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Received: 28 December 2005 / Accepted: 30 October 2006 /
Published online: 10 January 2007
C© Springer Science + Business Media, LLC 2007

Abstract Let � be an antipodal distance-regular graph of diameter 4, with eigenval-
ues θ0 > θ1 > θ2 > θ3 > θ4. Then its Krein parameter q4

11 vanishes precisely when
� is tight in the sense of Jurišić, Koolen and Terwilliger, and furthermore, precisely
when � is locally strongly regular with nontrivial eigenvalues p := θ2 and −q := θ3.
When this is the case, the intersection parameters of � can be parametrized by p, q
and the size of the antipodal classes r of �.

Let � be an antipodal tight graph of diameter 4, denoted by AT4(p, q, r ), and let
the μ-graph be a graph that is induced by the common neighbours of two vertices at
distance 2. Then we show that all the μ-graphs of � are complete multipartite if and
only if � is AT4(sq, q, q) for some natural number s. As a consequence, we derive new
existence conditions for graphs of the AT4 family whose μ-graphs are not complete
multipartite. Another interesting application of our results is also that we were able to
show that the μ-graphs of a distance-regular graph with the same intersection array as
the Patterson graph are the complete bipartite graph K4,4.
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1 Introduction

Let � denote a distance-regular graph with diameter d ≥ 3, and eigenvalues k = θ0 >

θ1 > · · · > θd . Jurišić et al. [7, 9] showed that the intersection numbers a1, b1 satisfy
the following inequality(

θ1 + k

a1 + 1

) (
θd + k

a1 + 1

)
≥ − ka1b1

(a1 + 1)2
(1)

and defined � to be tight whenever it is not bipartite, and equality holds in (1). They
also characterized tight graphs in a number of ways, for example by a1 �= 0, ad = 0 and
1-homogeneous property in the sense of Nomura [14], and furthermore by their first
subconstituents being connected strongly regular graphs with nontrivial eigenvalues

b+ = −1 − b1

1 + θd
and b− = −1 − b1

1 + θ1

. (2)

Let � be a 1-homogeneous graph with diameter d ≥ 2. Then � is distance-regular
and also locally strongly regular with parameters (v′, k ′, λ′, μ′), where v′ = k, k ′ = a1

and (v′ − k ′ − 1)μ′ = k ′(k ′ − 1 − λ′). Let μ-graph be a graph that is induced by the
common neighbours of two vertices at distance 2. Since a μ-graph of � is a regular
graph with valency μ′, (for the local graph of the μ-graph is the μ-graph of the local
graph, see [7, Theorem 3(i)]), we have c2 ≥ μ′ + 1. If c2 = μ′ + 1 and c2 �= 1, then �

is a Terwilliger graph, i.e., all the μ-graphs of � are complete. In [10] we classified the
Terwilliger 1-homogeneous graphs with c2 ≥ 2 and obtained that there are only three
such examples. In [12] we classified the case c2 = μ′ + 2 ≥ 3, i.e., the case when the
μ-graphs of � are the Cocktail Party graphs, and obtained that either λ′ = 0, μ′ = 2
or there are only seven such examples. We show in some less trivial cases that the
μ-graphs are complete multipartite, see Table 1. Our study is part of a larger project
to classify 1-homogeneous graphs whose μ-graphs are complete multipartite.

Table 1 Known examples of the AT4 family, where “!” indicates the uniqueness of the corresponding
graph (for the proofs of uniqueness of A4, A6, A8 see [8]). Note α = (p + q)/r , c2 = qα, a1 = p(q + 1),
a2 = pq2, n′ = k, k′ = a1, λ′ = 2p − q and μ′ = p. For the information on local graphs see [1] and [2].
The local strongly regular graph of A9 has parameters (416, 100, 36, 20) and is the second graph of the
Suzuki tower [19], more precisely a rank 3 graph of the group G2(4) : 2. The local strongly regular graph
of A10 has parameters (31671,3510,693,351) and is a rank 3 graph of the sporadic group Fi23 [2, p. 396].
For the remaining open cases see [6]

# Graph k p q r α c2 a1 λ′ μ-Graph Locally

A1 ! Conway-Smith 10 1 2 3 1 2 3 0 K2 Petersen

A2 ! J (8, 4) 16 2 2 2 2 4 6 2 K2,2 K4 × K4

A3 ! halved 8-cube 28 4 2 2 3 6 12 6 K3×2 T (8)

A4 ! 3.O−
6 (3) 45 3 3 3 2 6 12 3 K3,3 GQ(4,2)

A5 ! Soicher1 [18] 56 2 4 3 2 8 10 0 2 ·K2,2 Gewirtz

A6 ! 3.O7(3) 117 9 3 3 4 12 36 15 K4×3 N O+
3 (3)

A7 Meixner1 [13] 176 8 4 2 6 24 40 12 2 ·K3×4 NU (5, 2)

A8 ! Meixner2 [13] 176 8 4 4 3 12 40 12 K3×4 NU (5, 2)

A9 Soicher2 [18] 416 20 4 3 8 32 100 36 K2-ext. of 1
2 Q5 G2(4) : 2

A10 3.Fi−
24 [4] 31671 351 9 3 120 1080 3510 693 O+

8 (3) Fi23
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Let � be an antipodal distance-regular graph of diameter 4, with eigenvalues
θ0 > θ1 > θ2 > θ3 > θ4. Then its Krein parameter q4

11 vanishes precisely when � is
tight in the sense of Jurišić, Koolen and Terwilliger, and furthermore, precisely when
� is locally strongly regular with nontrivial eigenvalues p := θ2 and −q := θ3. When
this is the case, the intersection parameters of � can be parametrized by p, q and the size
of the antipodal classes r , so we denote the graph � by AT4(p, q, r ), see [11] and [7].

Let � be an AT4(p, q, r ) graph. We prove that all the μ-graphs of � are complete
multipartite if and only if � is AT4(sq, q, q) for some natural number s. As a conse-
quence of the above results we derive new conditions for graphs of the AT4 family
whose μ-graphs are not complete multipartite. Another interesting application of our
results is also that we were able to show that the μ-graphs of a distance-regular graph
with the same intersection array as the Patterson graph are the complete bipartite
graph K4,4.

Often knowing μ-graphs ends in a complete classification or characterization with
intersection array, see for example [2, p. 271, Theorem 9.3.8]. As we will see, the same
is true also in the case of the Patterson graph [3] and in the case of the AT4(sq, q, q)
family of distance-regular graphs [8].

2 Preliminaries

Let � be a graph with diameter d. For vertices x1, . . . , xn of � we denote by
Γ(x1, . . . , xn) the set of their common neighbours and by Δ(x1, . . . , xn) the graph
induced by this set. In particular, for a vertex x of � we call �(x) the local graph of
x . The graph � is said to be locally C, where C is a graph or a class of graphs, when
all its local graphs are isomorphic to (respectively are member of) C. For example, the
icosahedron is locally a pentagon, and the point graphs of generalized quadrangles are
locally a union of cliques.

We define Γi (x) to be the set of vertices at distance i from x . For y ∈ �i (x) and
integers j and h we denote the set � j (x) ∩ �h(y) by Dh

j (x, y) and its cardinality by

pi
jh(x, y). We say that the intersection number pi

jh does exist if pi
jh(x, y) = pi

jh for
all pairs of vertices x and y at distance i , i.e., it is independent of a choice of x and y at
distance i . We denote the intersection numbers pi

1i , pi
1,i+1, pi

1,i−1 and p0
i i respectively

by ai , bi , ci and ki , for i = 0, 1, . . . , d. The distance-regular graphs are characterized
as the graphs for which the set of parameters {b0, . . . , bd−1; c1, . . . , cd}, called the
intersection array of �, exist, or equivalently when for all i , j and h the numbers
pi

jh do exist. Note that a distance-regular graph is k-regular, where k = k1 = b0, and
k = ai + bi + ci . All local graphs have k vertices and are a1-regular. More generally, in
a distance-regular graph � for each vertex x , the i-subconstituent graph of x , i.e., the
graph induced by the set�i (x), is ai -regular. For a detailed treatment of distance-regular
graphs and all the terms which are not defined here see Brouwer et al. [2] or Godsil [5].

Let us now recall that an equitable partition of a graph is a partition π =
{P1, . . . , Ps} of its vertices into cells, such that for all i and j the number ci j of neigh-
bours, which a vertex in the cell Pi has in the cell Pj , is independent of the choice
of the vertex in Pi . Let � be a distance-regular graph with diameter d. Then � is 1-
homogeneous in the sense of Nomura [14], when the distance partition corresponding
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to any pair x , y of adjacent vertices, i.e., the collection of nonempty sets D j
h (x, y), is

an equitable partition.
Let � be a graph. As usually, we denote the distance between vertices x and y of �

by ∂(x, y). If x , y and z are vertices of � such that ∂(x, y) = 1, ∂(x, z) = ∂(y, z) = 2,
then we define the (triple) intersection number α(x, y, z) = |�(x) ∩ �(y) ∩ �(z)|
(see Fig. 3(a)). We say that the parameter α of � exists when α = α(x, y, z) for all
triples of vertices (x, y, z) of � such that ∂(x, y) = 1, ∂(x, z) = ∂(y, z) = 2. If �

is 1-homogeneous graph with diameter d ≥ 2 and a2 �= 0, then α exists. A strongly
regular graph with a2 �= 0, that is locally strongly regular is 1-homogeneous if and
only if α exists. See for example [9, Lemma 2.11].

We end this section with some information on the AT4 family, see [11, 5.2–6.4].

Proposition 2.1. Let � be an antipodal tight graph AT4(p, q, r ). Then q4
11 = 0 and

(i) pq + p + q > p > −q > −q2 are its nontrivial eigenvalues and its intersection
array equals{

q(pq + p + q), (q2 − 1)(p + 1),
(r − 1)q(p + q)

r
, 1;

1,
q(p + q)

r
, (q2 − 1)(p + 1), q(pq + p + q)

}
,

(ii) the local graphs are connected and strongly regular with eigenvalues a1, p, −q
and parameters

(k ′, λ′, μ′) = (p(q + 1), 2p − q, p),

(iii) the graph � is 1-homogeneous, see Fig. 1 and in particular α = (p + q)/r ,
(iv) the parameters p, q, r are integers, such that p ≥ 1, q ≥ 2, r ≥ 2 and

Fig. 1 The distance partition corresponding to an edge xy of �. The number beside edges connecting

cells D j
i (x, y), indicates how many neighbours a vertex from the closer cell has in the other cell. We also

put beside each cell the valency of the graph induced by the vertices of it. For convenience we mention
here the intersection numbers needed for the above partition: |D1

1 | = p1
11 = a1 = p(q + 1), |D1

2 | =
p1

12 = b1 = (q2 − 1)(p + 1), |D2
3 | = p1

23 = (r − 1)b1 = (r − 1)(q2 − 1)(p + 1), |D3
4 | = p1

34 = r − 1,

|D2
2 | = p1

22 = r pq(q2 − 1)(p + 1)/(p + q)
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(1) pq(p + q)/r is even, r (p + 1) ≤ q(p + q), and r | p + q,
(2) p ≥ q − 2, with equality if and only if q4

44 = 0,
(3) p + q | q2(q2 − 1) and p + q2 | q2(q2 − 1)(q2 + q − 1)(q + 2).

(v) (p =) μ′ = 1 iff α = 1 iff p + q = r iff c2 = μ′ + 1 iff r (p + 1) = q(p + q) iff
� is the unique AT4(1, 2, 3) graph, i.e., the Conway-Smith graph.

3 Complete multipartite μ-graphs

There are distance-regular graphs for which it is possible to determine what their
μ-graphs are based only on their parameters even when a1 �= 0. Let � be a
distance-regular graph with diameter at least 2, for which the parameter c2 of its
local graphs, denoted by μ′, exists. Then the assumption c2 = μ′ + 1 is equivalent to
all the μ-graphs being complete and the assumption c2 = μ′ + 2 ≥ 3 is equivalent to
all the μ-graphs being Cocktail Party graphs. In both cases the μ-graphs are complete
multipartite. We will show in this section that there are more cases where we can assert
that the μ-graphs are complete multipartite only based on certain parameter properties.

We start by recalling two definitions and one result [12, Lemmas 2.1 and 3.1] that
has already been used for a classification of 1-homogeneous distance-regular graphs
with Cocktail Party μ-graphs. We denote the complement of t cliques of size n, i.e., the
complete multipartite graph Kn1,n2,... ,nt with n1 =n2 =· · ·=nt =n by Kt×n. If a graph
� on v vertices is regular with valency k and any two vertices of � at distance 2 have
precisely μ = μ(�) common neighbours, then the graph is called co-edge-regular
with parameters (v, k, μ), see [2, p. 3].

Proposition 3.1. Let us fix integers t and n, and let � be a distance-regular graph
with diameter at least 2, whose μ-graphs are the complete multipartite graph Kt×n,
for which a2 �= 0 and the intersection number α exists with α ≥ 1. Then the following
(i)–(iii) hold.

(i) c2 = nt, for each vertex x of � the local graph �(x) is co-edge-regular with
parameters (v′, k ′, μ′), where v′ = k, k ′ = a1 and μ′ = n(t − 1). Moreover,
αa2 = c2(a1 − μ′).

(ii) Let x and y be vertices of � at distance 2. Then for all z ∈ D2
1(x, y) ∪ D1

2(x, y)
the subgraph �(x, y, z) is complete and α ∈ {t − 1, t}.

(iii) Let � be locally strongly regular with parameters (v′, k ′, λ′, μ′), t ≥ 2 and let x
and z be adjacent vertices of �. Then the subgraph �(x, z) is co-edge-regular with
parameters (v′′, k ′′, μ′′), where v′′ = k ′, k ′′ = λ′ and μ′′ = n(t − 2), for t ≥ 3 the
subgraph �(x, z) has diameter 2.

The above result gives also some necessary conditions for a distance-regular graph
to have completely regular μ-graphs. Let � be a distance-regular graph that is locally
connected and co-edge-regular. Furthermore, we also assume that the parameter α

exists in �. All 1-homogeneous distance-regular graphs with diameter at least 2 have
these properties. We provide some sufficient conditions on the parameters of � for
which the μ-graphs have to be complete multipartite.
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Theorem 3.2. Let � be a distance-regular graph with diameter at least 2, a2 �= 0,
for which the intersection number α exists and that is locally co-edge-regular with
parameters (v′, k ′, μ′), where v′ = k, k ′ = a1 and c2 > μ′ + 1 > 1. Then α ≥ 1 and
the following holds.

(i) If α = 1 then c2 = 2μ′ and the μ-graphs are the complete bipartite graphs Kμ′,μ′ .
(ii) If α > 1 and 2c2 + α < 3μ′ + 6, then the μ-graphs are the complete multipartite

graph Kt×n, where n = c2 − μ′ and t = c2/n.
(iii) If α = 2 and c2 ≤ 2μ′, then either c2 = 2μ′ and the μ-graphs are the complete

bipartite graph Kμ′,μ′ or c2 = 3μ′/2 and the μ-graphs are the complete multi-
partite graph K3×μ′/2

Proof: The assumption μ′ > 0 implies that � is locally connected, thus α ≥ 1. Let x
and y be any two vertices of � at distance 2. Then the graph �(x, y) has c2 vertices,
valency μ′ by [7, Theorem 3.1(i)], and it is not complete, since we assumed c2 >

μ′ + 1. Therefore, there are nonadjacent vertices in �(x, y). If any pair of such vertices
has μ′ common neighbours, then �(x, y) is a complete multipartite graph Kt×n , where
n = c2−μ′ and t = c2/n (cf. [2, p. 3], as it is co-edge-regular and has k ′ = μ′). Let
us now assume that there exist nonadjacent vertices u and v in �(x, y) such that

w := |�(x, y, u, v)| < μ′, i.e., s := μ′−w=|D1
2(x, y) ∩ �(u, v)| ≥ 1,

(see Fig. 2). Let �(x, y, u, v) = {z1, . . . , zw}, �(u, v) ∩ D2
1(x, y) = {x1, x2, . . . , xs}

and �(u, v) ∩ D1
2(x, y) = {y1, y2, . . . , ys}.

(i) Thenα = |�(x1, x, y)| ≥ |{u, v}| = 2, which is not possible. Hence, theμ-graphs
of � are the complete multipartite graph Kt×n . By Proposition 3.1(ii), we have
t = 2 and thus also c2 = 2μ′.

Fig. 2 Part of the distance partition corresponding to vertices x and y at distance 2
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(ii) We have �(x1, y, u, v) ⊆ (
�(x, x1, y) ∩ �(u, v)

) ∪ (
D1

2(x, y) ∩ �(u, v)
)
, and

thus we obtain an upper bound on the size of the set �(x1, y, u, v):

|�(x1, y, u, v)| ≤ α − 2 + s. (3)

Note that here we needed the assumption α ≥ 2. Similarly, we derive two more
inequalities:

c2 = |�(u, v)| ≥ |{x, y, x1, . . . , xs, y1, . . . , ys, z1, . . . , zw}|
= μ′ + 2 + s, i.e., s ≤ c2 − μ′ − 2, (4)

|�(y, x1)| ≥ |�(x1, y, u)| + |�(x1, y, v)| − |�(x1, y, u, v)| + |{u, v}|, i.e.,

2μ′ − c2 + 2 ≤ |�(x1, y, u, v)|. (5)

Finally, by combining (3) and 5 and assuming (4), we obtain 3μ′ + 6 ≤ 2c2 + α,
which is contradicting the assumption. So each μ-graph of � is a complete mul-
tipartite graph.

(iii) Since we assumed c2 ≤ 2μ′, the vertices u and v have a common neighbour in
�(x, y). This conclusion translates to w ≥ 1. Because α = 2 the only neighbours
in �(x, y) of the vertex xi are u and v, so z j is not adjacent to xi or yi for all i
and j . Therefore,

c2 = |�(u, v)| ≥ |{z1, x1, . . . , xs, y1, . . . , ys}| + |�(z1, u, v)|
= 1 + 2s + μ′ i.e., c2 − 1 − 2s ≥ μ′. (6)

In order to get the above inequality we started with two nonadjacent vertices u
and v in �(x, y), where the distance between x and y is 2 and |�(u, v, x, y)| =
w < μ′. Now for the nonadjacent vertices x1 and y in �(u, v) we have that
the distance between u and v is 2 and |�(x1, y, u, v)| ≤ s, since �(y, u, v) =
{y1, y2, . . . , ys, z1, . . . , zw} and �(x1, y, u, v) ⊆ {y1, y2, . . . , ys}. As s = μ′ −
w < μ′ we conclude the same way as in (6) that

c2 − 1 − 2w ≥ μ′. (7)

However, by summing (6) and (7), and using μ′ = s + w, we obtain c2 > 2μ′, a
contradiction! Therefore, the μ-graphs of � are complete multipartite graph Kt×n .
By 2 = α ∈ {t − 1, t}, we have c2 = 2n and μ′ = n when t = 2 and c2 = 3n and
μ′ = 2n when t = 3. �

Remark 3.3.

(i) There are some examples of the graph � from the above Theorem 3.2 (ii) that are
locally co-edge-regular and not locally strongly regular. For example the Johnson
graph J (n, e) is locally the grid graph e × (n − e), which means that it is not
locally strongly regular unless n = 2e. Let us assume that e and n − e are at least
2. It has c2 = 4, μ′ = 2, a1 = n − 2 and α = 2, so it satisfies Theorem 3.2(ii).
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Hence its μ-graphs are complete bipartite. It would be interesting to find some
examples for which c2 > μ′ + 2.

(ii) If we want that the μ-graphs of � are the complete multipartite graph Kt×n ,
then the parameters n and t are determined by c2 = nt and μ′ = (t − 1)n, i.e.,
n = c2 − μ′ and t = c2/n.

Corollary 3.4. Let � be a 1-homogeneous graph with diameter at least 2. If a2 �= 0,
α = 2 and c2 = 2μ′ > 2, then the μ-graphs of � are the complete bipartite graphs
Kμ′,μ′ . In particular, the μ-graphs of a graph with the same intersection array as the
Patterson graph are K4,4.

Proof: The first part is a straightforward consequence of Theorem 3.2(iii). Let
now � be a distance-regular graph with the intersection array {280, 243, 144, 10;
1, 8, 90, 280}, i.e, the one of the Patterson graph. Then its eigenvalues are
2801, 80364, 205940, −815795, −28780, so it satisfies (1) with equality and is thus tight
by [9, Theorems 12.6 and 11.7], it is locally connected, 1-homogeneous, a2 = 128
and c2 = 8, μ′ = 4 and α = 2, see [9, Example (xii) and Fig. A.4(k)]. So, by Theorem
3.2(iii), its μ-graphs are the complete bipartite graphs K4,4. �

Theorem 3.5. Let � be a distance-regular graph with diameter at least 2, a2 �= 0, for
which the intersection number α exists with α ≥ 1. Then the following (i) and (ii) are
equivalent.

(i) there are such integers t, n ≥ 2 that the μ-graphs of � are the complete multi-
partite graph Kt×n,

(ii) there exists a natural number μ′ ≥ 1, such that � is locally co-edge-regular with
parameters (v′, k ′, μ′), where v′ = k, k ′ = a1, c2 > μ′ + 1 and one of the follow-
ing (1)–(3) holds:

1. α = 1,
2. α = 2 and c2 ≤ 2μ′,
3. α ≥ 3 and 2c2 + α < 3μ′ + 6.

Suppose (i) and (ii) above hold. Then n = c2 − μ′, t = c2/n and α ∈ {t − 1, t}.

Proof: Let us assume (i) holds. Then, by Proposition 3.1, the graph � is locally
co-edge-regular with parameters (k, a1, μ

′), where μ′ = (t − 1)n, c2 = nt , αa2 =
c2(a1 − μ′) and α ∈ {t − 1, t}. If α = 1, then t = 2, c2 = 2μ′, a2 = 2n(a1 − n) and
the μ-graphs of � are Kn,n . If α = 2, then the assumption t ≥ 2 is equivalent to μ′ > 0,
which means that the graph � is locally connected. It also implies, by t = c2/(c2 − μ′),
that we have c2 ≤ 2μ′. Finally, we assume α ≥ 3. Then t ≥ 3 and we have (n − 2)(t −
3) ≥ 0, which implies 2(c2 + α) ≤ 3μ′ + 6 and so also 2c2 + α < 3μ′ + 6.

The rest of the statement follows directly from Theorem 3.2. �

Problem 3.6 Find more necessary and sufficient conditions for the graph � from The-
orem 3.2 to have complete multipartite μ-graphs. Or even more generally, find more
properties of a distance-regular graph � that determine its μ-graphs. (There are exam-
ples of graphs in the AT4 family that have more complicated μ-graphs, see Table 1.)
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4 AT4 family

Let � be an antipodal tight graph AT4(p, q, r ). Based on Proposition 2.1, we have
μ′ = p > 0 (i.e., � is locally connected), and a2 = pq2 �= 0, which means that the
following result is a direct consequence of Theorem 3.2 and Proposition 2.1 (the case
p + q = r has already been treated in Proposition 2.1(v)).

Corollary 4.1. Let � be an antipodal tight graph AT4(p, q, r ) and p + q > r . Then
the condition

(p + q)(2q + 1) < 3r (p + 2)

implies that all μ-graph are the complete multipartite graphs Kt×n with n = c2 − μ′ =
qα − p and t = c2/(c2 − μ′) = qα/(qα − p).

Corollary 4.2. Let � be an antipodal tight graph AT4(qs, q, q), where s is a natu-
ral number. Then α = s + 1 and the μ-graphs are the complete multipartite graphs
K(s+1)×q .

Proof: From p = sq and r = q we obtain α = s + 1 by Proposition 2.1(iii). Let us
first assume s ≥ 2. Then c2 − μ′ = αq − sq = q and the inequality in Corollary 4.1
translates to 0 < (s − 2)(q − 1) + 3. Since this condition is satisfied, the μ-graphs of
� are the complete multipartite graphs K(s+1)×q .

It remains to consider the case s = 1. Then c2 = 2q, μ′ = q and α = 2. Therefore,
by Theorem 3.2(iii), every μ-graph of � is the complete bipartite graph Kq,q . �

Examples that satisfy the above result are the graphs A2, A3, A4, A6 and A8 from
Table 1.1.

Theorem 4.3. Let � be a tight distance-regular graph AT4(p, q, r ) with p > 1. Then
its μ-graphs are complete multipartite if and only if there exists an integer s such that
(p, q, r ) = (qs, q, q).

Proof: Let us assume that μ-graphs of � are complete multipartite graphs Kt×n (t
and n are determined as we know the size of the μ-graph and its valency). Thus, by
Proposition 2.1(i–iv) and Proposition 3.1(i–ii), we have α = (p + q)/r , α ∈ {t − 1, t},

qα = c2 = nt, and p = μ′ = (t − 1)n. (8)

Case α = t. Then we have n = q and thus also p = (t − 1)q, i.e., p + q = tq. But
then tr = αr = p + q implies r = q . Hence (p, q, r ) = (sq, q, q) for s = t − 1.
Case α = t − 1. Then, by (8), we have qα = n(α + 1) and p = αn. Therefore,
(α + 1) | q and α | p. As αr = p + q it follows that α also divides q. Hence, there
exists a natural number h such that q = h(α + 1)α. It follows n = hα2, p = hα3

and r = (p + q)/α = h(α2 + α + 1). Since we assumed p �= 1, we have α �= 1 by
Proposition 2.1(v). If α = 2, then q = 6h, p = 8h and, by Proposition 2.1(iv)(3), we
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Fig. 3 Parts of the distance distribution diagram of a pair of vertices at distance 2. For the complete figure
in the case of diameter 4 see [6, Fig. 6.1]

have 7 | (h − 1)h(h + 1), i.e., h = 7	 − 1 or h = 7	 or h = 7	 + 1 for an integer 	,
and hence 9	 − 1 | 20 or 2 + 63	 | 140 or 11 + 63	 | 140, which is impossible.

Finally, we assume α ≥ 3. In this case we first show the following inequality

λ′ ≥ 1 + (t − 2)n + (n − 1)
(
(t − 3)n − (α − 3)

)
. (9)

Let x , y and z be pairwise adjacent vertices of �. The local graph �(y) is connected
and strongly regular with λ′ = 2p − q = hα(α − 1)(2α + 1) by Proposition 2.1(ii).
Therefore, there exists a vertex u ∈ U := �(x, y) ∩ �2(z), see Fig. 3(b).

Vertices of the graph �(x, y, z) are partitioned into the following sets:

A := �(x, y, z, u) and B := �2(u) ∩ �(x, y, z),

so we have |A| = c2 − 2n = (t − 2)n and |B| = λ′ − (t − 2)n = hα(α2 − 1) �= 0.
Let b ∈ B. By Proposition 3.1(ii), the vertex b has exactly α − 2 neighbours in A, see
Fig. 3(c). Since α ≥ 3, there exists an element a ∈ A adjacent to b. Let C be a maxi-
mal independent set in A containing a. Let c ∈ C\{a}. Note that there are n − 1 > 0
choices for c. By Proposition 3.1(ii), vertices a and c have no common neighbours in
B, so the distance between vertices b and c is 2, see Fig. 3(d). Since the μ-graph of b
and c is Kt×n and it contains x , y and z, the number of common neighbours of b and c in
�(x, y, z) is exactly (t − 3)n. By Proposition 3.1(ii) and u ∈ D2

1(c, b), exactly α − 3
of those neighbours are adjacent to u, hence |B ∩ �(b, c)| = (t − 3)n − (α − 3). As
we have already mentioned, the vertices in C\{a} have no common neighbours in B,
so it follows that b has at least (n − 1)

(
(t − 3)n − (α − 3)

)
neighbours in B. As the

size of the set B is λ′ − (t − 2)n, the inequality (9) follows. However, (9) is equivalent
to

(3 − α)(α4h2 + α3h2 + 1) − (5α + 1)αh − 3α3h(h − 1) − 1 ≥ 0,

which is clearly impossible. The converse follows directly from Corollary 4.2. �
Springer
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We have seen in the proof of Theorem 4.3 that the case α = t − 1 was ruled out.
Furthermore, by Theorem 3.2(iii), α = 2 implies t = 2, so in the case of t = 3 we
have α = 3. We propose the following open problem.

Problem 4.4 Let � be a distance-regular graph with diameter at least 2, whose μ-
graphs are the complete multipartite graph Kt×n , with n ≥ 2, for which a2 �= 0 and
the intersection number α exists with α ≥ 2. Then show α = t .

Corollary 4.5. Let � be an antipodal tight graph AT4(p, q, r ). Then exactly one of
the following statements holds.

(i) � is the unique AT4(1, 2, 3) graph (and α = 1), i.e., the Conway-Smith graph.
(ii) � is an AT4(q − 2, q, q − 1) graph (and α = 2).

(iii) � is an AT4(qs, q, q) graph, where s is an integer (and α = s + 1).
(iv) (p + q)(2q + 1) ≥ 3r (p + 2) and α ≥ 3, in particular r ≤ q − 1.

Proof: If α = 1, then, by Proposition 2.1(v), the graph � is the Conway-Smith graph,
p = 1, q = 2 and r = q + 1 = 3. If r = q , then q divides p by Proposition 2.1(iii),
and the graph � is a member of the family AT4(qs, q, q) with α = s + 1 for an integer
s by Corollary 4.2.

Suppose from now on α ≥ 2 and the graph � is not a member of the fam-
ily mentioned in (iii), i.e., the μ-graphs of � are not all complete multipartite by
Theorem 4.3 and Proposition 2.1(v). Let us assume first α = 2, i.e., 2r = p + q
by Proposition 2.1(iii). Then 2 | (p + q) and we have 2q = c2 > 2μ′ = 2p, i.e.,
p + 1 ≤ q, by Proposition 2.1 and Theorem 3.2(iii). By Proposition 2.1(iv(2)),
this implies q = p + 2 and r = q − 1, so the graph � is a member of the family
AT4(q − 2, q, q − 1). Now we assume 3 ≤ α, and we obtain the first inequality in (iv)
by Corollary 4.1. Suppose r > q − 1, i.e., r ≥ q . Since r �= q, we have r ≥ q + 1. By
α ≥ 3 we obtain p ≥ 2q + 3. On the other hand, by the first inequality in (iv), we have
2q2 ≥ pq + 2p + 5q + 6, i.e., 2q ≥ p + 5 + 2(p + 3)/q, which is not possible. �

Remark 4.6.

(i) The parameters of the family AT4(hα3, hα(α + 1), h(α2 + α + 1)) satisfy the
inequality 2c2 + α < 3μ′ + 6, hence, by Corollary 4.1, its members (if they ex-
isted) would have complete multipartite μ-graphs. There are some members of
this family that passed all other known criteria of feasibility and for which the
above statement shows that the corresponding graph does not exist. For exam-
ple for h = α(α + 1) and (α + 2) | 570 we obtain 13 feasible parameter sets, the
smallest one being AT4(324, 144, 156), where α = 3.

(ii) Let us assume α ≥ 3. Then the first inequality in Corollary 4.5(iv) implies in the
case when p/q is large that we can determine all feasible parameter sets using
Proposition 2.1(iv(3)). In particular, let us suppose r = q − 1. By α = (p + q)/r ,
i.e., p + 1 = (α − 1)(q − 1), and Corollary 4.5(iv), we obtain

3 ≤ α ≤ 3 + 6

q − 4
. (10)
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For q > 10 we have 6/(q − 4) < 1 and thus α = 3 and p = 2q − 3. But, by
Proposition 2.1(vi(3)), we have (q + 3) | 90, i.e., q ∈ {12, 15, 27, 42}. It is not
difficult to consider also the cases when q ≤ 10.

(iii) There are many parameter sets with r = q + 1, q �= 2, that passed all other known
criteria and for which the above statement shows that the corresponding graph does
not exist. For example, in the case α = 6 we have AT4(41, 7, 8), AT4(66, 12, 13),
AT4(191, 37, 38), AT4(216, 42, 43), and AT4(30s + 21, 6s + 3, 6s + 4), where
s + 1 is a positive divisor of 60, i.e., s ∈ {0, 1, 2, 3, 4, 5, 9, 11, 14, 19, 29, 59}. But
there are also examples with different α: AT4(519, 36, 37), AT4(1162, 42, 43),
AT4(2591, 73, 74).

(iv) The graph A5 is a member of the family AT4(q − 2, q, q − 1), while the graph
A9 is an example of AT4(qs, q, q − 1), so it satisfies the bound r ≤ q − 1 with
equality.

(v) For α = 3 there exists a feasible family AT4(6s, 6s, 4s) with s integral, the small-
est example is AT4(6, 6, 4) with k = 288 and a1 = 42, cf. B9 and B10 from
[6, Table 2(b)].

We will give a complete classification of the AT4(qs, q, q) family of distance-
regular graphs in a subsequent paper [8].
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7. A. Jurišić and J. Koolen, “Nonexistence of some antipodal distance-regular graphs of diameter four,”

Europ. J. Combin. 21 (2000), 1039–1046.
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