ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

A note on quantum products of Schubert classes in a Grassmannian

Dave Anderson
University of Michigan Department of Mathematics Ann Arbor MI 48109 USA Ann Arbor MI 48109 USA

DOI: 10.1007/s10801-006-0040-5

Abstract

Given two Schubert classes σ  λ  and σ  μ  in the quantum cohomology of a Grassmannian, we construct a partition ν , depending on λ  and μ , such that σ  ν  appears with coefficient 1 in the lowest (or highest) degree part of the quantum product σ  λ \bigstar σ  μ . To do this, we show that for any two partitions λ  and μ , contained in a k \times  ( n  -  k) rectangle and such that the 180 \deg -rotation of one does not overlap the other, there is a third partition ν , also contained in the rectangle, such that the Littlewood-Richardson number c λ μ  ν  is 1.

Pages: 349–356

Keywords: keywords quantum cohomology; toric tableau; Littlewood-Richardson number

Full Text: PDF

References

1. A. Bertram, I. Ciocan-Fontanine, and W. Fulton, “Quantum multiplication of Schur polynomials,” J. Algebra 219 (1999), 728-746.
2. W. Fulton, Young Tableaux, Cambridge Univ. Press, 1997.
3. W. Fulton and C. Woodward, “On the quantum product of Schubert classes,” J. Algebraic Geom. 13 (2004), 641-661.
4. S. Kwon, “Real aspects of the moduli space of genus zero stable maps and real version of the Gromov-Witten theory,” math.AG/0305128.
5. A. Postnikov, “Affine approach to quantum Schubert calculus,” Duke Math. J. 128(3) (2005), 473-509.
6. R.P. Stanley, Enumerative Combinatorics, Volume 2, with appendage by S. Fomin, Cambridge, 1999.
7. M.P. Sch\ddot utzenberger, “La correspondance de Robinson,” in Combinatoire et Represéntation du Groupe Symétrique, Lecture Notes in Math., 579 (1977), Springer-Verlag, 59-135.
8. A. Yong, “Degree bounds in quantum Schubert calculus,” Proc. Amer. Math. Soc. 131(9) (2003), 2649-2655. 2 The phrase in quotes should be interpreted as follows: Let M = M0,3(X, d) be the Kontsevich moduli space of stable maps, and let M(R) be its real part. The Gromov-Witten invariants cνλμ(d) are certain intersection numbers in H * (M, Z); let cνλμ(d) be the analogous intersection numbers in H* (M(R), Z/2Z). It is reasonable to expect that cνλμ(d) \equiv cνλμ(d) (mod 2), as is true for the classical case (d = 0). An outline discussion of intersection theory on M(R) can be found in [4]. 3 Available at http://www.math.rutgers.edu/~asbuch/lrcalc/.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition