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Abstract The pair of groups, symmetric group S2n and hyperoctohedral group Hn ,
form a Gelfand pair. The characteristic map is a mapping from the graded algebra
generated by the zonal spherical functions of (S2n, Hn) into the ring of symmetric
functions. The images of the zonal spherical functions under this map are called the
zonal polynomials. A wreath product generalization of the Gelfand pair (S2n, Hn) is
discussed in this paper. Then a multi-partition version of the theory is constructed. The
multi-partition versions of zonal polynomials are products of zonal polynomials and
Schur functions and are obtained from a characteristic map from the graded Hecke
algebra into a multipartition version of the ring of symmetric functions.
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1. Introduction

It is a well-known fact that the characteristic map ch gives an isomorphism be-
tween the character ring of the symmetric groups and the ring of symmetric functions
� [7, I-7]. This mapping sends the irreducible characters to the Schur functions:

ch(χλ) = Sλ(x),

where χλ is an irreducible character of a symmetric group indexed by a partition λ.
There are various similar results for other algebras. Below, we introduce two

characteristic maps related to the symmetric groups.
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The first case is the character theory for the wreath products of a finite group with
a symmetric group [7, I-Appendix B]. In this case the characteristic map sends the
character ring of the wreath product into the multi-partition version of the ring of
symmetric functions

�(G) = C[pr (C); C is a conjugacy class of G, r ≥ 1],

where pr (C)’s are r -th power sum symmetric functions indexed by the conjugacy
classes of G with variables (xC1, xC2, . . . ). Again, the characteristic map can be defined
to be an isometry between these two rings. Then we see that the image of an irreducible
character is a multi-partition version of Schur function.

Secondly, we consider the zonal spherical functions of the Gelfand pair (S2n, Hn)
(see [7, VII7-2]), where Hn is the centralizer of the element (1, 2)(3, 4) · · · (2n −
1, 2n). The precise definition of zonal spherical functions shall appear later (see
Section 3). The zonal spherical functions of the Gelfand pair (S2n, Hn) are indexed by
the partitions of n. We define a graded ring H as a direct sum of Hecke algebras,

H =
⊕
n≥0

eHn CS2neHn , where eHn = 1

|Hn|
∑
h∈Hn

h.

In this case, the characteristic map Ch is an isomorphism between H and the ring of
symmetric functions �. The images of the zonal spherical functions are the zonal poly-
nomials (cf. [3, 12, 13]); the Jack symmetric functions J α

λ (x) [7, 11] at the parameter
α = 2.

Several authors have (cf. [1, 2, 8–10]) written about Gelfand pairs of wreath prod-
ucts. In this paper, we generalize the theory of the Gelfand pair (S2n, Hn) to wreath
products. It might be expected that the images of the resulting zonal spherical function
are products of zonal polynomials. This expectation is almost true but it runs out that
we shall need the Schur functions as well as the zonal polynomials (see Theorem
11.2).

This paper is organized as follows. In Section 2 we establish notations. In Sec-
tion 3 we recall the theory of Gelfand pairs of finite groups and in Section 4
we define the subgroup H Gn of SG2n = G � S2n . Section 5 analyzes the double
cosets of H Gn in SG2n and shows that the pair (SG2n, H Gn) is a Gelfand pair.
We recall the representation theory of wreath products in Section 6 and in Sec-
tion 7 we determine the irreducible decomposition of the permutation representa-
tion 1SG2n

H Gn
. Here we compute two special types of zonal spherical functions. In Sec-

tions 8 and 9, we prepare algebraic setting for obtaining our main result. We con-
struct a graded Hecke algebra and the multipartition version of the ring of sym-
metric functions. In Section 10 we define the characteristic map between these two
algebras and in Section 11 we determine the images of zonal spherical functions
of (SG2n, H Gn) under the characteristic map (Theorem 11.2). In the last section,
we apply our main theorem to discrete orthogonal polynomials of hypergeometric
type.
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2. Notation

Throughout this paper we use the following notation. Let λ = (λ1, λ2, . . . ) be a par-
tition of n. We write |λ| = n or λ � n. We denote by mr = mr (λ) = | {i ; λi = r} | the
multiplicity of r in λ = (λ1, λ2, . . . ) � n and we write λ = 1m1 2m2 3m3 . . . . Let X be
a (finite) set. If ρ = (ρ(x)|x ∈ X ) is an |X |-tuple of partitions and

∑
x∈X |ρ(x)| = n

then we say that ρ is a (|X |-tuple of) partition(s) of n and write |ρ| = n or ρ � n. If

ρ(x) = 1m1(x)2m2(x)3m3(x) . . . (x ∈ X ) we put⋃
x∈X

ρ(x) = 1
∑

x∈X m1(x)2
∑

x∈X m2(x)3
∑

x∈X m3(x) . . . .

Let Sn be the symmetric group on n letters. Let ρ = (ρ1, ρ2, . . . ) be a partition of n.
Define [ρ] ∈ Sn by

[ρ] = (1, 2, . . . , ρ1)(ρ1 + 1, ρ1 + 2, . . . , ρ1 + ρ2)(ρ1 + ρ2 + 1, . . . , ) . . . .

Let G be a finite group. Let G∗ be the set of irreducible characters of G and G∗ the set of
conjugacy classes of G. Let Vχ denote the irreducible G-module affording a character
χ ∈ G∗ and let χ (C) be the irreducible character χ evaluated at an element of the
conjugacy class C . Let CG be the group ring of G. We always identify

∑
x∈G f (x)x ∈

CG with the corresponding function f on G. If H is a subgroup of G the Hecke
algebra is

H(G, H ) = eH CGeH , where eH = 1

|H |
∑
h∈H

h.

Viewed as functions, H(G, H ) is the algebra of functions on G which are constant on
each double coset in H\G/H . Let

1G
H = IndG

H 1 ∼=G C[G/H ] ∼=G CGeH

denote the permutation representation of G on C[G/H ]. The scalar product on CG is
defined by

〈 f, g〉G = 1

|G|
∑
x∈G

f (x)g(x).

The primitive idempotent corresponding to the Vχ -isotopic component of CG is writ-
ten by eχ or eVχ

. The following proposition (cf. [7, I, (2.1)]) about double cosets for
the Gelfand pair (S2n, Hn) is frequently used in this paper.

Proposition 2.1. A complete set of representatives of the double cosets Hn\S2n/Hn

is given by

{[2ρ]; ρ � n} .
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3. Gelfand pair of finite groups and their zonal spherical functions

Throughout this section G is a finite group and H is a subgroup of G. We assume
that CGeH is multiplicity free so that (G, H ) is a Gelfand pair. With this assumption
CGeH is a direct sum of non-isomorphic irreducible G-modules, say

1G
H = CGeH

∼=
s⊕

i=1

Vi .

Proposition 3.1 [4, pp. 283 (11.27)]. Vi = CGei eH (1 ≤ i ≤ s), where ei = eVi .

It follows from Frobenius reciprocity that ωi = dim Vi
|G| ei eH is the unique H -invariant

element in the Vi isotypic component of 1G
H such that ωi (1) = 1. The functions ωi (1 ≤

i ≤ s) are the zonal spherical functions of the Gelfand pair (G, H ). In terms of the
inner product,

ωi (x) = dim Vi

|G| ei eH (x) = 〈ei eH , xei eH 〉G/〈ei eH , ei eH 〉G, (1 ≤ i ≤ s, x ∈ G).

From this expression it is clear that the zonal spherical functions are constant
on double cosets. See [7, VII, (1.4)] for other properties of the zonal spherical
functions. The following proposition is useful for computing the zonal spherical
functions.

Proposition 3.2 [7, VII, (1.3)]. Suppose that W is a realization of Vi with a
G-invariant Hermitian scalar product 〈, 〉. Let F be a non-zero H-invariant element
of W . Then the zonal spherical function ωi is given by

ωi (x) = 〈F, x F〉/〈F, F〉.

4. The pair (SG2n, HGn)

Let S2n be the group of permutations of {1, 2, . . . , 2n} and let Hn be the subgroup of S2n

which is the centralizer of the involution (1, 2)(3, 4) . . . (2n − 1, 2n) ∈ S2n . We remark
that Hn can be viewed as permutations of {{2i − 1, 2i}; 1 ≤ i ≤ n}. Let G be a finite
group. Let SG2n be the wreath product of G with S2n and let �G = {(g, g) | g ∈ G} be
the diagonal subgroup of G × G. Let θ be the action of S2n on G2n given by permuting
the factors and let θ |Hn be the restriction of θ to Hn . Then (�G)n ⊂ G2n is an invariant
subset for θ |Hn . Now let θ̃ be the action of Hn on (�G)n induced by θ |Hn and define
a subgroup of SG2n by

H Gn = (�G)n �θ̃ Hn.

Note that H Gn is the normalizer of (�G)n in SG2n .
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5. Description of double cosets

Let x = (g1, g2, . . . , g2n; σ ) ∈ SG2n . The G-colored graph �G(x) = {VG(x), EG(x)}
is the graph with vertices

VG(x) = {g1, g2, . . . , g2n}

and edges

EG(x) = { {g2i−1, g2i } ,
{
gσ (2 j−1), gσ (2 j)

}
; 1 ≤ i, j ≤ n

}
.

Here we call {g2i−1, g2i } ∈ EG(x) broken and
{
gσ (2i−1), gσ (2i)

} ∈ EG(x) straight.

Example 5.1. If G = Z/3Z = {0, 1, 2} and x = (0, 1, 2, 2, 1, 0; (123)(56)) ∈ SG6

then we have

�G(x) =

1
�

2
�

0
�

0� 2� 1�
�

�
���

�
�� .

The following proposition shows that �G(x) = �G(y1xy2) for y1, y2 ∈ H Gn .

Proposition 5.2. Let x = (g1, . . . , g2n; σ ) be an element of SG2n. The following con-
ditions are equivalent.
(1) {gi , g j } ∈ EG(x).
(2) {gi , g j } ∈ EG(y1xy2), where yi = (1, . . . , 1; hi ) ∈ H Gn (i = 1, 2).

Proof: (2) ⇒ (1):

Case 1: {gi , g j } is a broken edge of �G(x). In this case there is a number k ′ such that

{gi , g j } = {
gh−1

1 (2k ′−1), gh−1
1 (2k ′)

}
and the right hand side is a broken edge of EG(y1xy2).

Case 2: {gi , g j } is a straight edge of �G(x). By the definition of �G(x) we can put
i = σ (2k1 − 1) and j = σ (2k1) for some k1. Then there exists a number k2 such
that {h2(2k2 − 1), h2(2k2)} = {2k1 − 1, 2k1}. Therefore we have{

gh−1
1 (h1σh2(2k2−1)), gh−1

1 (h1σh2(2k2))

} = {
gσ (2k1−1), gσ (2k1)

}
and the left hand side is a straight edge of �G(y1xy2). This establishes (1) ⇒ (2).
The claim (2) ⇒ (1) is proved similarly. �

Proposition 5.3. Let x = (g1, g2, . . . , g2n; σ ) ∈ SG2n, y1 = (k1, k1, . . . , kn, kn; 1)
∈ H Gn and y2 = (l1, l1, . . . , ln, ln; 1) ∈ H Gn.
(1) If {ki1

g2i−1l j1 , ki2
g2i l j2} is a broken edge of �G(y1xy2) then i1 = i2.

(2) If {ki1
gσ (2i−1)l j1 , ki2

gσ (2i)l j2} is a straight edge of �G(y1xy2) then j1 = j2.
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Proof: Since the first claim is clear we have only to show the second claim. Put
l ′2i−1 = l ′2i = li . We calculate

xy2 = (
g1l ′σ−1(1), g2l ′σ−1(2) . . . g2nl ′σ−1(2n); σ

)
.

We have gσ (2i−1)l ′σ−1(σ (2i−1))
= gσ (2i−1)li and gσ (2i)l ′σ−1(σ (2i)) = gσ (2i)li . �

Note that any element of H Gn can be written as

y = (1, . . . , 1; h)(k1, k1, . . . , kn, kn; 1), with h ∈ Hn and ki ∈ G.

With this in mind the following proposition follows from Propositions 5.2 and 5.3.

Proposition 5.4. Let x = (g1, g2, . . . , g2n; σ ) ∈ SG2n, y1 = (k1, k1, . . . , kn, kn; h1)
∈ H Gn, and y2 = (l1, l1, . . . , ln, ln; h2) ∈ H Gn. Suppose that {gi , g j } ∈ EG(x). Then
(1) {kn1

gi lm1
, kn2

g j lm2
} ∈ EG(y1xy2) for some 1 ≤ n1, m1, n2, m2 ≤ n,

(2) If {kn1
gi lm1

, kn2
g j lm2

} ∈ EG(y1xy2) is a straight edge then lm1
= lm2

,
(3) If {kn1

gi lm1
, kn2

g j lm2
} ∈ EG(y1xy2) is a broken edge then kn1

= kn2
.

Fix an element x = (g1, g2, . . . , g2n; σ ) ∈ SG2n . Let L be a cycle of �G(x). As-
sume that L has vertices {gi j ; 1 ≤ j ≤ 2k}. Let {{gi2 j−1

, gi2 j }; 1 ≤ j ≤ k} be the broken
edges of L and {{gi2 j , gi2 j+1

}, {gi2k , gi1
}; 1 ≤ j ≤ k − 1} the straight edges of L .

Definition 5.5. The circuit product of L is

p(L) =
k∏

j=1

g−1
i2 j−1

gi2 j .

If L has 2k edges then p(L) is a circuit product of length k.

Example 5.6. The circuit products of x for Example 5.1 are

−0 + 1 − 2 + 2 = 1 and −1 + 0 = 2.

Note that the circuit product p(L) is not unique. Indeed there are two choices, the
starting point and the orientation, clockwise or counterclockwise. Nonetheless, any
circuit product p(L) is an element of the set

{
xp(L)x−1, xp(L)−1x−1; x ∈ SG2n

}
.
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Now we define

G∗∗ = {R = C ∪ C−1; C ∈ G∗}, where C−1 = {g−1; g ∈ C}.

A circuit product p(L) determines a unique R ∈ G∗∗ such that

R = {xp(L)x−1, xp(L)−1x−1; x ∈ SG2n}.

We call a conjugacy class real (resp. complex) when C = C−1(resp. C �= C−1).

Definition 5.7. Put

mk(R) = |{L; L is a 2k-cycle of �G(x) and p(L) ∈ R}|.

Define a tuple of partitions

ρ(x) = (ρ(R); R ∈ G∗∗),

where ρ(R) = (1m1(R), 2m2(R), . . . , nmn (R)). This tuple of partitions ρ(x) is called the
circuit type of x .

Example 5.8. If G = Z/3Z = {0, 1, 2}, then G∗∗ = {R0 = {0}, R1 = {1, 2}}. For
Example 5.1,

ρ(x) = (ρ(R0), ρ(R1)) = ((∅), (2, 1))

is the circuit type of x .

The following proposition is a consequence of Proposition 5.4.

Proposition 5.9. Put x ∈ SG2n and y1, y2 ∈ H Gn. Then

ρ(x) = ρ(y1xy2).

We will show that the converse of Proposition 5.9 holds. If x and y are elements of
the same double coset write x ∼d y. We may assume that σ = h1[2ρ]h2 ∈ S2n (ρ � n),
where h1 and h2 are elements of Hn . Then

x = (g1, g2, . . . , g2n; σ )

= (g1, g2, . . . , g2n; h1[2ρ]h2)

∼d (gh1(1), gh1(2), . . . , gh1(2n); [2ρ])

∼d (1, . . . , 1, c1︸ ︷︷ ︸
ρ1

, 1, . . . , 1, c2︸ ︷︷ ︸
ρ2

, . . . , 1, . . . , 1, c�︸ ︷︷ ︸
ρ�

; [2ρ]) = x ′.
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In the last relation above, can be any element of G which is conjugate to

ρi∏
j=1

g−1
h1(2ui +2 j−1)gh1(2ui +2 j)

(
u1 = 0 and ui =

i−1∑
k=1

ρk

)

which is obtained by solving

(k1, k1, . . . , kn, kn; 1)(gh1(1), gh1(2), . . . , gh1(2n); [2ρ])(l1, l1, . . . , ln, ln; 1) = x ′.

Fix an element y ∈ SG2n with the same circuit type as x and let y′ be such that

y′ = (1, . . . , 1, c′
1︸ ︷︷ ︸

ρ1

, 1, . . . , 1, c′
2︸ ︷︷ ︸

ρ2

, . . . , 1, . . . , 1, c′
�︸ ︷︷ ︸

ρ�

; σρ) ∼d y.

Because of our assumptions we can choose an element c′
i ∈ K ′ which satisfies

c′
i or c′−1

i ∈ K , where K = {ci ; ρi = k} and K ′ = {c′
i ; ρi = k}. Let (K ′)−1 = {c−1 | c ∈

K ′}. Then the converse of Proposition 5.9 will be established by showing that
K ′ ∪ (K ′)−1 is an H Gn double coset. Consider the following four operations.

(OP1) If ρi = ρi ′ then multiply y′ by(
1, . . . , 1;

ρi −1∏
j=0

(2(ui + j) + 1, 2(ti ′ + j) + 1)(2(ui + j) + 2, 2(ti ′ + j) + 2)

)
∈ H Gn

on both sides. Here ui = ∑i−1
k=0 ρk and ti ′ = ∑i ′−1

k=0 ρk for 1 ≤ k, k ′ ≤ �.
(OP2) Multiply y′ by

(1, . . . , 1, c−1
i , c−1

i︸ ︷︷ ︸
2ρ1+···+2ρi

, 1, . . . , 1; 1) ∈ H Gn

on the left.
(OP3) Multiply y′ by

(1, . . . , 1; (2ui + 1, 2ui + 3, . . . , 2ui + 2ρi − 1)−1(2ui + 2, 2ui + 4, . . . ,

2ui + 2ρi )
−1) ∈ H Gn

on the right, where ui = ∑i−1
j=0 ρ j .

(OP4) Multiply y′ by(
1, . . . , 1;

(
ui −1∏
j=1

(2ui + j, 2ui + 2ρi − j − 1)

)
(2(ui + ρi ) − 1, 2(ui + ρi ))

)
∈ H Gn

on both sides, where ui = ∑i−1
j=0 ρ j .
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The following example illustrates these operations.

Example 5.10. We take an element

x = (g1, . . . , g6, g7, . . . , g12; (1, 2, 3, 4, 5, 6)(7, 8, 9, 10, 11, 12)).

(OP1) Take a = (1, 7)(2, 8)(3, 9)(4, 10)(5, 11)(6, 12) and compute

axa = x = (g7, . . . , g12, g1, . . . , g6; (1, 2, 3, 4, 5, 6)(7, 8, 9, 10, 11, 12)).

We take

y′ = (1, 1, 1, 1, 1, 1, 1, c′
i ; (1, 2, 3, 4, 5, 6, 7, 8)).

(OP2) Take b = (1, 1, 1, 1, c′−1
i , c′−1

i ; 1) and compute

by′ = (1, 1, 1, 1, 1, 1, c′−1
i , 1; (1, 2, 3, 4, 5, 6, 7, 8))

(OP3) Take c = (1, 1, 1, 1, 1, 1; (7, 5, 3, 1)(8, 6, 4, 2)) and compute

by′c = (1, 1, 1, 1, 1, 1, c′−1
i , 1; (8, 7, 6, 5, 4, 3, 2, 1)).

(OP4) Take d = (1, 1, 1, 1, 1, 1, 1, 1; (1, 6)(2, 5)(3, 4)(7, 8)) and compute

dby′cd = (1, 1, 1, 1, 1, 1, 1, c′−1
i ; (1, 2, 3, 4, 5, 6, 7, 8)).

The role of (OP1) is to interchange any two elements of K ′. Operations (OP2), (OP3)
and (OP4) make it possible to change c′

i to c′−1
i , namely

(
. . . 1, . . . , 1, c′

i . . . ; [2ρ])∼d (. . . 1, . . . , 1, c′−1
i , . . . ; [2ρ]

)
.

This establishes the following proposition.

Proposition 5.11. If x, y ∈ SG2n and x and y have the same circuit type then x ∼d y.

Moreover, using the operations (OP2) and (OP3) gives the following proposition.

Proposition 5.12. x ∼d x−1, for all x ∈ SG2n.

Remark 5.13. A consequence of Proposition 5.12 is that the pair (SG2n, H Gn) is a
Gelfand pair (cf. [7, VII, (1.2)]).

Consequently we have the following theorem.
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Theorem 5.14. Let x, y ∈ SG2n. Then
(1) x ∼d y ⇔ ρ(x) = ρ(y).

(2) ρ(x) = ρ(x−1).

We know that there is a one-to-one correspondence between the double cosets
H Gn\SG2n/H Gn and the set of |G∗∗|-tuples of partitions of n;

H Gn\SG2n/H Gn
1:1↔ {ρ = (ρ(R)|R ∈ G∗∗); |ρ| = n}.

The remainder of this section is devoted to computation of the cardinality of the
double coset indexed byρ = (ρ(R); R ∈ G∗∗) = ρ(R) = (1m1(R), 2m2(R), . . . , nmn (R)).
First, we recall a proposition about the double cosets in Hn\S2n/Hn .

Proposition 5.15 [7, VII, (2.3)]. Let σ = h1[2ρ]h2 ∈ S2n (h1, h2 ∈ Hn) then
|Hnσ Hn| = |Hn |2

z2ρ
, where zρ = 1m1 2m2 . . . m1!m2! . . . for ρ = 1m1 2m2 . . . .

Suppose that the circuit type x ∈ SG2n is ρ = (ρ(R)|R ∈ G∗∗) and let ρ =⋃
R∈G∗∗ ρ(R). Then the multiplicity of r in ρ is

mr =
∑

R∈G∗∗

mr (R)

and an easy computation gives

|Hn|2
z2ρ

= |Hn|2∏
R∈G∗∗ z2ρ(R)

(
mk!∏

R∈G∗∗ mk(R)!

)−1

.

This is the number of elements in S2n x S2n . Then, for each element of S2n as in
Proposition 5.15, there are

mk!

/ ∏
R∈G∗∗

mk(R)!

ways of distributing mk cycles of length 2k in the G-colored graph and for each cycle
there are

(|G|2k−1|R|)mk (R)
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corresponding elements of G which correspond to the same distribution. Hence,

|H Gn x H Gn| = |Hn|2
z2ρ

n∏
k=1

∏
R∈G∗∗

(|G|2k−1|R|)mk (R) ×
n∏

k=1

mk!∏
R∈G∗∗ mk(R)!

= |Hn|2
∏n

k=1

∏
R∈G∗∗ (|G|2k−1|R|)mk (R)∏

R∈G∗∗ 2�(ρ(R))1m1(R)2m2(R) . . . nmn (R)
∏

R∈G∗∗ mr (R)!

= |Hn|2
∏n

k=1

∏
R∈G∗∗ (|G|2k−1|R|)mk (R)∏
R∈G∗∗ z2ρ(R)

= |Hn|2|G|2n∏
R∈G∗∗ z2ρ(R)

×
∏

R∈G∗∗ |R|�(ρ(Ri ))

|G|�(ρ)
.

Proposition 5.16. Suppose x ∈ SG2n has circuit type ρ(x) = (ρ(R)|R ∈ G∗∗), where

ρ(R) = (1m1(R), 2m2(R), . . . , nmn (R)). Let ζC = |G|
|C | for C ∈ G∗. Then

|H Gn x H Gn| = |Hn|2|G|2n∏
R∈G∗∗ z2ρ(R)

×
∏

R∈G∗∗ |R|�(ρ(R))

|G|�(ρ)

= |Hn|2|G|2n
∏

R=C∈G∗∗
C=C−1

1

z2ρ(R)ζ
�(ρ(R))
C

×
∏

R=C∪C−1∈G∗∗
C �=C−1

1

zρ(R)ζ
�(ρ(R))
C

.

In Section 8 we will use this result to properly normalize the inner product on the
multi-partition version of the ring of symmetric functions.

Definition 5.17.

zρ =
∏

R=C∈G∗∗
C=C−1

z2ρ(R)ζ
�(ρ(R))
C ×

∏
R=C∪C−1∈G∗∗

C �=C−1

zρ(R)ζ
�(ρ(R))
C , where ρ=(ρ(R)|R ∈ G∗∗).

6. Representation theory of wreath products

In this section we recall a method of constructing the irreducible representations of a
wreath product SGn = G � Sn (cf. [6, 14]). Let c be the cardinality of G∗.

Let

Cn =
{

n = (nχ ; χ ∈ G∗);
∑
χ∈G∗

nχ = n, nχ ≥ 0

}

be the set of c-compositions of n. For n ∈ Cn let

P(n) = {(λχ |χ ∈ G∗); λχ � nχ }.
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The elements of P(n) are c-tuples of partitions. The product SG(n) = ∏
χ∈G∗ SGnχ

is an inertia group of SGn . Define two SG(n)-modules for n ∈ Cn and λ = (λ(χ )|χ ∈
G∗) ∈ P(n),

R(n) =
⊗
χ∈G∗

Vχ
⊗nχ and S(λ) =

⊗
χ∈G∗

Sλ(χ ),

where Sλ denotes the irreducible module of the symmetric group indexed by the
partition λ. The action of SG(n) is defined by

{
(g1, . . . , gn; σ )v1 ⊗ · · · ⊗ vn = g1vσ−1(1) ⊗ · · · ⊗ gnvσ−1(n) on R(n),

(g1, . . . , gn; σ )v = σv on S(λ).

For an irreducible representation S(λ) = R(n) ⊗ S(λ) of SG(n) let S(λ) =
S(λ) ↑SGn

SG(n).

Theorem 6.1 ([6]). {S(λ); n ∈ Cn, λ ∈ P(n)} is a complete system of irreducible rep-
resentations of SGn.

7. Gelfand pair (SG2n, HGn)

The following theorem is a result of the analysis in Section 5 (cf. Remark 5.13).

Theorem 7.1. (SG2n, H Gn) is a Gelfand pair.

Since (SG2n, H Gn) is a Gelfand pair 1SG2n
H Gn

is multiplicity free as SG2n-module.

Definition 7.2. A character χ ∈ G∗ is real if χ = χ , and complex if χ �= χ . Let G∗
R

be the set of real characters and G∗
C the set of complex characters. Define a relation

∼ on G∗
C by

χ ∼ χ ′ ⇔ χ = χ ′ or χ = χ ′, and put G∗∗ = G∗
R ∪ G∗

C/∼.

Throughout this paper we view G∗∗ as a subset of G∗ by fixing representatives of the
equivalence classes in G∗

C/∼.

Let us record the following basic results (cf. [7, VII-2]).

Proposition 7.3. (S2n, Hn) and (G × G, �G) are Gelfand pairs.

Proposition 7.4. 1S2n
Hn

= ⊕
λ�n S2λ and 1G×G

�G = ⊕
χ∈G∗ Vχ ⊗ Vχ .
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In particular, (Sn × Sn, �Sn) is a Gelfand pair and 1Sn×Sn
�Sn

= ⊕
λ�n Sλ ⊗ Sλ. Using

notations as in Section 6 define a subset of C2n by

C∗∗
n = {(nχ |nχ = 2mχ (χ ∈ G∗

R, mχ ∈ Z≥0), nχ = nχ (χ ∈ G∗
C )) ∈ C2n}.

Example 7.5. Let ηi (0 ≤ i ≤ n − 1) be the irreducible characters of the cyclic group

Z/nZ = {0, 1, 2, . . . , n − 1} given by ηi ( j) = exp( i j2π
√−1
n ).

If G = Z/2Z thenC∗∗
n = {(nη0

, nη1
) = (2n − 2k, 2k); 0 ≤ k ≤ n} and if G = Z/3Z

then C∗∗
n = {(nη0

, nη1
, nη2

) = (2n − 2k, k, k); 0 ≤ k ≤ n}.

Define a subset of P(n) (n ∈ C∗∗
n ) by

P∗∗(n) = {(λχ |χ ∈ G∗)|λχ = 2μχ (χ ∈ G∗
R), λχ = λχ (χ ∈ G∗

C )}.

Put P∗∗
n = ⋃

n∈C∗∗
n
P∗∗(n).

Example 7.6. If G = Z/2Z then P∗∗
n = {(λη0 , λη1 ) = (2λ, 2μ); |λ| + |μ| = n} and if

G = Z/3Z then P∗∗
n = {(λη0 , λη1 , λη2 ) = (2λ, μ, μ); |λ| + |μ| = n} .

We shall decompose 1SG2n
H Gn

in terms of P∗∗
n . For irreducible representations of SGn

S (λ(χ )) = V ⊗n
χ ⊗ Sλ and λ = (λχ |χ ∈ G∗) ∈ P∗∗(n),

S(λ) =
⊗
χ∈G∗

S (λχ (χ ))

are irreducible representations S(λ) of an inertia group of SGn (see Section 6).
Now we consider two special types of representations: The irreducible SG2n-

modules

S (2λ(χ )) , for χ ∈ G∗
R ,

and the SGn × SGn modules

S (μ(χ, χ )) = (Vχ ⊗ Vχ )⊗n ⊗ (Sμ ⊗ Sμ) ∼= S(μ(χ )) ⊗ S(μ(χ )), for χ ∈ G∗
C .

Then

S (χ (2λ))H Gn = ((Vχ ⊗ Vχ )�G)⊗n ⊗ (S2λ)Hn is 1-dimensional,

and

S (μ(χ, χ ))�SGn = ((Vχ ⊗ Vχ )�G)⊗n ⊗ (Sμ ⊗ Sμ)�SGn is nonzero.
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Define idempotents

e2λ(χ ) = deg 2λ(χ )

|SG2n|
∑

x∈SG2n

2λ(χ )(x)x and

eμ(χ,χ ) = deg μ(χ, χ )

|SGn|2
∑

x∈SGn×SGn

μ(χ, χ )(x)x,

where 2λ(χ ) (resp. μ(χ, χ )) is the character of S (2λ(χ )) (resp. S (μ(χ, χ ))).

Definition 7.7. For λ = (λχ ; χ ∈ G∗) ∈ P∗∗
n put

e(λ) =
⊗
χ∈G∗

R

eλχ (χ ) ⊗
⊗

χ∈G∗
C /∼

eλχ (χ,χ ).

For n ∈ C∗∗
n define a subgroup H G(n) of SG(n) by

H G(n) = H Gn ∩ SG(n) ∼=
∏

χ∈G∗
R

H Gnχ ×
∏

χ∈G∗
C /∼

�SGnχ .

By Proposition 7.3,

(SG(n), H G(n)) is a Gelfand pair

and thus, by Proposition 3.1,

CSG2ne(λ)eH G(n)
∼= CSG2n ⊗CSG(n) CSG(n)e(λ)eH G(n) (λ ∈ P∗∗

n )

is an irreducible SG2n-module. Consequently,

CSG2ne(λ)eH G(n)

are irreducible representations of SG2n indexed by |G∗∗|-tuples of partitions λ ∈ P∗∗
n .

We recall a lemma of Brauer (cf. [5, Chapter 6 (6.32)]).

Proposition 7.8. |G∗∗| = |G∗∗|.

This proposition induces the following proposition.

Proposition 7.9. |H Gn\SG2n/H Gn| = |P∗∗
n |.

Therefore, if we can prove that CSG2ne(λ)eH G(n) has a non-zero H Gn-invariant

then we have determined the irreducible decomposition of 1SG2n
H Gn

. If �̃λ is the function
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on SG2n given by

�̃λ(x) = 〈eH Gn e(λ), xeH Gn e(λ)〉SGn

then

�̃λ(x) = 〈eH Gn e(λ), xeH Gn e(λ)〉SGn = 〈eH Gn x−1eH Gn e(λ), e(λ)〉G

= 1

|SG2n|
∑

g∈SG2n

eH Gn x−1eH Gn e(λ)(g)e(λ)(g)

= 1

|SG2n|
∑

g∈SG(n)

eH Gn x−1eH Gn e(λ)(g)e(λ)(g−1)

= 1

|SG2n|eH Gn x−1eH Gn e(λ)e(λ)(1)

= 1

|SG2n|eH Gn x−1eH Gn e(λ)(1) = 1

|SG2n|eH Gn e(λ)eH Gn (x).

When x = 1,

�̃λ(1) = 〈eH Gn e(λ), eH Gn e(λ)〉G = 〈eH Gn e(λ), e(λ)〉G

= 1

|SG2n|
∑

g∈SG2n

eH Gn e(λ)(g)e(λ)(g)

= 1

|SG2n|
∑

g∈SG(n)

eH Gn e(λ)(g)e(λ)(g−1)

= 1

|SG2n|eH Gn e(λ)e(λ)(1) = 1

|SG2n|e(λ)eH Gn (1)

= 1

|SG2n|
|H G(n)|
|H Gn| e(λ)eH Gn∩SG(n)(1) = dim S(λ)

|SG2n||SG(n)|
|H G(n)|
|H Gn| .

In particular, �̃λ �= 0 and so CSG2ne(λ)eH G(n) has an H Gn-invariant. This proves the
following theorem.

Theorem 7.10.

1SG2n
H Gn

=
⊕
λ∈P∗∗

n

S(λ)

Example 7.11. Let η0, η1 and η2 be defined as in Example 7.5. If G = Z/2Z then

1SG2n
H Gn

=
⊕

|λ|+|μ|=n

S( 2λ︸︷︷︸
η0

, 2μ︸︷︷︸
η1

),
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and if G = Z/3Z then

1SG2n
H Gn

=
⊕

|λ|+|μ|=n

S( 2λ︸︷︷︸
η0

, μ︸︷︷︸
η1

, μ︸︷︷︸
η2

).

At the same time we have proved that

Theorem 7.12. The complete set of the zonal spherical functions for the pair
(SG2n, H Gn) is{

�λ = �̃λ

�̃λ(1)
= |SG(n)||H Gn|

dim S(λ)|H Gn|eH Gn e(λ)eH Gn ; λ ∈ P∗∗
n

}
.

Let �λ(χ ) be the zonal spherical function corresponding to S(2λ) ↑SG2n and let
�μ(χ,χ ) be the zonal spherical function corresponding to S(μ(χ, χ ))) ↑SG2n . Then

�λ = M(n)eH Gn

⊗
χ∈G∗

R

�λ(χ ) ⊗
⊗

χ∈G∗
C /∼

�μ(χ,χ )eH Gn

for λ ∈ P∗∗
n , where

M(n) = |H Gn|∏
χ∈G∗

R
|H G |λ(χ )|| × ∏

χ∈G∗
C /∼ |H G |μ(χ,χ )|| .

We shall compute value of two zonal spherical functions, �λ(χ ) and �μ(χ,χ ), on each
double coset.

First assume χ = χ . Then

�λ(χ )(x) = |SG2n|
dim Vχ

2n dim S2λ
eH Gn eS(2λ(χ ))eH Gn (x)

= |G|2n2n!

dim Vχ
2n dim S2λ

eH Gn eV ⊗2n
χ

eH Gn (x)eH Gn eS2λeH Gn (x).

Here we regard S2λ as the irreducible representation V ⊗2n
1 ⊗ S2λ where V1 is the trivial

representation of G. Assuming that x ∈ SG2n has a circuit type ρ = (ρ(R)|R ∈ G∗∗)
and writing ρ = ⋃

R∈G∗∗ ρ(R),

eH Gn eS2λeH Gn (x) = dim S2λ

2n!
ωλ

ρ,

where ωλ
ρ is the zonal spherical function of (S2n, Hn) evaluated at the double coset

indexed by ρ.
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We remark that Vχ is a unitary representation. To compute eH Gn eV ⊗2n
χ

eH Gn (x) we
consider a G-invariant scalar product 〈, 〉Vχ

on Vχ . If {v1, v2, . . . , vd} of Vχ is an
orthonormal basis of Vχ the corresponding matrix representation is given by

Aχ (x)v j =
d∑

i=1

χi j (x)vi .

Let

f =
∑

1≤i j≤d

ai jvi ⊗ v j

be a �G-invariant element in Vχ ⊗ Vχ . If A = (ai j ) then

(g, g) f =
∑

1≤i j≤d

ai j gvi ⊗ gv j =
∑

1≤i j≤d

{ ∑
1≤lk≤d

χik(x)aklχl j (x
−1)

}
vi ⊗ v j = f

gives Aχ A = AAχ . So A is a scalar matrix. In the following we put

f = 1√
d

d∑
i=1

vi ⊗ vi .

Define an inner product on (Vχ )⊗2n by

〈v1 ⊗ · · · ⊗ v2n, w1 ⊗ · · · ⊗ w2n〉 =
2n∏

i=1

〈vi , wi 〉Vχ
.

Then f ⊗n ∈ (Vχ ⊗ Vχ )⊗n is an H Gn-invariant and 〈 f ⊗n , f ⊗n〉 = 1. If x =
(x1, y1, . . . , xn, yn; (12 . . . 2n)) ∈ SGn then the zonal spherical function is determined
by

〈 f ⊗n, x f ⊗n〉 = 1

dn
tr Aχ

(
x−1

1 y1x−1
2 y2 . . . x−1

n yn
)

= 1

dn
χ

(
x−1

1 y1x−1
2 y2 . . . x−1

n yn
)
.

Repeating the same computation with a general x ∈ SG2n of circuit type ρ =
(ρ(R)|R ∈ G∗∗) gives

|G|2n

dim V 2n
χ

eH Gn eV ⊗2n
χ

eH Gn (x) = 1

dim Vχ
n

∏
R∈G∗∗

R=C∪C−1

χ (C)�(ρ(R)).

This computation establishes the following proposition.
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Proposition 7.13. If x ∈ GS2n has a circuit type ρ = (ρ(R)|R ∈ G∗∗) then

�λ(χ )(x) = 1

(dim Vχ )n

∏
R∈G∗∗

R=C∪C−1

χ (C)�(ρ(R))ωλ
ρ.

Now assume χ �= χ and consider the zonal spherical function;

�μ(χ,χ ) = 2n|G|2nn!2

(dim Vχ )2n(dim Sλ)2
eH Gn eμ(χ,χ )eH Gn .

For convenience write SGn × SGn for the inertia group of SG2n given by

{(g1, g2, . . . , g2n; σoσe)|σo(2i)=2i, σe(2i − 1)=2i −1 (1 ≤ i ≤ n)} ∼= SGn × SGn.

Define

Cn = 〈(1, . . . , 1; (2i − 1, 2i)); 1 ≤ i ≤ n〉

and put z0 = (1, . . . , 1; (12)(34) . . . (2n − 1, 2n)) ∈ Cn . Note that

ωμ(χ,χ ) = |G|2nn!2

(dim Vχ )2n(dim Sλ)2
e�SGn eμ(χ,χ )e�SGn

are the zonal spherical functions of the Gelfand pair (SGn × SGn, �SGn). We have

�μ = 2n|G|2nn!2

(dim Vχ )2n(dim Sλ)2
eCn e�SGn eμ(χ,χ )e�SGn eCn = 2neCn ωμ(χ,χ )eCn

and

eCn ωμ(χ,χ )eCn (x) = 1

22n

∑
ε,ε∈Cn

εxε∈SGn×SGn

ωμ(χ,χ )(εxε).

If x0 = (x1, y1, . . . , xn, yn; (1, 2, 3, 4, . . . 2n − 1, 2n)) ∈ SG2n then

εx0ε ∈ SGn × SGn ⇔ ε = 1, ε = z0 or ε = z0, ε = 1.

Recalling the zonal spherical function of (SGn × SGn, �SGn) [7, VII, Ex. 9] and the
characters of the wreath product [7, I-Appendix B] and making the identification

x0z0 ↔ ((x1, x2, . . . , xn; [n]), (y1, . . . , yn; 1)) ∈ SGn × SGn,

x0z0 ↔ ((y1, . . . , yn; 1), (x1, x2, . . . , xn; [n])) ∈ SGn × SGn,
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we compute

ωμ(χ,χ )(x0z0) = χ
(
x−1

2 y2x−1
3 y3x−1

4 . . . x−1
n yn x−1

1 y1

)
χ

μ

(n)

= χ
(
x−1

1 y1x−1
2 y2x−1

3 . . . x−1
n−1 yn−1x−1

n yn
)
χ

μ

(n),

ωμ(χ,χ )(z0x0) = χ
(
y−1

n xn y−1
n−1xn−1 y−1

n−2 . . . y−1
2 x2 y−1

1 x1

)
χ

μ

(n)

= χ
(
x−1

1 y1x−1
2 y2x−1

3 . . . x−1
n−1 yn−1x−1

n yn
)
χ

μ

(n).

We remark that x−1
1 y1x−1

2 y2x−1
3 . . . x−1

n−1 yn−1x−1
n yn is the circuit product of x0. If

x = (x1, y1, . . . , xn, yn; [2ρ]) ∈ SG2n and εxε ∈ SGn × SGn then ρ is a cycle type
of the S2n-part of εxε. Repeating these computations with x in place of x0 establishes
the following proposition.

Proposition 7.14. If x ∈ GS2n has circuit type ρ = (ρ(R)|R ∈ G∗∗) then

�μ(x) = 1

(2 dim Vχ )n

∏
R∈G∗∗

R=C∪C−1

(χ (C) + χ (C))�(ρ(R))
χλ

ρ

dim Sλ
.

8. The ring Λ̃(G)

In this section we define the multi-partition version of the ring of symmetric functions.
For R ∈ G∗∗ let pr (R)(r ≥ 1) be the power sum symmetric function in the variables

(xR1, xR2, xR3, . . . ). If ρ = (ρ(R); R ∈ G∗∗) is a |G∗∗|-tuple of partitions put

Pρ(G∗∗) =
∏

R∈G∗∗

pρ(R)(R).

The multi-partition version of the ring of symmetric functions is

�̃(G) = C[pr (R); R ∈ G∗∗]

with scalar product given by

〈Pρ(G∗∗), Pσ (G∗∗)〉�̃ = δρσ zρ.

Here zρ is as in Definition 5.17. Change variables by setting

pr (χ ) =
∑

R=C∪C−1∈G∗∗
C=C−1

χ (C)

ζC
pr (R) +

∑
R=C∪C−1∈G∗∗

C �=C−1

χ (C) + χ (C)

ζC
pr (R),

Springer



208 J Algebr Comb (2007) 25:189–215

for χ (C) = χ (x) (x ∈ C). For a tuple of partitions λ = (λχ ; χ ∈ G∗∗) put

Pλ(G∗∗) =
∏

χ∈G∗∗
pλχ (χ )

and note that pr (χ ) = pr (χ ). The second orthogonality relation gives

pr (R) =
∑
χ∈G∗

χ (C)pr (χ ) if R = C ∪ C−1.

Therefore �̃(G) = C[pr (χ ); χ ∈ G∗∗]. Let Ẑλ(χ ) be the zonal polynomial in the
pρ(χ )’s (see [7, VII, (2.13)]). Set

χ̈ (R) =

⎧⎪⎨⎪⎩
χ (C)

ζC
C = C−1, R = C ∪ C−1,

χ (C)+χ (C)
ζC

C �= C−1, R = C ∪ C−1

.

and expand Ẑλ(χ ) in the basis {Pρ(G∗∗)},

1

|Hn| Ẑλ(χ ) =
∑
ρ�n

z−1
2ρ ωλ

ρ pρ(χ ) =
∑
ρ�n

ωλ
ρ∏n

r=1 mr (ρ)!(2r )mr (ρ)

n∏
r=1

pr (χ )mr (ρ)

=
∑
ρ�n

ωλ
ρ∏n

r=1 mr (ρ)!(2r )mr (ρ)

n∏
r=1

{ ∑
R∈G∗∗

χ̈ (R)pr (R)

}mr (ρ)

=
∑
ρ�n

ωλ
ρ∏n

r=1 mr (ρ)!(2r )mr (ρ)

×
n∏

r=1

⎧⎨⎩ ∑
∑

R mr (ρ(R))=mr (ρ)

mr (ρ)!
∏

R∈G∗∗ (χ̈ (R)pr (R))mr (ρ(R))∏
R∈G∗∗ mr (ρ(R))!

⎫⎬⎭
=

∑ 1∏
R∈G∗∗ z2ρ(R)

ωλ
ρ

∏
R∈G∗∗

(χ̈ (R))�(ρ(R))
∏

R∈G∗∗

pρ(R)(R)

=
∑

ρ=(ρ(R)|R∈G∗∗)�n

1

zρ

ωλ
ρ

∏
R∈G∗∗

R=C∪C−1

(
χ (C) + χ (C)

2

)�(ρ(R)) ∏
R∈G∗∗

pρ(R)(R)

=
∑

ρ=(ρ(R)|R∈G∗∗)�n

1

zρ

ωλ
ρ

∏
R∈G∗∗

R=C∪C−1

χ (C)�(ρ(R))
∏

R∈G∗∗

pρ(R)(R)

= (dim Vχ )n

|H Gn|2
∑

ρ=(ρ(R)|R∈G∗∗)�n

|Dρ |�λ(χ )
ρ Pρ(G∗∗),

where, for the last equality we use Proposition 7.13. As in the classical setting the
zonal polynomials are considered as generating functions of the �λ(χ )’s.
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Next we analyze the case of �λ(χ,χ ). Here the Schur functions play the role of the
zonal polynomials. Define Ŝλ(χ ) to be a Schur function in the pr (χ )’s and expand
Ŝλ(χ ) in the basis {Pρ(G∗∗)},

Ŝλ(χ ) =
∑
ρ�n

z−1
ρ χλ

ρ pρ(χ ) =
∑
ρ�n

χλ
ρ∏n

r=1 mr (ρ)!rmr (ρ)

n∏
r=1

pr (χ )mr (ρ)

=
∑
ρ�n

χλ
ρ∏n

r=1 mr (ρ)!rmr (ρ)

n∏
r=1

{ ∑
R∈G∗∗

χ̈ (R)pr (R)

}mr (ρ)

=
∑
ρ�n

χλ
ρ∏n

r=1 mr (ρ)!rmr (ρ)

×
n∏

r=1

⎧⎨⎩ ∑
∑

R mr (ρ(R))=mr (ρ)

mr (ρ)!
∏

R∈G∗∗ (χ̈ (R)pr (R))mr (ρ(R))∏
R∈G∗∗ mr (ρ(R))!

⎫⎬⎭
=

∑ 1∏
R∈G∗∗ zρ(R)

χλ
ρ

∏
R∈G∗∗

(χ̈ (R))�(ρ(R)
∏

R∈G∗∗

pρ(R)(R)

=
∑

ρ=(ρ(R)|R∈G∗∗)�n

1

zρ

χλ
ρ

∏
R∈G∗∗

R=C∪C−1

(χ (C) + χ (C))�(ρ(R)
∏

R∈G∗∗

pρ(R)(R)

= (2 dim Vχ )n dim Sλ

|H Gn|2
∑

ρ=(ρ(R)|R∈G∗∗)�n

|Dρ | �λ(χ,χ )
ρ Pρ(G∗∗)

The augmented Schur functions are defined by S̃λ = h(λ)Ŝλ, where h(λ) is the product
of the hook lengths of λ. The augmented Schur functions are the Jack symmetric func-
tions at the parameter α = 1. These computations establish the following proposition.

Proposition 8.1. If χ = χ then( |G|
dim Vχ

)n

Ẑλ(χ ) = 1

|H Gn|
∑

ρ=(ρ(R)|R∈G∗∗)�n

|Dρ |�λ(χ )
ρ Pρ(G∗∗).

If χ �= χ then( |G|
dim Vχ

)n

h(λ)Ŝλ(χ ) = 1

|H Gn|
∑

ρ=(ρ(R)|R∈G∗∗)�n

|Dρ | �λ(χ,χ )
ρ Pρ(G∗∗).

Definition 8.2. Put

Zλ(χ ) =
( |G|

dim Vχ

)n

Ẑλ(χ ) and S̃λ(χ ) =
( |G|

dim Vχ

)n

h(λ)Ŝλ(χ ).
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9. The graded algebra H(G)

LetHn = eH Gn CSG2neH Gn (n ≥ 1),H0 = C, and letH(G) be the graded vector space

H(G) =
⊕
n≥0

Hn.

If f = ∑
n≥0 fn and g = ∑

n≥0 gn with fn, gn ∈ Hn , define

〈 f, g〉H =
∑
n≥0

〈 fn, gn〉Hn , where 〈 fn, gn〉Hn =
∑

x∈SG2n

fn(x)gn(x).

Since the zonal spherical functions of (SG2n, H Gn) form an orthogonal basis of Hn ,
they also form a basis of H(G). The multiplication of H(G) is defined by

u ∗ v = eH Gn+m (u × v)eH Gn+m ,

where we view u × v as a function on the parabolic subalgebra CS2n × CS2m of
CS2n+2m . In this way H(G) has the structure of a graded algebra.

10. The characteristic map

Define a linear map C H : H(G) −→ �̃(G) by

C H

( ∑
g∈SG2n

f (g)g

)
=

∑
g∈SG2n

f (g)Pρ(g)(G∗∗),

where ρ(g) is the circuit type of g ∈ SG2n. Let wρ be an element of SG2n whose
circuit type is ρ and define

�ρ = eH Gn wρeH Gn .

Let Dρ be the double coset containing wρ . Then

�ρ(x) =
{

|Dρ |−1, if x has circuit type ρ,

0, otherwise.

The �ρ form a basis of H(SG2n, H Gn) and the image of �ρ under C H is

C H (�ρ) = Pρ(G∗∗).

Suppose that x ∈ SG2n and y ∈ SG2m have circuit type ρ and σ respectively. The
G-colored graph

�G(x × y) = �G(x) ∪ �G(y),
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where x × y ∈ SG2n × SG2m ⊂ SG2n+2m . Therefore the circuit type of x × y is ρ ∪
σ = (ρ(R) ∪ σ (R); R ∈ G∗∗). Since

�ρ ∗ �σ = eH Gn+m (eH Gn wρeH Gn ) × (eH Gm wσ eH Gm )eH Gn+m

= eH Gn+m wρ × wσ eH Gn+m = �ρ∪σ

it follows that

CH(�ρ ∗ �σ ) = Pρ∪σ (G∗∗) = Pρ(G∗∗)Pσ (G∗∗),

and hence CH is an isomorphism of graded C-algebras. Together with the fact that

〈�ρ, �σ 〉H = δρ,σ |Dρ |−1 = δρ,σ zρ |H Gn|−2 =
〈 Pρ(G∗∗)

|H Gn| ,
Pσ (G∗∗)

|H Gn|
〉
�̃

.

this establishes the following theorem.

Theorem 10.1.

|H Gn|−1C H : f �→ |H Gn|−1C H ( f )

is an isometry of H(G) onto �̃(G).

11. Zonal polynomials for wreath products

In this section we compute the images of the zonal spherical functions under the map
C H . The following proposition follows from Proposition 8.1.

Proposition 11.1. |H Gn|−1C H (�2λ(χ )) = Zλ(χ ) and |H Gn|−1C H (�μ(χ,χ )) =
Sμ(χ ).

Let λ = (2λ(χ ), μ(χ ′, χ ′)|χ ∈ G∗∗
R , χ ′ ∈ G∗∗

C )) ∈ P∗∗
n . Then

�λ = M(n)eH Gn

⊗
χ∈G∗

R

�λ(χ ) ⊗
⊗

χ∈G∗
C /∼

�μ(χ,χ )eH Gn
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(see Section 7, formula after Theorem 7.12). Viewing
⊗

χ∈G∗
R
�λ(χ ) ⊗⊗

χ∈G∗
C /∼ �μ(χ,χ ) as an element of a parabolic subalgebra of H(G),

C H (�λ) = M(n)C H

⎛⎝eH Gn

⊗
χ∈G∗

R

�λ(χ ) ⊗
⊗

χ∈G∗
C /∼

�μ(χ,χ )eH Gn

⎞⎠
= M(n)

∏
χ∈G∗

R

C H
(
�λ(χ )

) ×
∏

χ∈G∗
C /∼

C H
(
�μ(χ,χ )

)
= |H Gn|

∏
χ∈G∗

R

Zλ(χ )(χ ) ×
∏

χ∈G∗
C /∼

S̃μ(χ,χ )(χ ).

This establishes the main theorem of this paper.

Theorem 11.2. Let λ = (2λ(χ ), μ(χ ′, χ ′)|χ ∈ G∗∗
R , χ ′ ∈ G∗∗

C )) ∈ P∗∗
n . Then we

have

|H Gn|−1C H (�λ) =
∏

χ∈G∗
R

Zλ(χ )(χ ) ×
∏

χ∈G∗
C /∼

S̃μ(χ,χ )(χ ).

Define

Zλ =
∏

χ∈G∗
R

Zλ(χ )(χ ) ×
∏

χ∈G∗
C /∼

S̃μ(χ,χ )(χ ), for λ ∈ P∗∗
n .

Since |H Gn|−1C H is an isometry we have

Corollary 11.3.

〈Zλ,Zμ〉�̃ = 〈�λ, �μ〉H = δλ,μ

|SG2n|
dim S(λ)

.

Via CH we obtain

Corollary 11.4.

Zλ = |H Gn|
∑

ρ

z−1
ρ �λ

ρ Pρ(G∗∗),

where ρ runs over {ρ = (ρ(R)|R ∈ G∗∗); |ρ| = n}.

The orthogonality relation of the zonal spherical functions gives the following
Frobenius formula.
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Corollary 11.5.

Pρ(G∗∗) = |H Gn|
∑

λ∈P∗∗
n

dim S(λ)

|SG2n| �λ
ρZλ.

12. Orthogonal polynomials of hypergeometric type arising
from frobenius formula

In this section we apply our main theorem to discrete orthogonal polynomials. Mul-
tivariate orthogonal polynomials of hypergeometric type are considered in [1, 8, 9].
These papers are devoted to multivariate orthogonal polynomials which are expressed
in terms of the (m + 1, n + 1)-hypergeometric functions

F(α, β; γ, X ) =
∑

(ai j )∈Mn,m−n−1(N0)

∏n
i=1(αi )

∑n
j=1 ai j

∏m−n−1
i=1 (βi )∑m−n−1

j=1 a ji

(γ )∑
i, j ai j

∏
x

ai j

i j∏
ai j !

,

where α = (α1, . . . , αn) ∈ Cn , β = (β1, . . . , βm−n−1) ∈ Cm−n−1 and X =
(xi j ) 1≤i≤n,

1≤ j≤m−n−1
. If (G, H ) is a Gelfand pair then the zonal spherical functions of

the Gelfand pair (G � Sn, H � Sn) can be written in terms of (m + 1, n + 1)-
hypergeometric functions as follows.

Proposition 12.1 [9, Remark 2.1]. If the zonal spherical function values for (G, H )
are given by the matrix � = (ωi j )0≤i j≤r−1 then the zonal spherical function values for
(G � Sn, H � Sn) are given by the matrix

(F(−m, −k; −n|J − �))m,k .

where m = (m0, m1, . . . , mr−1) ∈ Zr
≥0 and k = (k0, k1, . . . , kr−1) ∈ Zn

≥0 runs over
k0 + · · · + kr−1 = m0 + · · · + mr−1 = n and J is r × r-all-one matrix.

The following generating function can be considered as an integral expression of
hypergeometric functions.

Proposition 12.2 [8, Proposition 4.1].

r−1∏
i=0

(
r−1∑
j=0

x ji t j

)mi

=
∑
k
¯

(
n

k0, . . . , kr−1

)
F(−k, −m; −n|J − X )t k0

0 . . . t kr−1

r−1 ,

where k = (k0, k1, . . . , kr−1) ∈ Zr
≥0 runs over k0 + · · · + kr−1 = n, and X =

(xi j )0≤i j≤r−1 with x0 j = xi0 = 1.
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Let ρ = (1m R |R ∈ G∗∗). Then the left hand side of formula in Corollary 11.5 can
be written as

∏
R=C∪C−1∈G∗∗

( ∑
χ∈G∗

χ (C)p1(χ )

)m R

.

Put r = |G∗∗|, tχ = p1(χ ) and let dχ be the degree of χ . Note that tχ = tχ . Proposi-
tion 12.2 gives

∏
R=C∪C−1∈G∗∗

( ∑
χ∈G∗

χ (C)tχ

)m R

=
∏

R=C∪C−1∈G∗∗

( ∑
χ∈G∗

χ (C)

dχ

dχ tχ

)m R

=
∑

k

n!∏
χ∈G∗∗ kχ !

F(−k, −m; −n|J − X )
∏

χ∈G∗
R

(dχ tχ )kχ

∏
χ∈G∗

C /∼

(2dχ tχ )kχ ,

where X = (χ (C)+χ (C)
2dχ

)χ∈G∗∗,R=C∪C−1∈G∗∗ and k = (kχ |χ ∈ G∗∗) ∈ Z|G∗∗|
≥0 runs over∑

χ∈G∗∗ kχ = n. We have

( |G|
dχ

tχ

)kχ

= |Hkχ
|
∑
λ�kχ

h(2λ)−1 Zλ(χ ), for χ ∈ G∗
R , and

( |G|
dχ

tχ

)kχ

= |Skχ
|
∑
λ�kχ

h(λ)−2 S̃λ(χ ), for χ ∈ G∗
C .

Compute

n!∏
χ∈G∗∗ kχ !

∏
χ∈G∗

R

(dχ tχ )kχ

∏
χ∈G∗

C /∼
(2dχ tχ )kχ

=
(

n

k
¯

) ∏
χ∈G∗

R

(
d2

χ

|G|

)kχ ∑
λ�kχ

|Hkχ
|

h(2λ)
Zλ(χ )

∏
χ∈G∗

C /∼

(
2d2

χ

|G|

)kχ ∑
λ�kχ

|Skχ
|

h(λ)2
S̃λ(χ )

= n!

2n!

(
2

|G|
)n ∑

λ

dimS(λ)Zλ,

where λ = (λχ |χ ∈ G∗∗) runs over λχ � kχ (χ ∈ G∗∗). By comparing coefficients on
each side of the Frobenius formula, we obtain the following theorem.

Theorem 12.3. Let k = (2kχ , kχ
′ |χ ∈ G∗

R, χ ′ ∈ G∗
C ) ∈ P∗∗

k , λ ∈ P(k) and put k∗∗ =
(kχ |χ ∈ G∗∗) and m = (m R|R ∈ G∗∗). Then

�
λ

(1m R |R∈G∗∗) = F(−m, −k∗∗; −n|J − X ).
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Remark 12.4. Since the table of zonal spherical functions of a Gelfand pair
(SG2, H G1) is given by X , the same orthogonal polynomials are obtained from a
Gelfand pair of (SG2 � Sn, H G1 � Sn) (cf. [9, Remark 2.1]).
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