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Abstract For a simplicial complex � on {1, 2, . . . , n} we define enriched homology
and cohomology modules. They are graded modules over k[x1, . . . , xn] whose ranks
are equal to the dimensions of the reduced homology and cohomology groups.

We characterize Cohen-Macaulay, l-Cohen-Macaulay, Buchsbaum, and
Gorenstein∗ complexes �, and also orientable homology manifolds in terms of the
enriched modules. We introduce the notion of girth for simplicial complexes and make
a conjecture relating the girth to invariants of the simplicial complex.

We also put strong vanishing conditions on the enriched homology modules and
describe the simplicial complexes we then get. They are block designs and include
Steiner systems S(c, d, n) and cyclic polytopes of even dimension.

Keywords Simplicial complex . Homology . Girth . Cohen-Macaulay . Simplicial
complex . Block design . Homology manifold . Steiner system

Introduction

Given a simplicial complex � on the set [n] = {1, 2, . . . , n} and a field k, one has its
reduced homology groups H̃i (�; k) which depend only on the topological realization
of �. However the combinatorial structure makes � a richer object than its topological
realization. In this paper we define enriched homology modules Hi (�; k) which are
modules over the polynomial ring k[x1, . . . , xn], denoted by S. They have the property
that the rank of Hi (�; k) as an S-module is equal to the dimension of H̃i (�; k) as a

This paper is to a large extent a complete rewriting of a previous preprint, “Hierarchies of simplicial
complexes via the BGG-correspondence”. Also Propositions 1.9 and 3.1 have been generalized to cell
complexes in [11].
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vector space over k, and hence may be considered as an enrichment of the reduced
homology groups.

The enriched homology modules are defined as the homology modules of the cellu-
lar complex, see [4], associated to � by attaching variable xi to the vertex i . Similarly
we may define the enriched cohomology modules Hi (�; k) as the cohomology mod-
ules of the cocellular complex.

The classical criterion of Hochster for when a simplicial complex is Cohen-
Macaulay, via the reduced homology of its links, translates in this setting to the
criterion that the top enriched cohomology module Hdim� (�; k) is the only non-
vanishing cohomology module. We also give a criterion for when � is Buchsbaum
via its enriched cohomology modules.

The enriched cohomology modules turn out to be Alexander duals of the Matlis
duals of the local cohomology modules of the Stanley-Reisner ring.

Hence they contain exactly the same information as these local cohomology mod-
ules. The enriched cohomology modules present another conceptual approach to this
information, and the information appears in quite distinct algebraic forms. Therefore
algebraic questions which are not interesting for local cohomology modules or their
Matlis duals, turn out to be interesting for enriched cohomology modules.

For instance when � is Cohen-Macaulay we show in [11] that the top cohomology
module can occur as an l − 1’th syzygy module in an S-free resolution if and only if �

is l-Cohen-Macaulay as defined by Baclawski [2]. (This notion means that � restricted
to each subset R of [n] of cardinality n + 1 − l is a Cohen-Macaulay complex of the
same dimension as �.)

For l-Cohen-Macaulay simplicial complexes, the dimension of � is less or equal
to n − 1 − l (unless � is the n − l-skeleton of the simplex), and the girth of �,
a suitable generalization of the well-known notion for graphs, is less or equal to
n + 2 − l. We investigate l-Cohen-Macaulay simplicial complexes with one or more
of these extremal values. In particular we make a conjecture concerning invariants of
l-Cohen-Macaulay complexes of maximal girth, and prove the conjecture in the case
where the dimension is submaximal equal to n − 1 − l.

Next we consider the case when the top cohomology module may be identified
as an ideal in the polynomial ring S. When the top cohomology module is the only
non-vanishing one, i.e. when � is CM, we show that this happens exactly when �

is a Gorenstein∗ simplicial complex. More generally for Buchsbaum complexes of
positive dimension, we show that the top cohomology module is an ideal if and only
if the complex is a connected orientable homology manifold.

In the end we put strong vanishing conditions on the enriched homology and coho-
mology modules and investigate what kind of simplicial complexes they corresponds
to. For an l-Cohen-Macaulay � there is only one non-vanishing cohomology module.
We require that there also be at most one non-vanishing homology module Hi (�; k) for
i < dim � (when l ≥ 2, Hdim� (�; k) does not vanish), and that � has maximal girth,
which is n + 2 − l. In [10] we introduced the notion of � being bi-Cohen-Macaulay,
meaning that both � and its Alexander dual are Cohen-Macaulay. We show that the
above vanishing condition is equivalent to the condition that the restriction of � to each
subset R of [n] of cardinality n + 1 − l is bi-Cohen-Macaulay of the same dimension
and frame dimension as �. (The frame dimension is by definition the dimension of
the maximal complete skeleton of the simplex on [n], which is contained in �.) In
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this case the f -vector of � is completely determined by l, n, the dimension, and the
frame dimension of �, and we call � an l-Cohen-Macaulay design.

As examples, 1-Cohen-Macaulay designs are exactly the bi-Cohen-Macaulay sim-
plicial complexes. l-Cohen-Macaulay designs of submaximal dimension n − l − 1
are exactly the Alexander duals of Steiner systems S(l − 1, m, n) (where m is related
to the frame dimension of �). 2-Cohen-Macaulay designs of dimension twice the
frame dimension plus one, are examplified by the boundaries of cyclic polytopes of
even dimension.

We also introduce the more general class of (a, b)-designs which specialize to
a + 1-CM designs when b = 0, and show that they are block designs. As exam-
ples 2-neighbourly triangulations of surfaces are (1, 1)-designs, and more generally
homology manifolds with certain extremal behaviour of the Euler characteristic are
(1, 1)-designs.

The organization of the paper is as follows. In Section 1 we define the enriched
homology and cohomology modules, and recall some basic facts on cellular com-
plexes, Koszul duality and square free modules (as defined by Yanagawa [27]). We
translate the link criterion of Hochster for � being Cohen-Macaulay, and the crite-
rion of Schenzel for � being Buchbaum, to the setting of cohomology modules. We
also translate the restriction criterion of Hochster for � being Cohen-Macaulay to the
setting of homology modules.

In Section 2 we first recall a result from [11] providing motivation for the usefulness
of enriched cohomology. Namely that the top cohomology module of CM complexes
can occur as an l − 1’th syzygy module in an S-free resolution iff � is l-Cohen-
Macaulay. Then we go on to investigate l-CM simplicial complexes of maximal girth.
In particular we make a conjecture concerning the invariants of such and prove this
when the complex has submaximal dimension.

In Section 3 we consider when the top cohomology module is an ideal in the polyno-
mial ring. For Cohen-Macaulay complexes this happens when it is Gorenstein∗. More
generally, for Buchsbaum complexes this happens when it is an orientable homology
manifold.

In Section 4 we put strong vanishing conditions on the homology and cohomology
modules and investigate the notion of l-Cohen-Macaulay designs. We also introduce
the more general notion of (a, b)-designs. This section also contains many examples
of such designs. Finally in Section 5 we give some problems and conjectures.

1 Enriched homology and cohomology modules

1.1 Notation

Denote by [n] the set {1, 2, . . . , n}. A simplicial complex � on [n] is a family of
subsets of [n] such that if F is in � and G is a subset of F , then G is in �.

An element F in � is called a face of �. If F has cardinality f , its dimension is
f − 1. If d is the maximal cardinality of a face, the dimension of � is d − 1. A face
of maximal cardinality is called a facet. The maximum i such that all i-sets are in �

is denoted by c and we call c − 1 the frame dimension of �.
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If R is a subset of [n] denote by �R the restricted simplicial complex on R, i.e. the
complex consisting of the faces F contained in R. It will also be convenient to have
the notation �−R for the restriction to the complement [n]\R.

For Q a subset of [n] the link of Q, lk� Q, is the simplicial complex on [n]\Q
consisting of the subsets F of [n]\Q such that Q∪ F is a face of �.

A convention we will often use is that if a set is denoted by an upper case letter,
say R, then the lower case letter r will denote the cardinality of the set R.

1.2 Enriched homology modules

Given a field k, one has the augmented oriented chain complex C̃(�; k). The group
C̃i (�; k) is the vector space ⊕kF with basis consisting of the faces of dimension i , and
the differential defined by

F �→
∑

dimF ′=i−1

ε(F, F ′)F ′.

where � × �
ε−→ {−1, 0, 1} is a suitable incidence function (see [5]). The homology

groups H̃i (�; k) of this complex are the reduced homology groups of � and depend
only on the topological realization of �.

However the combinatorial structure makes the simplicial complex a richer structure
than its topological realization. We define enriched homology modules of the simplicial
complex as follows. Let S be the polynomial ring k[x1, . . . , xn]. We get a complexL(�;
k) of free S-modules by letting Li (�; k) be the free S-module ⊕SF with generators
the faces of dimension i and differential

F �→
∑

F=F ′∪{l}
ε(F, F ′)xl · F ′.

We define the enriched homology modules Hi (�; k) (or just Hi (�)) to be the homology
modules of this complex.

There are two sources of inspiration for this definition. First there is the theory of
cellular complexes developed by Bayer, Peeva, and Sturmfels [3, 4]. The complex
L(�; k) is the cellular complex obtained by attaching the monomial consisting of
the single variable xi to vertex i. Another approach comes from the Koszul duality
between the symmetric algebra S and the exterior algebra E in n variables, and how
this relates the module categories of these algebras, (see [8] and [10] for some recent
articles). We explain this in some detail. This will also make the incidence function
completely explicit.

Let V be the vector space on generators e1, . . . , en and

E = E(V ) = ⊕n
i=0 ∧i V

be the exterior algebra. We let W = V * be the dual vector space with dual basis
x1, . . . , xn and identify the polynomial ring S as the symmetric algebra Sym(W ). We
consider V to have degree −1 and W to have degree 1. For a graded module M over
E or S we denote by M( j) the module shifted j steps to the left i.e. M( j)d = M j+d .

Springer



J Algebr Comb (2007) 25:285–307 289

Any graded (left) E-module M gives rise to a complex of S-modules

L(M) : · · · → S ⊗k Mi
di−→ S ⊗k Mi−1 → · · · (1)

where di sends s ⊗ m to
∑

j sx j ⊗ e j m. Note that the degree of s ⊗ m is the sum of
the degrees of s and m.

Given a simplicial complex �, we can form the exterior face ring k{�}, which is
the quotient of E by the monomial ideal J� consisting of monomials ei1

. . . eir such
that {i1, . . . , ir } is not a face of �. Let C� be the graded dual vector space of the
exterior face ring k{�}. It is a module over the exterior face ring. As a vector space it
has a basis consisting of monomials xi1

. . . xir where {i1, . . . , ir } range over the faces
of �. Left multiplication by e1 + e2 + · · · + en gives a differential d on C� and the
reduced homology of � is given by

H̃p(�, k) = Hp+1(C�, d).

The enriched homology of � is given by

Hp(�; k) = Hp+1(L(C�)).

We denote L(C�) by L(�; k) (or just L(�)). Note that compared toL(�; k) it is shifted
one step to the left.

If b is a multidegree in Nn , the support of b is the set of non-vanishing coordinates.
The following explicitly describes the multigraded parts of the homology module.

Lemma 1.1. For a multidegree b in Nn, let R be its support. Then

Hp(�)b
∼= H̃p(�R).

Proof: This follows from the above description of L(�) as a cellular complex and the
ideas in the proof of Proposition 1.1 in [4]. See also Corollary 1.6 below. �

In particular we shall consider H̃p(�R) to have multidegree R.

Remark 1.2. From the above lemma and Hochster’s description of the resolution of
the Stanley-Reisner ring k[�], see [24] or originally [13], we see that the homology
module Hp(�) corresponds to the p + 1’th linear strand in the resolution. Thus the
collection of homology modules is equivalent to the linear strands of the resolution of
the Stanley-Reisner ring. Our approach gives another point of view on this and new
questions are natural to ask.

1.3 Square free modules

The notion of square free S-module was introduced by Yanagawa [27]. An Nn-graded

S-module M is square free if Mb
xi−→ Mb+ui is an isomorphism for every b in Nn with

i in the support of b, and where ui is the i’th coordinate vector.
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It follows from the description of L(�) as a cellular complex, [4], that the enriched
homology modules are square free S-modules. Part a. and b. in the following proposi-
tion are quotes and consequences of [27], Lemma 2.2, Corollary 2.4, and Proposition
2.5.

Proposition 1.3. Let M be a square free S-module.

a. The minimal prime ideals are the (xi )i /∈R where R are the maximal subsets of [n]
with nonzero MR.

b. For R maximal as above let P be the corresponding prime ideal. There is a natural
map (MR has multidegree R)

S/P ⊗k MR → M

which becomes an isomorphism when localized at P.

The following is a justification for the term “enriched homology modules” enriched
homology modules.

Corollary 1.4. The S-module rank of Hp(�) is the dimension of H̃p(�) as a vector
space over k.

Proof: Let M be Hp(�) and R = [n]. Proposition 1.3 b. gives a natural map S ⊗k

H̃p(�) → Hp(�) which becomes an isomorphism when localized at (0). �

There is also a notion of square free modules over the exterior algebra E =
E(e1, . . . , en), namely a multigraded module M is called square free if Mb is nonzero
only if b is a characteristic vector of some R ⊆ [n], i.e. a vector such that bi is 1
for i in R and bi is zero otherwise. (This notion is a variation of the one defined by
Römer [22]. This is because we consider the ei to have negative degrees. According
to our convention E is not square free, but its dual E(W ) is.) We note that there is an
equivalence of categories between the square free modules over S and E [22].

For a square free module M over E , denote by M|R the restriction to ER = E(ei , i ∈
R), i.e. (M|R)b is Mb when the support of b is in R, and zero otherwise. For a square
free module over S we may restrict it to SR = k[xi , i ∈ R], the definition is by the
same formulation as above. Now as in (1), define the functor L R on a module M ′ over
ER to be

L R(M ′) : · · · → SR ⊗k M ′
i

di−→ SR ⊗k M ′
i−1 → · · · .

Lemma 1.5. Let M be a square free module over E.

a. L(M)|R = L R(M|R).
b. H p(L(M))|R = H p(L R(M|R)).

Proof:

a. This is straightforward.
b. Follows since restriction is an exact functor. �
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Corollary 1.6. Hp(�)|R = Hp(�R).

Proof: This is because (C�)|R = C�R . �

1.4 Alexander duals

The Alexander dual �∗ of a simplicial complex �, is the simplicial complex on [n]
consisting of the subsets F such that Fc is not in �.

The Alexander dual of a square free module M over E(e1, . . . , en) is the square
free module M∨ = Homk(M, k(–[n])). Note that these notions are related by an exact
sequence

0 → C�∗ → E(W ) → (C�)∨ → 0.

Let M be a square free module over S. Via the equivalence of categories this cor-
responds to a square free module over E . We may take the Alexander dual of this
module, and via the equivalence we again get a square free module M∗ over S, called
the Alexander dual of M [19] and [22]. Explicitly, for a subset F of [n], (M∗)F is
Homk (MFc , k) where Fc is the complement of F in [n]. If i is not in F , the multipli-
cation map

(M∗)F
xi−→ (M∗)F∪{i}

is the dual of the multiplication map

MFc\{i}
xi−→ MFc .

By obvious extension this defines (M∗)b for all b in Nn and all multiplications by
variables.

1.5 Enriched cohomology modules

The reduced cohomology groups H̃ p(�; k) of the simplicial complex � are the co-
homology groups of the dualized complex

Homk(C̃(�; k), k).

We define the enriched cohomology modules Hp(�; k) (or just Hp(�)) as the
cohomology modules of the dualized complex

L(�; k)∨ = HomS(L(�; k), ωS)

where ωS is the canonical module of S, isomorphic to S (–1) where 1 is the multidegree
(1, 1, . . . , 1).
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In terms of the Koszul duality correspondence this is given as follows. The reduced
simplicial cohomology group is

H̃ p(�; k) = H p+1((C�)∗). (2)

The complex L(�; k)∨ identifies as the complex L((C�)∨) [–n] (here [–n] denotes
the complex shifted n steps to the right) except that the former is shifted one step to
the left. The enriched cohomology modules are

Hp(�; k) = H p+1(L((C�)∨)[−n]).

The following describes these cohomology modules in greater detail.

Proposition 1.7. Hp(�)|R = Hp−rc
(lk� Rc). In particular Hp(�)b is isomorphic to

H̃ p−q (lk� Q) where Q is the complement in [n] of the support of b.

Proof: This follows by Lemma 1.5 since (C�)∨|R equals (Clk�
Rc)∨(−Rc). �

The above corollary suggests that enriched cohomology modules are related to the
local cohomology modules of the Stanley-Reisner ring. In fact, they contain exactly
the same information as the following shows.

Theorem 1.8. Hp(�) is the Alexander dual of Extn−p−1
S (k[�], ωs), which again is

Matlis dual to the local cohomology module H p+1
m (k[�]).

Proof: The last statement is a local duality. The former follows by [5, Theorem 5.6.3]
or alternatively from [27, Proposition 3.1]. �

1.6 Cohen-Macaulay and Buchsbaum simplicial complexes

A simplicial complex � is called Cohen-Macaulay (CM) if the Stanley-Reisner ring
k[�] is a Cohen-Macaulay ring. By a criterion of Hochster [13] or [24, II. 4], this is
equivalent to

H̃p(lk� R) = 0 for p + r < dim�. (3)

This gives the following criterion.

Proposition 1.9. � is Cohen-Macaulay iff the cohomology modules Hp(�) vanish
for p < dim �, or alternatively L(�)∨ is a resolution of Hdim�(�).

Proof: Since k is a field, H̃ p(lk� R) is isomorphic to H̃p(lk� R)∗. By Proposition 1.7
and Hochster’s criterion (3) this translates exactly to the above statement. �

This shows that the well-known link criterion for � being Cohen-Macaulay is
encoded quite compactly in the cohomology modules of �.
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Remark 1.10. In general, when k is not a field, the condition of only one non-vanishing
cohomology module is weaker then being Cohen-Macaulay, only implication to the
right holds in Proposition 1.9.

Proposition 1.11. When � is CM, the top cohomology module is the Alexander dual
of the canonical module ωk[�] of the Stanley-Reisner ring.

Proof: By Theorem 1.8, Hdim� (�) is the Alexander dual to

Extn−dim�−1
S (k[�], ωS),

which is the canonical module of the Stanley-Reisner ring. �

A simplicial complex � is called Buchsbaum if k[�] is a Buchsbaum ring. By a
criterion of Schenzel [23] or [24, II.8], this is equivalent to

H̃i (lk� R) = 0 for i + r < dim �, r ≥ 1. (4)

This gives the following criterion.

Proposition 1.12. � is Buchsbaum iff

Hp(�) ∼= S ⊗k H̃ p(�) for p < dim �.

(Note that H̃ p(�) has multidegree 1, see convention after Lemma 1.1.)

Proof: When p < dim� the criterion (4) says that Hp(�)b vanishes unless the support
of b is the whole of [n]. But any square free module M with this property must be of
the form S ⊗k M[n]. �

An alternative criterion for the Cohen-Macaulayness of � is the following,
[13, p. 197],

H̃p(�−R) = 0 for p + r < dim�. (5)

This follows directly from Hochster’s formula for the multigraded Tor in the resolution
of the Stanley-Reisner ring.

For a square free module M, the codimension of M is ≥ c iff M[n]\F is zero for all F
of cardinality less than c. Hochster’s criterion (5) is then equivalent to the following.

Proposition 1.13. � is CM iff each homology module Hdim�−i (�) has codimension
≥i.
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2 l-Cohen-Macaulay simplicial complexes

For Cohen-Macaulay simplicial complexes there is only one nonvanishing cohomol-
ogy module, Hdim�(�). It is therefore natural to put various algebraic conditions on this
module and investigate what properties they correspond to for a simplicial complex.

2.1 l-CM simplicial complexes

In [2], Baclawski introduced the notion of l-Cohen-Macaulay simplicial complexes,
which geometrically corresponds to higher connectivity. A simplicial complex � is
said to be l-Cohen-Macaulay (l-CM) if �−R is Cohen-Macaulay of the same dimen-
sion as �, for all R of cardinality ≤ l − 1. For instance if � is a graph, then � is l-CM
iff it is (vertex) l-connected.

In [11] we prove that this property has nice descriptions in terms of the top coho-
mology module and also in terms of the homology modules, generalizing Propositions
1.9 and 1.13.

Theorem 2.1 ([11]). The following are equivalent for a simplicial complex �.

1. � is CM and Hdim�(�) can occur as an l − 1’th syzygy module in an S-free reso-
lution.

2. The codimension of Hdim�−i(�) is greater than or equal to (l − 1) + i for i ≥ 1.
3. � is l-CM.

Remark 2.2. In the theory of polytopes, Balinski’s theorem [28], says that the
1-skeleton of a d-dimensional polytope is d-connected. In [11] we show a compre-
hensive generalization of Balinski’s theorem, namely that the codimension r skeleton
of an l-CM simplicial complex is l + r -CM. This is a rather immediate consequence
of the above theorem.

Remark 2.3. From [2] we mention the following two properties which produce new
l-CM complexes. (i) If � is an l-CM simplicial complex, then any link lk� Q is
l-CM. (ii) If �1 and �2 are l-CM simplicial complexes, their join �1 ∗ �2 is l-CM.
In particular since l vertices is l-CM, if � is l-CM, the l-point suspension of � is
l-CM.

2.2 Maximal girth and maximal dimension

For a simplicial complex � we define its girth to be the smallest degree in which the
top homology module Hdim�(�) is nonzero. Since homology modules are square free
the girth is ≤n provided the top homology module does not vanish. If it vanishes we
define the girth to be n + 1.

If � is a graph, this specializes to a notion of a girth for graphs, the length of a
cycle of minimal length.
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Proposition 2.4. Let a non-empty � be l-CM

a. Its girth ≤ n + 2 − l.
b. The cardinality d of a facet is ≤ n − l, unless � is the n − l-skeleton of the n − 1-

simplex.

Proof:

a. We want to show that Hdim�(�−R) is non-zero for some R of cardinality l − 2. By
restricting to �′ = �−R for some R of cardinality l − 2, it will be sufficient to show
this for 2-CM �′. Now it is easy to see that the top cohomology module of any
simplicial complex is non-zero unless the simplicial complex is empty. For instance
this may be seen from Proposition 1.7 by taking Q to be a facet of a simplicial
complex. But then applying Theorem 2.1 to the 2-CM �′, its non-zero enriched
top cohomology module Hdim�′

(�′) must have rank ≥ 1 as an S-module. Then
H̃ dim�′

(�′) is nonzero and so also is the reduced homology module H̃dim�′ (�′).
b. The restriction �−R has the same dimension as � for all R of cardinality l − 1.

Hence d ≤ n + 1 − l. If d were n + 1 − l, each �−R would be a simplex, since
[n]\R has cardinality n + 1 − l. But then � would be the n − l-skeleton of the
simplex on [n].

�

Remark 2.5. If � is l-CM, its codimension one skeleton has girth ≤d, since we delete
the interiors of the facets. Now if � is not the n − l-skeleton, we have d ≤ n − l.
Thus its codimension one skeleton, which is l + 1-Cohen-Macaulay, will not have
maximal girth.

The following characterizes those simplicial complexes attaining the submaximal
d. Actually the characterization is more transparently given in terms of the Alexander
dual �∗. Recall that a missing face F is a subset of [n] not in �. Also the frame
dimension of �∗ is denoted c∗ − 1.

Proposition 2.6. The following are equivalent for a simplicial complex �.

a. � is l-CM with d equal to n − l.
b. d is n − l and the cardinality of F ∪ G is ≥ n + 2 − l for any two distinct minimal

missing faces.
c. c∗ is l − 1 and any two distinct facets of �∗ intersect in a subset of cardinality less

than l − 1.

The girth of � being maximal, i.e. n + 2 − l corresponds to the cardinality of any
minimal missing face being ≤ n − l, respectively every facet of �∗ having cardinality
≥ l.

Proof: The equivalence of b. and c. is clear since F is a minimal missing face of �

iff the complement Fc is a facet of �∗, and c∗ + d + 1 is n.
a. ⇒ b. Assume � is l-CM with d equal to n − l. Let R be a subset of cardinality

l − 1. Then �′ = �−R is CM with d equal to n − l =: n′ − 1. We must show that �′
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has only one minimal missing face. But this is true, as the only minimal missing face
is the intersection of the missing faces of cardinality n′ − 1.

Before proving the converse, note that if � is a simplicial complex containing only
one minimal missing face F, then F is non-empty. Letting x be in F, the restriction
�−{x} contains no minimal missing face and so is a simplex and therefore d is n − 1.

b. ⇒ a. Let d be n − l with l ≥ 1 and R have cardinality l − 1. Then �′ = �−R

contains at most one minimal missing face. Since d ′ ≤ n − l, by the above it contains
exactly one minimal missing face F and the facets are exactly the n′ − 1-sets of [n]\R
not containing F. Therefore �′ is CM of the same dimension as �, and so � is l-CM
with d equal to n − l.

To prove the last statement, note that any minimal missing face of � has cardinality
≤ d + 1 which is n + 1 − l. That the girth of � is maximal, i.e. n + 2 − l means that
H̃dim�(�−R) which is H̃n−l−1(�−R) vanishes when R is of cardinality l − 1. But then
[n]\R is not a minimal missing face and so all these have cardinality ≤ n − l. �

Remark 2.7. When l is 2 we see that for the Alexander dual of a 2-CM simplicial com-
plex � with d submaximal equal to n − 2, the facets partition [n] into disjoint subsets.
In general for an l-CM complex with d equal to n − l, the facets of its Alexander dual
form a collection of subsets F1, . . . , Fm such that each l − 1-subset is contained in
exactly one subset Fi . The girth of � is n + 2 − l if all the Fi have cardinality ≥ l.

If � is 3-CM and if d is 2, i.e. � is a graph which is 3-connected, it is rather clear
that if � has a reasonably large number of vertices, then � cannot have maximal girth
n − 1. This suggests that for l-CM � of maximal girth and n reasonably large, the
dimension will not be too small. This would be a consequence of the following.

Conjecture 2.8. Let � be an l-CM simplicial complex of maximal girth. Assume it is
not the r -skeleton of the l + r − 1-simplex for some r. Then c ≥ l − 1.

This of course implies that d ≥ l if � is not the skeleton of some simplex of
dimension ≤ 2l − 3.

We prove this conjecture in the case of d submaximal equal to n − l. In fact we
prove something stronger.

Proposition 2.9. Let � be an l-CM simplicial complex of maximal girth with d equal
to n − l. Then c ≥ l − 1 and for l ≥ 3 and n ≥ 3l − 4 we have the stronger bound
c ≥ (n + 2 − l)/2.

Proof: Clearly the statement holds if l is 1 or 2. So we assume l ≥ 3 and consider
the Alexander dual simplicial complex �∗. Let X be a facet of �∗ of cardinality d∗,
which is ≥ l by Proposition 2.6, and let Y be the complement [n]\X . We shall count
the number of pairs (A, B) where:

i. A ⊆ X has cardinality l − 2,
ii. B ⊆ Y has cardinality 2,

iii. A ∪ B is a face of �∗.

First assume we are given A fulfilling i. Since c∗ = l − 1, we may take any y in Y
and A ∪ {y} will be a face. By Proposition 2.6, it may be extended to a face A ∪ {y, z}.
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Now z cannot be in X since any two facets of �∗ intersect in cardinality ≤ l − 2. Hence
z is in Y. This gives that the number of pairs (A, B) fulfilling i., ii., and iii. is greater
than or equal to

n − d∗

2
·
(

d∗

l − 2

)
. (6)

Now given B fulfilling ii, consider the set of A’s fulfilling i. and iii. If A1 and A2

are such two distinct sets, then the union of A1, A2 and B is not a face, since it would
intersect X in a set of cardinality ≥ l − 1. Hence A1 ∪ B and A2 ∪ B are in distinct
facets and so A1 and A2 intersect in a set of cardinality ≤ l − 4. Thus each l − 3-set
in X is contained in at most one A. So for a given B the number of possible A’s is less
than or equal to

1

l − 2
·
(

d∗

l − 3

)
. (7)

Summing over the B’s, the number of pairs (A, B) fulfilling i., ii., and iii. is less than
or equal to (

n − d∗

2

)
· 1

l − 2
·
(

d∗

l − 3

)
(8)

This implies that (6) is less than or equal to (8) which gives

d∗ − l + 3 ≤ n − d∗ − 1.

Putting d∗ = n − c − 1 this becomes

c ≥ n + 2 − l

2
.

Now let A be the complement of A in X, of cardinality d∗ − l + 2. For a given B
any two distinct A1 and A2 intersect in a set of cardinality ≤d∗ − l. Thus the number
of pairs (A, B) where (A, B) fulfills i., ii., and iii. is less or equal to(

n − d∗

2

)
· 1

d∗ − l + 2
·
(

d∗

d∗ − l + 1

)
. (9)

This implies that (6) is less than or equal to (9) which gives

1 ≤ 1

d∗ − l + 2
· d∗ − l + 2

l − 1
· (n − d∗ − 1).

Putting d∗ = n − c − 1 this becomes

c ≥ l − 1.

�
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3 Gorenstein∗ complexes and orientable homology manifolds

Another natural question concerning the top cohomology module of CM-complexes
is when it can be identified as an ideal in S, or more intrinsically as a rank one torsion
free module over S. The answer is that this happens exactly when � is Gorenstein∗.
More generally we show that for Buchsbaum complexes it happens when the complex
is an orientable homology manifold.

3.1 Gorenstein∗ complexes

Recall that � is a Gorenstein simplicial complex iff the Stanley-Reisner ring k[�]
is a Gorenstein ring. If � is also not a cone, it is called Gorenstein∗. By a criterion
of Hochster this latter is equivalent to � being CM and H̃p(lk� R) = k whenever
p + r = dim� and R is a face of �.

Theorem 3.1. Let � be CM. The top cohomology module of � is a rank one torsion
free S-module iff � is a Gorenstein∗ simplicial complex. The top cohomology module
then identifies as the Stanley-Reisner ideal (in S) of the Alexander dual of �.

Proof: Note first that if M is square free then M∨ = HomS(M, ωS) is also square free
as can be seen by taking a free presentation of M.

Consider then a non-zero map S(−a) → Hdim�(�)∨ where S(−a) is square free.
Dualized this gives a nonzero composition

Hdim�(�) → Hdim�(�)∨∨ → S(−ac) → S. (10)

If the top cohomology module is torsion free of rank one this map is an inclusion. If
we take the Alexander dual we get a surjection

S → Extn−d
S (k[�], ωS). (11)

The module on the right-hand-side of (11) is a k[�]-module and must therefore be a
quotient of k[�]. Since k[�] is unmixed, the right side of (11) has the same asscoiated
prime ideals, see [26] Proposition 3.6.b on p. 51. Therefore since k[�] is reduced they
must be equal. Thus k[�] becomes Gorenstein and Gorenstein∗ since � is not acyclic.

Conversely if � is Gorenstein∗ the right-hand-side of (11) is k[�]. The Alexander
dual of (11) then identifies the top cohomology module as the ideal I�∗ in S. �

Remark 3.2. When � is zero-dimensional, i.e. a set of vertices, � is l-CM if �

consists of l or more vertices. Thus if � is an l-CM simplicial complex any link lk� Q
which is a non-empty point set will consist of l or more points. When l is equal to
2, Gorenstein∗ complexes are the 2-CM complexes where each such link consists of
exactly two points. Hence the class of l-CM complexes in which the links that are
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non-empty point sets consist of exactly l points might be a reasonable generalization
of Gorenstein∗ simplicial complexes.

Theorem 3.3. Let � be a Gorenstein∗ simplicial complex. The homology modules
Hi (�) and Hdim�−1−i (�) are Alexander dual square free modules.

Proof: In the resolution of k[�], in each linear strand the differential is given by maps
[13],

S ⊗k H̃ p
(
�R∪{i}

) → S ⊗k H̃ p(�R). (12)

When � is Gorenstein∗, the resolution of k[�] is self-dual and HomS(−, ωS) of (12)
identifies as

S ⊗k H̃ dim�−1−p(�−R) → S ⊗k H̃ dim�−1−p
(
�−R−{i}

)
.

Hence the natural maps

H̃p(�R) → H̃p
(
�R∪{i}

)
and

H̃dim�−1−p
(
�−R−{i}

) → H̃dim�−1−p(�−R)

are dual to each other. But this means that the square free modules Hi (�) and
Hdim�−1−i (�) are Alexander duals. �

3.2 Orientable homology manifolds

Recall that a connected � is an orientable homology manifold if all proper links of �

are Gorenstein∗ and H̃dim�(�) is k. Then in particular � is Buchsbaum.

Theorem 3.4. Let � be Buchsbaum of dimension ≥1. Then � is a connected ori-
entable homology manifold iff the top cohomology module is a rank one torsion free
S-module. It may be identified as the Stanley-Reisner ideal (in S) of the Alexander dual
of �.

Proof: If the top cohomology module is torsion free of rank one we get as in
Theorem 3.1 an inclusion

Hdim�(�) → S. (13)

Taking the Alexander dual we get a surjection

S → Extn−d
S (k[�], ωS). (14)
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The module on the right-hand-side of (14) is a k[�]-module and as such a quotient
of k[�]. Also it has the same associated prime ideals as k[�] since the latter is unmixed,
see [26], Proposition 3.6.b on p. 51 and Corollary 2.4 on p. 75. Since k[�] is reduced
the right hand side of (14) must then be equal to k[�]. Taking the Alexander dual of
(14) we get that the left-hand-side of (13) identifies as I�∗ .

Since Hp(lk�{x}) is Hp(�)|[n]\{x} by Proposition 1.7, it follows by Theorem 3.1
that lk�{x} is Gorenstein∗. Therefore � is an orientable homology manifold.

Conversely suppose � is a connected orientable homology manifold. Then
Hdim�(�) has rank one. If it had torsion there would have to be a proper subset R of [n]
such that Hdim�(�)|R had rank ≥2. But since this module identifies as Hdim�−rc

(lk� Rc)
and this link is Gorenstein∗, this is impossible. Thus the top cohomology module is
torsion free of rank one. �

4 Designs and vanishing of homology modules

Assume � is not ∅ or the simplex on [n]. Recall that c is the maximum integer i such
that all i-sets are in �. If T is a c + 1-set not in �, then H̃c−1(�T ) is non-zero. Hence
the homology module Hc−1(�) is non-zero. The following, from [10], describes when
the other homology modules vanish.

4.1 Bi-Cohen-Macaulay complexes

Theorem 4.1. There is at most one non-vanishing homology module Hi (�) (with the
exception of H−1(�) if this is k) iff the Alexander dual of � is Cohen-Macaulay.

Remark 4.2. H−1(�) is k iff all vertices of [n] are in �.

When both� and�∗ are Cohen-Macaulay we call�bi-Cohen-Macaulay. This cor-
responds to � having one non-vanishing cohomology module and one non-vanishing
homology module (save the exception).

Example 4.3. When � is a graph, � is Cohen-Macaulay iff it is connected. The
Alexander dual of � is Cohen-Macaulay iff � is a forest. Hence � is bi-Cohen-
Macaulay iff it is a tree.

In [10] it was shown that the f-vector of a bi-Cohen-Macaulay simplicial complex
only depends on the number of vertices n, its dimension, and its frame dimension. If
f�(t) = ∑

fi−1t i is the f-polynomial then

f�(t) = (1 + t)d−c

(
1 + (n − d + c)t + · · · +

(
n − d + c

c

)
t c

)
. (15)
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4.2 l-Cohen-Macaulay designs

Our objective is now to put strong vanishing conditions on the homology modules
of l-CM simplicial complexes and investigate what kind of simplicial complexes we
obtain this way.

We define a simplicial complex to be an l-CM design iff (i) �−R is bi-CM of the
same dimension and frame dimension as � for all R of cardinality l − 1 and (ii) � is
not the (n − p)-skeleton of a simplex for some p > l.

Theorem 4.4. � is an l-CM design iff � is l-CM, of maximal girth n + 2 − l, and has
at most one non-vanishing homology module Hi (�) for i < dim� (with the exception
of H−1(�) if this is k).

Proof: First assume � is an l-CM design. If d > c, then H̃dim�(�−R) vanishes for R
of cardinality l − 1. So Hdim�(�) is zero in degrees ≤ n + 1 − l and the girth of � is
n + 2 − l. This is also true if d (and hence c) is n + 1 − l.

Since � is l-CM, H̃i (�−R) vanishes when i + r ≤ d + l − 3 and i ≤ d − 2. In
particular when r ≤ l − 1 and i ≤ d − 2, it vanishes. When i is not equal to c − 1 and
r ≥ l it will also vanish as we now explain. Let T be a subset of R of cardinality l − 1.
�−T is bi-CM of frame dimension c − 1, and so Hi (�−T ) vanishes for i not equal to
c − 1 (except for i = −1 when this homology module is k). Hence Hi (�) vanishes for
i < dim�, except for i equal to c − 1 (and for i = −1 when this homology module
is k).

Conversely, suppose � is l-CM, has maximal girth n + 2 − l and at most one non-
vanishing Hi (�) for i < dim� (save the exception). If � is a skeleton of the simplex,
the condition of maximal girth clearly implies that � is the n − l-skeleton.

Let R be a subset of [n] of cardinality l − 1. Then Hi (�)b is equal to Hi (�−R)b

when b has support in [n]\R. Thus the girth of � being maximal implies the vanishing
of Hdim�(�−R). Also the vanishing of Hi (�) for i < dim� except when i is c − 1
(and i = −1 if this homology module is k), implies the same for �−R . Hence �−R is
bi-CM of the same dimension and frame dimension as �. �

Remark 4.5. A slight nuisance in the formulations of Theorems 4.1 and 4.4 is the
exception statement. It may be avoided with the following approach. One can sheafify
the complexes L(�) to get a complex of coherent sheaves on the projective space Pn

L̃(�) : · · · → OPn (−p) ⊗k (C�)p → · · ·

and consider the homology sheaves Hp+1(L̃(�)) instead of the enriched homology
modules Hp(�). Then H0(L̃(�)) is zero when H−1(�) is k or 0, and non-zero other-
wise, so one avoids the exception in the theorems.

Example 4.6. The boundaries of cyclic polytopes of even dimension d (and containing
all vertices of [n]) are examples of 2-CM designs. Since the boundaries of cyclic
polytopes are Gorenstein∗ they are evidently 2-CM. Furthermore since they are d/2-
neighbourly, i.e. d is 2c, Hi (�) vanishes for i in the interval from 0 to d/2 − 2. By
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Alexander duality Hd−2−i (�) also vanishes when d − 2 − i is in the interval from d/2
to d − 2. Hence it is a 2-CM design.

We now turn to examine the rationale behind the term design. Recall that a t −
(n, k, λ) design is a collection of (distinct) k-subsets of [n], called blocks, such that
each t-subset is contained in exactly λ blocks.

Considering the blocks as facets of a simplicial complex � this means that � is
pure of dimension k − 1 and lk�T has exactly λ facets for each t-subset T. Our l-
CM designs will be block designs in that sense. But they have in fact much stronger
regularity properties as we show in the following statements.

Lemma 4.7. Let � be a simplicial complex on [n].

a. Suppose that for x in [n] the restrictions �−{x} all have the same f-polynomial f (t).
Then the f-polynomial f ! of � is given by

f !(t) =
dim�+1∑

i=0

n

n − i
· fi−1t i .

b. Suppose all links lk�{x} have the same f-polynomial f (t). Then the f-polynomial
f # of � is given by

f #(t) = 1 + n ·
dim�∑
i=0

fi−1

i + 1
t i+1.

In particular f(t) is the derivative of f #(t) divided by the number of vertices.

Proof:

a. We count the number of pairs (F, x) where F is a face of cardinality i and x is not
in F. By restricting to each �−{x} this is fi−1 · n. By counting first the F’s in �,
these pairs can be counted as f !

i−1 · (n − i).
b. We count the pairs (F, x) where F is a face of cardinality i + 1 and x is in F.

Considering each link lk�{x} this is fi−1 · n. By counting first the F’s, this can be
counted as f #

i · (i + 1). �

Corollary 4.8. Let � be an l-CM design and Q ⊆ [n] with q ≤ l − 1. Then the
f -vector of lk� Q only depends on n, d, c, l, and q. In particular, when Q = ∅, the
f-vector of � depends only on n, d, c, and l.

Proof: When Q = ∅ this follows by repeatedly using Lemma 4.7 a. since all re-
strictions �−R where r = l − 1 have the same f -vector. If Q is nonempty let
Q = Q′ ∪ {x}. There is a natural exact sequence

0 → Clk�−{x} Q′ → Clk� Q′ → Clk� Q(−1) → 0.

The statement follows by induction on taking Hilbert series of these modules. �
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Corollary 4.9. An l-CM design is an l − 1 − (n, d, λ) block design where λ is(
n − d + c + 1 − l

c + 1 − l

)
·
(

c
l − 1

)−1

·
(

d
l − 1

)
, for c ≥ l − 1, (16)

and (
n − d

l − 1 − c

)−1

·
(

l − 1
c

)
·
(

d
l − 1

)
, for c ≤ l − 1. (17)

Proof:

a. The restriction �−R when r = l − 1 is bi-CM with invariants n + 1 − l, d, and c
so the number of facets is by (15) given by ( n−d+c+1−l

c ) which we denote by λ′′.
When c ≥ l − 1 this may be written as

(
n − d + c + 1 − l

c + 1 − l

)
·
(

c
l − 1

)−1

· 1

(l − 1)!
·

l∏
i=2

(n − d + i − l), (18)

and when c ≤ l − 1 this may be written as

(
n − d

l − 1 − c

)−1

·
(

l − 1
c

)
· 1

(l − 1)!
·

l∏
i=2

(n − d + i − l). (19)

By Lemma 4.7 a. the number of facets of �−R when r = l − 2 is given by
λ′′ · n+2−l

n−d+2−l and in general for r ≤ l − 1 by

λ′′ ·
l−r∏
i=2

n + i − l

n − d + i − l
.

The expression for this when r = 0 will be the number of facets of � and we denote
it by λ′. Now by Lemma 4.7 b. the number of facets of lk� Q when q = 1 is λ′ · d

n
and in general for q ≤ l − 1 it will be

λ′ ·
q−1∏
i=0

d − i

n − i
.

When q = l − 1 this is

λ = λ′ ·
l∏

i=2

d + i − l

n + i − l
.

By working out the result of these steps starting from (18) and (19) we obtain the
statement. �
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Example 4.10. According to Conjecture 2.8 the minimal interesting value of c for
l-CM designs is l − 1. And then the minimal interesting value for d is l. By the
above we see that λ = l so we get l − 1 − (n, l, l) designs. Such designs have been
constructed when l = 3 [18], and l = 4 [15], in many cases. It is not automatic that
they are l-CM designs but we suspect that many of the examples constructed are.

A consequence of the Corollary 4.9 is that it supports Conjecture 2.8.

Corollary 4.11. There is a function σ (l, d) such that if � is an l-CM design with
n ≥ σ (l, d) then c ≥ l − 1.

Proof: The expression of (17) is for c ≤ l − 2 the expression of (17) is equal to

d(d − 1) · · · (d + 2 − 1)

c!(n − d) · · · (n − d + 2 + c − l)
.

If this is an integer then

d(d − 1) · · · (d + 2 − l)

n − d

is an integer and so the statement follows. �

4.3 (a, b)-designs

Now we introduce a class of designs which extends the class of l-CM designs. Call a
simplicial complex an (a, b)-design if

(lk� B)−A (20)

is bi-CM of dimension and frame dimension equal to those of � reduced by b, when-
ever A and B are disjoint subsets of [n] of cardinalities a and b. Observe that the
Alexander dual of an (a, b)-design is a (b, a)-design, since the Alexander dual of (20)
is (lk�∗ A)−B . Note also that l-CM designs are (l − 1, 0)-designs and so (0, l − 1)-
designs are Alexander duals of l-CM designs.

Example 4.12. The standard triangulation of the real projective plane with six vertices,
and the triangulation of the two-dimensional torus with seven vertices are examples of
(1, 1)-designs � with d = 3 and c = 2. This is because each link lk�{x} is a polygon
with n − 1 vertices and invariants n − 1, d − 1, and c − 1. Thus it is a (1, 0)-design
(or 2-CM design) with the right invariants. Note that both reduced homology groups
vanish for the real projective plane (char k �= 2) while the torus has one-dimensional
H̃2(�) and two-dimensional H̃2(�).

It is known for which genera of orientable and non-orientable surfaces there exist
2-neighbourly triangulations, see [14, 21]. These will be examples of (1, 1)-designs.

In general (1, 1)-designs with d = 2c − 1 will be homology manifolds since each
lk�{x} gives a (1, 0)-design (or 2-CM design) with invariants d − 1 and c − 1 where
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d − 1 = 2(c − 1). Conferring Example 4.6 one may work out, via Euler characteris-
tics, that the rank of the top cohomology module of each single-point link is one, and
hence each of these links are Gorenstein∗ by Theorems 2.1 and 3.1. Such homology
manifolds are related to certain extremal behaviour of the Euler characteristic, see [16,
17–20] for a survey.

We now show that (a, b)-designs have very strong regularity properties. Not only is
the number of facets of links determined, but the complete f -vector of all combinations
of links and restrictions up to a certain level is determined.

Lemma 4.13. Let � be an (a, b)-design and R and Q be disjoint subsets of [n] where
r + q ≤ a + b. Then the f-vector of

(lk� Q)−R (21)

depends only on the numerical invariants n, d, c, a, b, r, and q.

Proof: If Q and R are empty this follows by repeated use of Lemma 4.7. Suppose
then that r ≤ a and q ≤ b. Then (21) is an (a − r, b − q)-design and so this follows
by the case just treated. If q > b then let B ⊆ Q be a subset of cardinality b. Then
(lk� B)−R is a (a − r, 0)-design. Since (21) is a further link of this we get the statement
from Corollary 4.8. If r > a we may reduce to the case just considered by taking the
Alexander dual. �

Remark 4.14. Considering the case when Q has cardinality a + b we see that (a, b)-
designs are a + b − (n, d, λ) block designs for some λ. By taking the link of a set of
cardinality b we get an (a, 0)-design which is an a − (n − b, d − b, λ) design with
invariants n − b, d − b and c − b. Hence λ may be determined by Corollary 4.9.

Example 4.15. A consequence of the above remark is that (0, l − 1)-designs have λ

equal to ( n+1+c−d−l
c+1−l ). Hence when c = l − 1 we get c − (n, d, 1) designs and these are

exactly the Steiner systems S(c, d, n). They are Alexander duals of the l-CM designs
where d is submaximal equal to n − l.

5 Problems and conjectures

We pose the following problems.

Problem 1. What are the possible f-vectors (or h-vectors) of l-Cohen-Macaulay sim-
plicial complexes?

The case when l is equal to 1 is classical, see [24, II.3.3]. When l ≥ 2 this is
likely to be a difficult problem since any answer also would include a question of
what the h-vectors of Gorenstein∗ simplicial complexes are. However, any conjecture
about this would be highly interesting since it would contain as a subconjecture what
the h-vectors of Gorenstein∗ simplicial complexes are. Some investigations into this
problem are contained in [25].
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This problem might be more tractable if d is an extremal value.

Subproblem 2. What are the possible f-vectors (or h-vectors) of l-CM simplicial com-
plexes with d equal to n − l?

Problem 3. Construct (a, b)-designs for various parameters of n, d, c, a, and b.

As has been pointed out this has been done in a number of particular cases. When
a and b are zero we have the bi-Cohen-Macaulay simplicial complexes constructed
in [10]. When a is 1, b is 0 and d is 2c we have the cyclic polytopes. When a and b
are 1, triangulations of surfaces has been constructed. For a = 0, low values of b and
c = b many Steiner systems S(c, d, n) have been constructed. An examination of the
literature on designs will most likely reveal numerous other cases.

Theorem 4.4 and Example 4.12 also suggest the following.

Problem 4. Determine the homological behaviour of (a, b)-designs �. For instance
do the dimensions of H̃i (�) depend only on n, d, c, a, and b, and if so, what are
they?

We also recall the following from Section 2.

Conjecture 2.8. Let � be an l-CM simplicial complex of maximal girth. Assume it is
not the r -skeleton of the l + r − 1-simplex for some r. Then c ≥ l − 1.

A weaker form of this conjecture is

Conjecture 5.1. Show that there is an integer σ (l, d) such that if � is an l-CM simpli-
cial complex of maximal girth where the number of vertices is larger than this integer,
then c ≥ l − 1.

Acknowledgments I thank an anonymous referee for suggestions simplifying the proofs of Theorems 3.1
and 3.4, and in general the referees for improving the exposition of the paper.
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