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Abstract In this paper the Wallis-Fon-Der-Flaass construction of strongly regular
graphs is generalized. As a result new prolific series of strongly regular graphs are
obtained. Some of them have new parameters.

Keywords Strongly regular graphs . Prolific construction

1. Introduction

In 1971 W.D. Wallis proposed in [14] a new construction of strongly regular graphs
(srgs) based on an affine design and a Steiner 2-design. Thirty years later D.G. Fon-Der-
Flaass found how to introduce a sort of randomness into Wallis construction. In [8] he
built hyperexponentially many strongly regular graphs with the same parameters. In his
paper he noticed that his construction corresponds to one case of Wallis construction,
namely when the corresponding Steiner design has block size 2. The goal of this paper
is twofold. First, we show how to modify Fon-Der-Flaass ideas in order to cover all the
cases of Wallis construction. Second, we show that a Steiner 2-design in the original
Wallis construction may be replaced by a partial linear space with some additional
properties. As a result new prolific constructions of strongly regular graphs were found.
Their parameters are displayed in the table below.

The first line of the table presents the srgs constructed by Wallis [14] (the numbers
v, k, p are related to affine designs used in the construction, see (1)) The Fon-der-Flaass
construction appears if s = 1. The series S1.1 and S1.2 are specializations of S1. The
series S1.2 has parameters identical to those of strongly regular graphs constructed by
Goethals and Seidel [11]. Their construction also involves an Hadamard matrix and a
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Steiner design. We didn’t check whether Goethals-Seidel constructions is contained
in S1.2. The parameters of the series S3 coincide with those of the srgs found in [7].
The author didn’t find the parameters of the series S1.1, S2, S4, S5 and S6 neither in
[4] nor in [9]. They seem to be new.

If n = 2, then the parameter set of S1.1 is a partial case of S1.2 with r = 2d−2, s = 2,
and, therefore, is not new. If d = 2, then these parameters are contained in the formula
(6) of [14]. Thus the minimal case which might be new is n = 3, d = 3 when we
obtain the following parameter set (1080, 351, 126, 108).

If d = 2 and n is a power of 2, then the parameters of S6 coincide with those of the
srgs found by W. Haemers (cf. [4]). If n = 2, then the parameters of S6 coincide with
those of S5 with r = 2d−2.

We didn’t estimate the number of isomorphism classes for all the graphs mentioned
in the table. This was done for the series S1 only. By Proposition 3.5 there are at least
exp (0.5V (ln n − o(1))) non-isomorphic graphs with these parameters. Since the other
graphs are obtained in a similar manner, the author believes that their number is also
hyperexponential in V .

The paper is organized as follows. The next section collects necessary information
about affine designs. Sections 3–4 describe two generalizations of Wallis-Fon-Der-
Flaass construction of strongly regular graphs. Section 5 contains concrete implemen-
tations of these generalizations which lead to strongly regular graphs given in the
table. In Section 6 we give examples of spreads in some of the constructed srgs. In
particular, we obtain a prolific construction for a distance-regular graphs of diameter 3
with parameters n2 − 1, n2 − n − 2, 1; 1, n − 2, n2 − 1 where n is a power of 2.

We finish this section by defining the notation which will be used in the paper.
For a positive integer m we set [m] := {1, . . . , m}. Let � be a finite set. Given a

field F, the set of all functions F� possesses a natural structure of F-vector space. It is
more convenient to treat its elements as row-vectors the entries of which are labelled
by the elements of �. The standard basis of this space consists of the vectors eω, ω ∈ �

where (eω)α := δωα and δ is the Kronecker’s delta. For a subset � ⊆ � we abbreviate
e� := ∑

δ∈� eδ .
The set of all linear operators on F� may be identified with the set M�(F) of

all �-by-� matrices over F. The adjacency matrix of a (binary) relation s ⊆ �2 is
denoted by A(s). If D is a set of binary relations on �, then A(D) stands for the sum∑

d∈D A(d). If � ⊆ � then M�(F) is treated as a subset of M�(F). In what follows
i� denotes a diagonal relation of a set �, �(2) := �2 \ i�, I� := A(i�). The symbol
J� � denote all-one �-by-� matrix, the matrix J� � is abbreviated by J�.

2. Affine design and the related algebra

We start with basic definitions which repeat a part of [8].
An affine (resolvable) design is a 2-design (�,B) with the following properties:

(1) each pair of distinct blocks is either disjoint or intersect in a constant number r
of points;

(2) each block together with all blocks disjoint from it forms a parallel class: a set of
mutually disjoint n blocks partitioning all points of the design.
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The only known examples of affine designs are: affine planes of order n (r = 1),
hyperplanes of d-dimesional affine space over the field G F(n) (r = nd−2), Hadamard
3-designs (n = 2).

The parameters of an affine design are contained in the following

Lemma 2.1 (Lemma 1, [8]). If (�,B) is an affine design with parameters n and r,
then the number q := (r − 1)/(n − 1) is integer and the parameters of (�,B) are:

v = |�| = n2r ;

b = |B| = n3q + n2 + n;

p = |B|/n = n2q + n + 1 (the number of parallel classes); (1)

k = nr (the block size);

λ = nq + 1.

It is more convenient to consider affine designs as orthogonal block structures [1].
A partition P of a set � is called uniform of degree k if all its classes have the
same cardinality k. Two uniform partitions P and S are called strictly orthogonal iff
|	 ∩ 
| is constant for each 	 ∈ P and 
 ∈ S. It follows from the definition that
parallel classes of an affine design (�,B) are uniform and pairwise strcitly orthogonal.
So they form a block structure on � in the sense of [1]. Let R(B) denote a complete
set of parallel classes of B. Denote by eC the equivalence relation corresponding to
the parallel class C ∈ R(B). The following equalities are immediate consequences of
the properties of an affine design.

A(eC)T = A(eC), A(eC)A(eD) =
{

k A(eC), C = D,

r J�, C 	= D ,

∑
C∈ R(B)

A(eC)pI� + λ(J� − I�). (2)

It follows from the above equations that the linear span of {I�} ∪ {A(eC)}C∈R(B)

is a subalgebra of M�(C) which contains I�, J� and is closed with respect to tak-
ing transposition. Denote EC := (1/k)A(eC) − (1/v)J�. A routine check shows that
EC ED = δC DEC and

∑
C∈ R(B) EC = I� − (1/v)J�. This implies that the matrices

(1/v)J�, {EC}C∈ R(B) are pairwise orthogonal, and, therefore, linearly independent,
idempotents.

Let P and S be two partitions of the sets � and 
 respectively. Given f : P →
S we define a binary relation P × f S ⊆ � × 
 as follows: P × f S := ∪	∈P	 ×
	 f . If ι : P → P is the identical mapping, then P ×ι P is the equivalence relation
corresponding to P . The following statement is straightforward.

Proposition 2.2. Let �i , i = 1, 2, 3 be finite sets and P1,P2,P3 uniform partitions
of degree k of the corresponding sets. Assume that |P1| = |P2| and let f1 : P1 → P2

be an arbitrary bijection.
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(1) If |P2| = |P3| and f2 : P2 → P3 is a bijection, then

A(P1 × f1
P2)A(P2 × f2

P3) = k A(P1 × f1 f2
P3),

(2) If P ′
2 is a uniform partition of �2 strictly orthogonal to P2 such that |P2| = |P ′

2|,
then for arbitrary bijection f2 : P ′

2 → P3

A(P1 × f1
P2)A(P ′

2 × f2
P3) = r A(�1 × �3)

where r = |	 ∩ 	′|, 	′ ∈ P ′
2, 	 ∈ P2.

3. Construction A

Let m be a natural number and (�i ,Bi ), i = 1, . . . , m be affine designs with the same
parameters n and r . Let L be a set of lines of an (s, t)-partial linear space defined on
the sets [m] with t + 1 ≤ p. Recall that L satisfies the following conditions

(1) each i ∈ [m] is incident to t + 1 lines L ∈ L;
(2) each line contains s + 1 points;
(3) for any pair i 	= j ∈ [m] there exists at most one line

L ∈ L which contains both i and j .

As usual two indices i, j ∈ [m] are collinear, notation i ∼ j , if there exists a line
L ∈ L containing them. The collinearity graph ofL is regular of degree k ′ := s(t + 1).
Till the rest of the paper it is assumed that it is also strongly regular with non-principal
eigenvalues s ′ ≤ r ′.

A unique line which contains two collinear indices is denoted by i ∗ j . Clearly
i ∗ j = j ∗ i . The set of all lines incident to i ∈ [m] is denoted as Li .

Now we are ready to describe the contsruction of a graph. As in [8] it depends
on a number of randomly chosen functions. First, we choose an arbitary injection
ϕi : Li → R(Bi ) for each i ∈ [m]. Second, for all pairs i 	= j of collinear indices
we choose bijections σi j : (i ∗ j)ϕi → ( j ∗ i)ϕ j which are subject to the following
conditions.

∀i j∈[m] i ∼ j ⇒ σ−1
i j = σ j i

∀i j � ∈[m] j ∼ i, j ∼ �, j ∗ i = j ∗ � =⇒ σi jσ j� = σi�.
(3)

In order to satisfy this condition we build these bijections line by line. For each
line L ∈ L we choose a base point o(L) ∈ L . For each j ∈ L \ {o(L)} we choose
an arbitrary bijection σo(L) j : Lϕo(L) → Lϕ j and set σ jo(L) := σ−1

o(L) j . For each pair of
distinct indices i, j ∈ L \ {o(L)} we set σi j := σio(L)σo(L) j . Thus a pair of collinear
indices i 	= j defines a bijection σi j : Lϕi → Lϕ j . It follows from the construction that
(3) is satisfied.

The set of parameters � := ({ϕi }m
i=1, {σi j }i∼ j ) defines the graph G� in the following

way. The node set of G� is � := �1 ∪ · · · ∪ �m . The set of arcs V is a union

V =
⋃

{i∼ j | i, j∈[m]}
Vi j , where Vi j := (i ∗ j)ϕi ×σi j ( j ∗ i)ϕ j for collinear i, j ∈ [m].
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Note that if t + 1 = p and ∼ is a complete graph (that is L is a Steiner 2-design on
[m]) then the construction described here is a prolific version of the one given by
Wallis in [14]. Prolific construction of Fon-Der-Flaass [8] is a partial case of Wallis
construction when s = 1. Thus if p = t + 1 and ∼ is a complete graph, then G� will
be referred to as Wallis-Fon-Der-Flaass graph.

3.1. The eigenvalues of G�

To simplify the notation we fix a parameter set � = ({ϕi }m
i=1, {σi j }i∼ j ) and denote the

parallel class Lϕi , L ∈ Li as Bi L . Since ϕi is injective, we always have that

∀i∈[m] ∀L ,L ′∈Li L 	= L ′ =⇒ Bi L 	= Bi L ′ . (4)

In order to compute the eigenvalues of G� we introduce a new basis in which the
adjacency matrix of G� has a simple form. First, we introduce additional notation.

For each j ∈ [m] and a parallel class C ∈ R(B j ) we define

eCj := C ×ι C, EC
j := (1/k)A

(
eCj

) − (1/v)J� j .

So, eCj is the equivalence relation on � j corresponding to the partition C of � j .

As we have already mentioned before, the matrices EC
j , C ∈ R(B j ) together with

E0
j := (1/v)J� j are pairwise orthogonal idempotents which sum up to I� j . There-

fore the vector space C� j is an orthogonal sum of the subspaces Im(EC
j ), C ∈ R(B j )

and Im(E0
j ). The latter subspace is one-dimensional spanned by the vector e� j . The

subspace Im(EC
j ) is spanned by the vectors f� := (1/k)e� − (1/v)e� j where � runs

through the blocks of the parallel class C. Note that
∑

�∈C f� = 0, but this is the only
(up to a scalar multiple) linear dependence between the vectors f�, � ∈ C. Therefore
f�1

, . . . , f�n−1
form a basis of Im(EC

j ) whenever �1, . . . , �n−1 are pairwise distinct

blocks of C. Note that dim(Im(EC
j )) = n − 1.

Another important property of the vectors f� is given by the following formula

f� A(Vi j ) =
{

kf�σi j , � ∈ Bi i∗ j ,

0, otherwise.
(5)

A parallel class C ∈ R(Bi ) is called free if C 	∈ {Bi L}L∈Li . Since the parallel classes
Bi L , L ∈ Li are pairwise distinct, the design (�i ,Bi ) has p − |Li | = p − t − 1 free
parallel classes. Let us number the free classes of Bi by B j

i , j = 1, . . . , p − t − 1.

Thus R(Bi ) = {B1
i , . . . ,B p−t−1

i } .∪ {Bi L}L∈Li . Note that the first set of parallel classes
is empty iff p = t + 1.

Now we can write the following decomposition of C�:

C� =
m⊕

i=1

C�i =
m⊕

i=1

(
Im

(
E0

i

) ⊕
⊕

C∈R(Bi )

Im
(
Ec

i

)) = W0 ⊕ W f ⊕
⊕
L∈L

WL ,
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where

W0 := ⊕m
i=1Im

(
E0

i

)
, W f :=

i=m, j=p−t−1⊕
i=1, j=1

Im
(
E

B j
i

i

)
, WL := ⊕i∈L Im

(
EBi L

i

)
.

We choose {e�i }m
i=1 as a basis of W0. Since

e�i A(Vi j ) =
{

ke� j , i ∼ j,
0, otherwise,

the subspace W0 is A(V )-invariant. The matrix of the restriction A(V )|W0
in the above

basis is k A(∼), where A(∼) is the adjacency matrix of the collinearity graph. Note
that dim(W0) = m.

If t + 1 < p, then W f is non-trivial. We build a basis of W f by taking a union of

the vectors f�1
, . . . , f�n−1

where �1, . . . , �n−1 are n − 1 blocks of a free class B j
i and

(i, j) runs through [m] × [p − t − 1]. It follows from (5) that W f is contained in the
kernel of A(V ). Note that dim(W f ) = m(p − t − 1)(n − 1).

In order to build a basis of WL we choose an arbitrary b ∈ L and n − 1 blocks from
the parallel classBbL , say �1, . . . , �n−1. Then f�1

, . . . , f�n−1
form a basis of Im(EBbL

b ).
Applying the bijections σba, a ∈ L to the sets �i we obtain the bases f�σba

1
, . . . , f�σba

n−1
of

Im(EBaL
a ). It follows from (5) and (3) that the vector subspace spanned by f�σba

i
, a ∈

L is A(V )-invariant, and, moreover, the matrix of the restriction of A(V ) onto this
subspace is equal to k(Js+1 − Is+1). Thus the matrix of the restriction A(V )|WL in a
chosen basis is block-diagonal with n − 1 blocks of the form k(Js+1 − Is+1), that is
A(V )|WL = k(In−1 ⊗ (Js+1 − Is+1)).

This new basis immediately leads to the following

Proposition 3.1. Let {s(t + 1)1, r ′ f , s ′g} be the spectrum of the collinearity graph ∼.
Then

(a)

Spec(A(V )) = {
ks(t + 1)1, (kr ′) f , (ks ′)g, (ks)(n−1)|L|, (−k)(n−1)s|L|, 0(n−1)(p−t−1)m

}
.

(b) Let O ∼= mKv be a union of complete graphs the connected components of which
are �i , i = 1, . . . , m. Then

Spec(A(V ) + A(O)) = {
(ks(t + 1) + (v − 1))1, (kr ′ + v − 1) f , (ks ′ + v − 1)g,

(ks − 1)(n−1)|L|, (−k − 1)(n−1)s|L|, (−1)(n−1)(p−t−1)m
}
.

Note that some of the eigenvalues may disappear. For example, if p = t + 1, then
the last eigenvalue is excluded, since its multiplicity is 0 (dim(W f ) = 0 in this case).
If ∼ is a complete graph, that is L is a Steiner 2-design, then r ′ = s ′ = −1 and the
number of distinct eigenvalues is at most four. These observations together with the
well-known fact that a connected regular graph is strongly regular if and only if it has
at most three eigenvalues yields us the following two results.
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Theorem 3.2. The graph G� is strongly regular if and only if t + 1 = p and ∼ is
a complete graph. In this case its spectrum is {ksp1, (ks)(n−1)|L|, (−k)m−1+(n−1)s|L|}.
The parameters of G� are: (v(ps + 1), kps, k(s − 1) + ks(p − k), ks(p − k)).

Theorem 3.3. The graph G�

.∪ O is strongly regular if and only if t + 1 = p and
one of the following is satisfied

(a) ∼ is a complete graph and n = s + 1,
(b) (r ′, s ′) = (s − n, −n − 1).

The parameters of the srgs are (v2, (k + 1)(v − 1), v − 2 + k(k − 1), k(k + 1)) in
the first case and (v (snq+s+1)(sn2q+(s+1)(n+1))

snq+n+1
, ksp + v − 1, v + ksλ − 2, ks(λ − 1) +

k + v) in the second case (recall that λ = nq + 1, see (1)).

A routine calculation shows that the parameters of G� are geometric corresponding
to pg(ps, k − 1, λs). We do not know whether these graphs are geometric.

As an application of Theorem 3.2 let us take (�i ,Bi ) to be affine point-hyperplane
design on nd , d ≥ 2 points (recall that in this case r = nd−2). If one chooses L to
be the set of lines of the d-dimensional projective space over G F(n), then L is a

(n, nd−1
n−1

− 1)-linear space and the assumptions of Theorem 3.2 are satisfied. This
yields us a prolific family of srgs with the following parameters (the series S1.1):

(
nd nd+1 − 1

n − 1
, nd nd − 1

n − 1
, nd−1

(
n − 1 + nd − n

n − 1

)
, nd nd−1 − 1

n − 1

)
. (6)

Although these graphs appear as a partial case of Wallis construction, the paper [14]
does not contain this set of parameters. The author didn’t find these parameters neither
in [9] nor in [4].

If n = 2, then allBi are Hadamard designs. In this case v = 4r, k = 2r, p = 4r − 1.
Thus every Steiner 2 − ((v − 1)s + 1, s + 1, 1) design gives rise to a prolific family
of srgs with the following parameters 4r ((4r − 1)s + 1), 2r (4r − 1)s, 2r (s − 1) +
rs(4r − 2), rs(4r − 2)) (the series S1.2).

Remark 3.14. Theorems 3.2 and 3.3 generalize Theorems 1 and 2 of [14], respec-
tively.

If the graph of ∼ is complete, that is L is a 2 − (m, s + 1, 1) design, and p = t + 1,
then the relations I�, V, O, V ∪ O form an association scheme on the set �. Its
character table has the following form

⎛⎜⎜⎜⎜⎜⎝
I� V O V ∪ O
1 v − 1 ksp (v − k)sp

1 v − 1 −k −v + k

1 −1 ks −ks

1 −1 −k k

⎞⎟⎟⎟⎟⎟⎠
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If s + 1 = n (the case (a) of Theorem 3.3), then the character table looks as follows⎛⎜⎜⎜⎜⎜⎝
I� V O V ∪ O
1 v − 1 k(v − 1) (v − k)(v − 1)

1 v − 1 −k −v + k

1 −1 v − k k − v

1 −1 −k k

⎞⎟⎟⎟⎟⎟⎠
and the scheme becomes amorphic of Latin square type. A concrete example of such a
scheme may be obtained if every (�i ,Bi ), i = 1, . . . , v is a Hadamard design (n = 2)
on v = 4r points and L is the set of all 2-element subsets of [v] (s = 1).

The construction of Wallis-Fon-Der-Flass deals with the case when the graph of ∼
is complete and p = t + 1. Below we give an example which shows that the situation
described in case (b) of Theorem 3.3 may also occur.

Assume that there exists a Steiner 2 − (m, n + 1, 1) designS with m = np + n + 1.
Assume, in addition, that there exists a parallel class C ⊂ S of lines (in this case p
is divisible by n + 1). Define L := S \ C. Then L is an (n, p)-partial linear space
the collinearity graph of which is a (np + n + 1, np, np − n − 1, np)-strongly regular
graph (so, ∼ is a complete multipratite graph with n p

n+1
+ 1 blocks of size n + 1). The

non-principal eigenvalues of this graph are 0, −n − 1. Thus L satisfies the conditions
of Proposition 3.3, part (b), and, therefore lead to an srg with the parameters (v(np +
n + 1), knp + v − 1, v + knλ − 2, kn(λ − 1) + k + v).

A particular case of this construction appears if n = 2 and every (�i ,Bi ) is an
Hadamard design of order 4r . Then S is a Steiner triple system on 8r + 1 points. If
r ≡ 1(mod 3), then 3 | 8r + 1 and according to [13] there exists a parallel class of
triples. Thus for each Hadamard matrix of order 4r with r ≡ 1(mod 3) we obtain an
srg with parameters

(4r (8r + 1), (4r + 1)(4r − 1), 2(2r − 1)(2r + 1), r (8r − 2)). (7)

This is the series S2.

Proposition 3.5. Let (�i ,Bi ), i ∈ [m] and L be fixed. The number of isomorphism
classes of the Wallis-Fon-Der-Flaass graphs is at least

(p!)m−1(n!)s|L|

(vm)v(s!)np
∏m

i=2 | Aut (Bi )| (8)

Proof: Our proof uses the same ideas as the one of Lemma 3.3 [6]. Fix a bijection
α : L1 → R(B1), and let G denote the set of graphs G�, � = ({ϕi }i∈[m] ∪ {σi j }i∼ j )
where ϕ1 = α. Our goal is to give a lower bound for the number of non-isomorphic
graphs in G.

There are (p!)m−1(n!)s|L| ways to choose a parameter set � which defines an srg
G�. In what follows we denote by G�(�), � ⊆ � the set of common neighbors of �

in G�.
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Let us fix one of the graphs, say G� ∈ G, and count the number of permutations
f ∈ Sym (�) which map some G�′ ∈ G onto G� isomorphically.

There are at most (vm)v possibilities to choose ω f , ω ∈ �1. Assume now that the
images ω f , ω ∈ �1 have been chosen.

Let us count now the number of choices for �
f
i , i = 2, . . . , m. Pick an arbitrary line

L ∈ L1 and write L = {1, b1, . . . , bs}, Lα = {�1, . . . , �n}. For each �� the induced
subgraph G�′ (��) is a complete multipartite graph on k(s + 1) points the parts of

which are �
σ ′

1 j

� , j ∈ L . Thus for each � ∈ [n] the sets X� := {(�σ ′
1 j

� ) f }s+1
j=2 are known.

Since � j = ∪n
�=1�

σ ′
1 j

� for j ∈ L , the set �
f
j is uniquely determined if one chooses one

element from every X�, � ∈ [n]. There are sn choices for �
f
b1

, (s − 1)n choices for �
f
b2

etc. Finally, we obtain (s!)n possibilities to construct �
f
b1

, . . . , �
f
bs

. Repeating this
procedure for each line L ∈ L1 we obtain that there are (s!)np possibilities to choose
�

f
i , i = 2, . . . , m (recall that each j ∈ [m] \ {1} belongs to a unique L ∈ L1).

Once the sets �
f
2 , . . . , �

f
m are constructed, the designs B f

i are also known because
of

Bi = {G�′ (δ) | δ 	∈ �i } ⇒ B f
i = {

G�(δ) | δ 	∈ �
f
i

}
.

Since B f
i and Bi are isomorphic, there are |Aut (Bi ) | choices for each of the restriction

f |�i , i = 2, . . . , m. Choosing one for each i = 2, . . . , m we obtain f . Combining
altogether we obtain that there are at most

(vm)v(s!)np
m∏

i=2

| Aut (Bi )|

isomorphisms from the graphs in G onto a given graph G�. Thus the number of
non-isomorphic classes in G is at least

(p!)m−1(n!)s|L|

(vm)v(s!)pn
∏m

i=2 | Aut (Bi )|
�

In all known examples of affine designs their automorphism group is less than
(p!)vn. Then (8) is at least as much as the number

(n!)s|L|

(vm)v(s!)pn(vn)m−1

The following statement gives a lower bound for this fraction.

Proposition 3.6.

ln

(
(n!)s|L|

(vm)v(s!)pn(vn)m−1

)
= 1

2
|�| ln n

(
1 − O

(
ln p

p ln n

))
.
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Proof: Since (s + 1)|L| = pm and s ≥ 1, we obtain

ln
(
(n!)s|L|) ≈ s

s + 1
pmn ln n ≥ 1

2
pmn ln n.

By Fischer’s inequality s + 1 ≤ p. Hence m = ps + 1 < p2 implying

(vm)v < (np · p2)v ⇒ ln((vm)v) < v ln n + 3v ln p < np(ln n + 3 ln p).

Dividing by ln((n!)s|L|) we obtain (note that p < m)

ln((vm)v)

ln((n!)s|L|)
<

s + 1

s

(
1

m
+ 3 ln p

m ln n

)
< 8

ln p

p ln n
.

It follows from

(s!)np < ssnp < psnp ⇒ ln((s!)np) < snp ln p

that

ln((s!)np)

ln((n!)s|L|)
<

snp ln p
s

s+1
pmn ln n

= (s + 1) ln p

m ln n
= (s + 1) ln p

(ps + 1) ln n
<

2 ln p

p ln n
.

It follows from

(vn)m−1 < (pn2)m ⇒ ln((vn)m−1)

ln((n!)s|L|)
<

m(2 ln n + ln p)
s

s+1
pmn ln n

= s + 1

sn

(
2

p
+ ln p

p ln n

)
≤ 3

ln p

p ln n
.

Therefore

ln

(
(n!)s|L|

(vm)v(s!)pn(vn)m−1

)
= ln((n!)s|L|)(1 − O(ln p/(p ln n)))

= s

s + 1
pmn ln n(1 − O(ln p/(p ln n))) ≥ 1

2
pmn ln n(1 − O(ln p/(p ln n))).

To finish the proof it is sufficient to note that |�| = mv = �(mnp). �

4. Construction B

We keep all the notation introduced in the previous section. We also assume that
t + 1 < p In this case each Bi contains p − t − 1 free parallel classes denoted as
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B1
i , . . . ,B p−t−1

i . Set

Fi :=
p−t−1∑

j=1

E
B j

i
i , Di :=

∑
L∈Li

EBi L
i .

The matrices Fi , Di , (1/v)J�i are pairwise orthogonal idempotents which sum up to
I�i , and Tr(Fi ) = (n − 1)(p − t − 1), Tr(Di ) = (n − 1)(t + 1).

In this subsection we assume that Fi , Di , (1/v)J�i are primitive idempotents of the
Bose-Mesner algebra of a class two symmetric association scheme defined on �i . Let
I�i , Ai , Bi be the matrices of the standard basis of this association scheme. Then Ai and
Bi are adjacency matrices of pairwise complementary srgs. We also assume that all Ai ’s
have the same parameters, say (k ′′, λ′′, μ′′, r ′′, s ′′), and Ai = k ′′ 1

v
J�i + r ′′ Di + s ′′Fi

for each i = 1, . . . , m. In what follows we abbreviate A := ∑m
i=1 Ai , B := ∑m

i=1 Bi .

Theorem 4.1. The matrix A + A(V ) is the matrix of an srg iff one of the following is
satisfied

(a) ∼ is a complete graph and

r ′′ = (n − 1)(p − t − 1) − s − 1

n
,

s ′′ = −k + r ′′, (9)

k ′′ = k(s + 1) + r ′′

(b) r ′ − s ′ = s + 1 and

r ′′ = (n − 1)(p − t − 1) + s ′ + 1

n
,

s ′′ = − k + r ′′, (10)

k ′′ = − k(s ′ + 1) + r ′′

The spectrum of the graph is: {(ks(t + 1) + k ′′)1, (kr ′ + k ′′) f +(n−1)|L|,
(s ′′)g+(n−1)(pm−|L|)} where f and g are the multiplicities of r ′ and s ′ respectively (in
the case (a) r ′ = −1 and g = 0).

Proof: We use the basis of C� introduced in the previous section. Since e�i A =
e�i Ai = k ′′e�i , we obtain A|W0

= k ′′ IW0
.

If � ∈ B j
i for some i ∈ [m] and j ∈ [p − t − 1], then

f� A = f� Ai = f�

(
k ′′ 1

v
J�i + r ′′ Di + s ′′Fi

)
= s ′′f�E

B j
i

i = s ′′f�.
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Thus A|W f = s ′′ IW f . Analogously, if � ∈ Bi L where i ∈ L , then

f� A = f� Ai = f�

(
k ′′ 1

v
J�i + r ′′ Di + s ′′Fi

)
= r ′′f�EBi L

i = r ′′f�.

Therefore A|WL = r ′′ IWL . Therefore the matrix of A + A(V ) with respect to the basis
chosen in the previous section has the following diagonal blocks

(A + A(V ))|W0
= k A(∼) + k ′′ Im ;

(A + A(V ))|W f = s ′′ IW f ;

(A + A(V ))|WL = k(In−1 ⊗ (Js+1 − Is+1) + r ′′ I(s+1)(n−1), L ∈ L

where A(∼) is the adjacency matrix of ∼. Therefore the specturm of A + A(V ) is:

Spec(A + A(V )) = {
(ks(t + 1) + k ′′)1, (kr ′ + k ′′) f , (ks ′ + k ′′)g,

(ks + r ′′)(n−1)|L|, (−k + r ′′)(n−1)s|L|, (s ′′)(n−1)(p−t−1)m
}
.

If ∼ is a complete graph, then r ′ = s ′ = −1 and the spectrum of (A + A(V )) is

{
(ks(t + 1) + k ′′)1, (−k + k ′′)m−1, (ks + r ′′)(n−1)s|L|,

(−k + r ′′)(n−1)|L|, (s ′′)(n−1)(p−t−1)m
}
.

Note that ks + r ′′ > 0, ks + r ′′ > −k + r ′′, −k + k ′′ ≥ −k + r ′′ and s ′′ ≤ 0. If A +
A(V ) is strongly regular, then it has three distinct eigenvalues. Therefore ks + r ′′ =
−k + k ′′, −k + r ′′ = s ′′. Together with the equation r ′′(n − 1)(t + 1) + s ′′(n − 1)
(p − t − 1) = −k ′′ we obtain a 3 × 3 system of linear equations for k ′′, r ′′, s ′′ which
yields (9).

If ∼ is not a complete graph, then r ′ > s ′ and Spec(A + A(V )) has three distinct
eigenvalues if and only if

kr ′ + k ′′ = ks + r ′′, −k + r ′′ = ks ′ + k ′′ = s ′′.

These equations are equivalent to r ′ − s ′ = s + 1, k ′′ − r ′′ = −k(s ′ + 1), s ′′ − r ′′ =
−k. Together with the equation r ′′(n − 1)(t + 1) + s ′′(n − 1)(p − t − 1) = −k ′′ we
obtain a 3 × 3 system of linear equations for k ′′, r ′′, s ′′ which yields us (10). �

Analogously one can analyze the spectrum of B + A(V ). We omit the proof because
it is similar to the one given in the previous Theorem.

Theorem 4.2. The matrix B + A(V ) is the matrix of an srg iff one of the following is
satisfied
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(a) ∼ is a complete graph and

s ′′ = −1 − (n − 1)(t + 1)s − 1

n
,

r ′′ = ks + s ′′, (11)

k ′′ = v − k + s ′′

(b) r ′ − s ′ = s + 1 and

s ′′ = −1 − s + s ′ + 1 + (n − 1)(t + 1)s

n
,

r ′′ = ks + s ′′, (12)

k ′′ = s ′′ + v + k(s + s ′ + 1)

In both cases the non-principal eigenvalues of B + A(V ) are −1 − s ′′, −k − 1 − r ′′.

Note that in Theorems 4.1–4.2 the multiplicities of r ′′ and s ′′ are (n − 1)(t + 1) and
(n − 1)(p − t − 1) respectively.

The concrete examples of implementations of the above Theorems are considered
in the next subsections.

4.1. Examples to Theorem 4.1

4.1.1. p = t + 2

If p = t + 2, then either r ′′ = n−s−2
n or r ′′ = n+s ′

n depending on the case of Theo-
rem 4.1. In both cases r ′′ < 1 implying r ′′ = 0. This gives us n = s + 2 in the first
case and s ′ = −n in the second one. After simple computations we obtain that in both
cases (k ′′, r ′′, s ′′) = (v − k, 0, −k) and

Ai = (v − k)/v J�i − k Fi = (v − k)/v J�i − k EBi1
i = J�i − A

(
eBi1

i

)
.

Thus Ai is the adjacency matrix of an srg with spectrum (v − k, 0, −k) (this is a
complete multipartite graph on v points). If ∼ is a complete graph, then L should be a
Steiner 2 − (m, s + 1, 1) design with parameters s + 1 = n − 1 and m = s(t + 1) +
1 = (n − 2)(p − 1) + 1 = v − n − p + 2. Below we give two examples of a Steiner
2-design with these parameters.

If n = 3, then L is a set of all 2-element subsets of the set [v − p − 1] and we
obtain an srg with parameters (v(v − p − 1), k(v − p), k(2k − p), k(2k − p)). Using
v = nk, p = v−1

n−1
we may rewrite the parameter set as follows

(
v(v − 1)

2
,
v(v − 1)

6
,
v(v − 3)

18
,
v(v − 3)

18

)
(13)
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The only known affine designs with n = 3 are point-hyperplane affine designs with
v = 3d points. After substitution we obtain the set of parameters of the infinite series
of rank 3 graphs found by U. Dempwolff [7]. This gives us the series S3.

If n = 4, then L is a Steiner triple system on v − p − 2 = v − v−1
3

− 2 = 2v−5
3

points. It always exists if v ≡ 4, 7(mod 9). So, if one of these congruences holds we
obtain an srg with the following parameters(

v(2v − 5)

3
,
v(2v + 1)

12
,
v(v + 8)

24
,
v(v + 2)

24

)
. (14)

The only known series of affine designs with n = 4 is a point-hyperpalne design over
G F(4) with 4d points. If d ≡ 1, 2(mod 3), then v ≡ 4, 7(mod 9) and an srg with
parameters (14) exists. This is the series S4.

To show the situation when the case (b) of Theorem 4.1 may occur let us assume
that there exists a Steiner 2 − (v, n, 1) design S. Assume, in addition, that there exists
a parallel class C ⊂ L of lines, Define L := S \ C. Then L is an (n − 1, p − 2)-partial
linear space the collinearity graph of which is a (v, v − n, v − 2n, v − n)-strongly
regular graph (so, ∼ is a complete multipratite graph with k = v/n blocks of size n).
The non-principal eigenvalues of this graph are 0, −n. Thus L satisfies the conditions
of Theorem 4.1, part (b), and, therefore, gives rise to an srg with the parameters
(v2, k(v − 1), v − 2 + (k − 1)(k − 2), k(k − 1)). Note that a 2 − (v, n, 1) design with
a parallel class always exists if eachBi is point-hyperplane affine designs on nd points.

4.1.2. (�i ,Bi ) are affine planes of order n

In this case r = 1, k = n, v = n2. Moreover the idempotents EC
i , C ∈ R(Bi ) together

with (1/v)J�i are primitive idempotents of an amorphic association scheme with
n + 1 classes [12] the basic relations of which are bC := eCi \ i�i , C ∈ R(Bi ). It is well-
known that any union of x basic relation of this scheme forms a strongly regular
graph. Hence the idempotents (1/v)J�i , Fi , Di are primitive idempotents of class 2
association scheme the first standard basis of which is

I�i , Ai =
t+1∑
j=1

A(bBi j ), Bi =
∑
C∈Li

A(bC).

Thus k ′′ = (n − 1)(t + 1), r ′′ = n − t − 1, s ′′ = −t − 1. After substitution of these
values into (9) we obtain that these equations hold iff s = t − 1, that is iff L is an
affine plane of order t .

Analogously, one can obtain that (10) holds iff s ′ = −(t + 1) and r ′ = (s + 1) −
(t + 1). Combining this with k ′ = s(t + 1) we obtain that L should be an (s, t)-net.

4.2. Examples to Theorem 4.2

Assume that all Bi ’s are affine plane of order n. As it was already mentioned in
Section 4.1.2 in this case we have r = 1, k = n, v = n2 and k ′′ = (n − 1)(t + 1), r ′′ =
n − t − 1, s ′′ = −t − 1. If we substitute this data to (11) we obtain a unique solution
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s = 1, t = n − 1. This yields us an srg with parameters (n3, (n − 1)(n + 2), n − 2,

n + 2) which was constructed in [8] (Construction 3).
Assume that p + 1 is even and define L as the set of all 2-element subsets of the set

[p + 1] without a perfect matching. Then s = 1 and t + 1 = p − 1. The collinearity
graph of L is a multipartite strongly regular graphs with the eigenvalues k ′ = p − 1,

r ′ = 0, s ′ = −2. Thus the condition r ′ − s ′ = s + 1 is satisfied. Substituting these
values into (12) we obtain

s ′′ = −1 − (n − 1)(p − 1)

n
= −1 − (n − 1)λ = −k, r ′′ = k + s ′′ = 0, k ′′ = v − k.

In this case Ai = J�i − A(eBi1
i ) is indeed the adjacency matrix of a strongly reg-

ular graph which is multipartite. Thus A(V ) + B is the adjacency matrix of an
srg with the spectrum ks(t + 1) + k − 1 = kp − 1, −1 − s ′′ = k − 1, −k − 1 − r ′′ =
−k − 1. Now one can compute the parameters of this srg: (v(p + 1), kp − 1, r (p − 1)
− 2, r (p − 1)).

If n = 2 (that is all Bi are Hadamard design with v = 4r ) then p + 1 = 4r is even
and we obtain an srg with parameters (16r2, (4r + 1)(2r − 1), 4r2 − 2r − 2, 4r2 −
2r ). This is a strongly regular graph of negative Latin square type (the series S5).

If n > 2 is a prime power and Bi are point-hyperplane affine designs on v = nd ,

d ≥ 2 points, then p + 1 = n nd−1−1
n−1

is even if and only if n is even or d is odd. In this
case we get an srg with the following parameters (the series S6)

nd

(
nd − 1

n − 1
+ 1

)
, nd−1 nd − 1

n − 1
− 1, nd−1 nd−1 − 1

n − 1
− 2, nd−1 nd−1 − 1

n − 1
.

In a partial case when d = 2 and n is a power of 2 we obtain a strongly regular graph
with parameters (n2(n + 2), n2 + n − 1, n − 2, n). Strongly regular graphs with these
set of parameters were first found by Haemers (cf. [4]).

5. Spreads in Wallis-Fon-Der-Flaass graphs

Let G� be the Wallis-Fon-Der-Flaass graph. It is strongly regular with the smallest
eigenvalue −k. By Delstarte’s bound the clique size of G� is bounded by ps + 1
which is equal to the number m of affine designs used in the construction. It turns out
that in some cases the graph G� indeed has a clique of that size. Moreover, it could
be that it has a spread of such cliques.

The statement below generalizes an implementation of Wallis construction given
in [2].

Proposition 5.1. Let (�′,B′) be an affine design with parameters n, r . Assume that
there exists a 2 − (ps + 1, s + 1, 1) design1 such that the chromatic number of its block

1 Recall that p is uniquely defined by n, r , see (1).
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graph is p. Then there exists Wallis-Fon-Der-Flaass graph which admits a spread into
Delsarte cliques.

Proof: Set m := ps + 1. Let c : L → [p] be a coloring of the block graph of L.
Define now a graph G on the point set � := �′ × [m] by connecting two points
(ω′, i), (ω′′, j) iff i 	= j and

ω and ω′ belong to the same block of B′
c(i∗ j). (15)

We claim that this graph is a Wallis-Fon-Der-Flaass graph. To show that we set
�i := �′ × {i} and Bi := {� × {i} | � ∈ B′} for each i ∈ [m]. We also number the
elements of R(B′) as B′

1, . . . ,B′
p and denote Bi j := {� × {i} | � ∈ B′

j }. Thus we have
m disjoint affine designs (�i ,Bi ), i = 1, . . . , m with the same parameters.

Let us define the functions ϕi and σi j as follows

Lϕi := Bic(L), L ∈ Li and (� × {i})σi j := � × { j}, � ∈ B′
c(L).

Since all blocks of L incident to a given point form a clique in the block graph,
the mappings ϕi , i ∈ [m] are injective. The condition (3) for functions σi j is also
satisfied. Thus the graph defined by (15) is G� where � = ({ϕi }m=1, {σi j }i 	= j ), and by
Theorem 3.2 it is strongly regular.

It follows from (15) that the sets �ω := {(ω, i) | i ∈ [m]} are Delstarte’s cliques in
G which form a spread. �

Haemers and Tonchev proved [10] that a strongly regular graph which has a spread
of Delsarte’s cliques gives rise to a three class imprimitive association scheme the
relations of which are:

R0 := {((ω′, i), (ω′′, j)) | ω′ = ω′′, i = j},
R1 := {((ω′, i), (ω′′, j)) | ω′ = ω′′, i 	= j},
R2 := {((ω′, i), (ω′′, j)) | ω and ω′ belong to the same block of B′

c(i∗ j), i 	= j},
R3 := �2 \ (R0 ∪ R1 ∪ R2).

According to [10] the character table of this association scheme is⎛⎜⎜⎝
1 ksp − ps v(sp + 1) − ksp − 1 sp
1 ks + 1 −ks − 1 −1
1 −k + 1 k − 1 −1
1 ks − ps −ks − 1 sp

⎞⎟⎟⎠
Let B′ to be an affine plane of even order n (so, v = n2, k = n, p = n + 1), and L
a set of all 2-element subsets of the set [n + 2] (so, s = 1). The block graph of L is
the line graph of Kn+2. Since n is even, there exists an edge-coloring of Kn+2 into
n + 1 = p colors. So, the assumptions of Proposition 5.1 are satisfied and we obtain
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an association scheme with the following character table

⎛⎜⎜⎜⎝
1 n2 − 1 n3 + n2 n + 1

1 n + 1 −n − 1 −1

1 −n + 1 n − 1 −1

1 −1 −n − 1 n + 1

⎞⎟⎟⎟⎠
The Wallis-Fon-Der-Flaass graph (�, R1 ∪ R3) which appears in this case was
built in [8]. It has parameters of the collinearity graph of a generalized quadran-
gle G Q(n + 1, n − 1): (n2(n + 2), n(n + 1), n, n). Since this graph has a spread of
(n + 2)-cliques, the result of Brouwer [3] implies that (�, R1) is a distance-regular
graph with parameters n2 − 1, n2 − n − 2, 1; 1, n − 2, n2 − 1. One can prove that
non-equivalent edge-colorings of Kn+2 lead to non-isomorphic R1’s. Note that an
edge-coloring of Kn+2 into n + 1 colors is equivalent to one-factorization of Kn+2.
By [5] the number N (2�) of one-factorizations of K2� have the following asymptotics:
ln(N (2�)) ∼ 2�2 ln 2�. Hence the asymptotic number of non-isomorphic distance-
regular graphs with above parameters is at least (n + 2)(n+2)2/2.

If n = 4, then the drg (�, R1) has parameters (15, 10, 1; 1, 2, 15). As it was shown
in [2], the construction described in Proposition 5.1 gives a drg arising from the point
graph of the generalized quadrangle G Q(5, 3). Note that the first example of a drg
with parameters (15, 10, 1; 1, 2, 15) which is not isomorphic to the previous one was
found by M. Klin [12].
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