ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Regular Cayley maps for finite abelian groups

Marston Conder1 , Robert Jajcay2 and Thomas Tucker3
1University of Auckland Department of Mathematics Private Bag 92019 Auckland New Zealand Private Bag 92019 Auckland New Zealand
2Indiana State University Department of Mathematics and Computer Science Terre Haute IN 47809 USA Terre Haute IN 47809 USA
3Colgate University Mathematics Department Hamilton NY 13346 USA Hamilton NY 13346 USA

DOI: 10.1007/s10801-006-0037-0

Abstract

A regular Cayley map for a finite group A is an orientable map whose orientation-preserving automorphism group G acts regularly on the directed edge set and has a subgroup isomorphic to A that acts regularly on the vertex set. This paper considers the problem of determining which abelian groups have regular Cayley maps. The analysis is purely algebraic, involving the structure of the canonical form for A. The case when A is normal in G involves the relationship between the rank of A and the exponent of the automorphism group of A, and the general case uses Ito's theorem to analyze the factorization G = AY, where Y is the (cyclic) stabilizer of a vertex.

Pages: 259–283

Keywords: keywords regular map; Cayley graph; abelian group

Full Text: PDF

References

1. N. Biggs, “Cayley maps and symmetrical maps,” Proc. Camb. Phil. Soc. 72 (1972), 381-386. Springer
2. W. Bosma, J. Cannon, and C. Playoust, “The MAGMA algebra system I: The user language,” J. Symbolic Comput. 24 (1997), 235-265.
3. M. Conder, R. Jajcay, and T. Tucker, “Regular t-balanced Cayley maps,” J. Combin. Theory Ser. B, to appear.
4. M. Conder and P. Dobcsányi, “Determination of all regular maps of small genus,” J. Combin. Theory Ser. B 81 (2001), 224-242.
5. M. Conder and I.M. Isaacs, “Derived subgroups of products of an abelian and a cyclic subgroup,” J. London Math. Soc. 69 (2004), 333-348.
6. H. Coxeter and W. Moser, Generators and Relations for Discrete Groups 4th edn., Springer-Verlag, Berlin and New York, 1980.
7. A. Gardiner, R. Nedela, J. \check Sirá\check n, and M. \check Skoviera, “Characterization of graphs which underlie regular maps on closed surfaces,” J. London Math. Soc. 59(2) (1999), 100-108.
8. D. Gorenstein, Finite Simple Groups: An Introduction to Their Classification. Plenum Publishing Corp., New York, 1982.
9. J.L. Gross and T.W. Tucker, Topological Graph Theory. Wiley, New York, 1987 (Dover paperback, 2001).
10. M. Hall, The Theory of Groups. Chelsea Publishing Co., New York, 1976.
11. N. Ito, “ \ddot Uber das Produkt von zwei abelschen Gruppen,” Math Z. 62 (1955), 400-401.
12. R. Jajcay and J. \check Sirá\check n, “Skew-morphisms of regular Cayley maps,” Discrete Math. 244 (2002), 167-179.
13. C. Li, “On edge-transitive Cayley graphs, rotary Cayley maps on 2-manifolds, and s-arc-transitive graphs,” preprint.
14. G. Malle, J. Saxl, and T. Weigel, “Generation of classical groups,” Geom. Dedicata 49 (1994), 85-116.
15. P. McMullen, B. Monson, and A.I. Weiss, “Regular maps constructed from linear groups,” European J. Combin. 14 (1993), 541-552.
16. M. Muzychuk, “On balanced automorphisms of abelian groups,” preprint, 2005.
17. M. Muzychuk, “On unbalanced regular cayley Maps for abelian groups,” preprint, 2005.
18. B. Richter, J. \check Sirá\check n, R. Jajcay, T. Tucker, and M. Watkins, “Cayley maps,” J. Combin. Theory Ser. B 95 (2005), 489-545.
19. G. Sabidussi, “On a class of fixed-point free graphs,” Proc. Amer. Math. Soc. 9 (1958), 800-804.
20. J. \check Sirá\check n, “Triangle group representations and constructions or regular maps,” Proc. London Math. Soc. 82(3) (2001), 513-532.
21. M. \check Skoviera and J. \check Sirá\check n, “Regular maps from Cayley graphs, Part I. Balanced Cayley maps,” Discrete Math. 109 (1992), 265-276.
22. M. \check Skoviera and J. \check Sirá\check n, “Regular maps from Cayley graphs II. Antibalanced Cayley maps,” Discrete Math. 124 (1994), 179-191.
23. T.W. Tucker, “Finite groups acting on surfaces and the genus of a group,” J. Combin. Theory Ser. B 34 (1983), 323-333.
24. S. Wilson, “Families of regular graphs in regular maps,” J. Combin. Theory Ser. B 85 (2002), 264-289.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition