Canad. Math. Bull. 16 (1973), 195-199.
7. P.N. Hoffman and J.F. Humphreys, Projective Representations of the Symmetric Groups, Clarendon Press Oxford, 1992.
8. G. James and A. Kerber, “The representation theory of the symmetric group,” Encyclopedia of Mathematics and its Applications 16, Addison-Wesley (1981).
9. G. Malle, G. Navarro, and J.B. Olsson, “Zeros of characters of finite groups,” J. Group Theory 3 (2000), 353-368.
10. A.O. Morris, “The spin representation of the symmetric group,” Canad. J. Math. 17 (1965), 543-549.
11. A.O. Morris and A.K. Yaseen, “Some combinatorial results involving Young diagrams,” Math. Proc. Camb. Phil. Soc. 99 (1986), 23-31.
12. J.B. Olsson, “Combinatorics and representations of finite groups,” Vorlesungen aus dem FB Mathematik der Univ. Essen, Heft 20 (1993).
13. I. Schur, “Einige S\ddot atze \ddot uber Primzahlen mit Anwendungen auf Irreduzibilit\ddot atsfragen. I,” Sitzungsberichte der Preuss. Akad. d. Wiss. 1929, Phys.-Math. Klasse, pp. 125-136.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition