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Abstract The polycirculant conjecture states that every transitive 2-closed permuta-
tion group of degree at least two contains a nonidentity semiregular element, that is, a
nontrivial permutation whose cycles all have the same length. This would imply that
every vertex-transitive digraph with at least two vertices has a nonidentity semiregular
automorphism. In this paper we make substantial progress on the polycirculant conjec-
ture by proving that every vertex-transitive, locally-quasiprimitive graph has a noniden-
tity semiregular automorphism. The main ingredient of the proof is the determination
of all biquasiprimitive permutation groups with no nontrivial semiregular elements.
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1. Introduction

A semiregular permutation is a permutation whose cycles all have the same length.
Such a permutation generates a semiregular permutation group, that is, a group such
that the only element which fixes a point is the identity. Thus the existence of a non-
identity semiregular permutation in a permutation group is equivalent to the existence

M. Giudici is supported by an Australian Postdoctoral Fellowship.

J. Xu was supported by an IPRS scholarship of Australia.

M. Giudici . J. Xu (�)
The University of Western Australia, School of Mathematics and Statistics,
Crawley 6009, WA, Australia

M. Giudici
e-mail: giudici@maths.uwa.edu.au

J. Xu
Present address: School of Mathematical Sciences, Peking University, Beijing, 100871, P.R. China
e-mail: xujing@math.pku.edu.cn.

Springer



218 J Algebr Comb (2007) 25:217–232

of a fixed point free element of prime order. A permutation group is regular if it
is both transitive and semiregular. Moreover, a vertex-transitive graph has a regular
group of automorphisms if and only if it is a Cayley graph. In 1981, Marušič [22]
asked if every finite vertex-transitive digraph with at least two vertices has a nontrivial
semiregular automorphism. This question was reproposed by Jordan [18] in 1988. It
has been shown that every vertex-transitive graph of valency three [23] or four [7] has a
nonidentity semiregular automorphism. Marušič [22] proved that all vertex-transitive
digraphs with pk or mp vertices, where p is a prime and m ≤ p, have a semiregular
automorphism of order p. Also Marušič and Scapellato [23] proved that every vertex-
transitive digraph with 2p2 vertices, for p a prime, has a semiregular automorphism
of order p.

In was proved in [12] that every transitive permutation group of degree at least 2
has a fixed point free element of prime power order. However, they also constructed
transitive permutation groups with no fixed point free elements of prime order. Hence
the existence of semiregular elements in automorphism groups of digraphs is not
purely a problem about transitive permutation groups. We call a transitive permutation
group elusive if it contains no fixed point free elements of prime order. As well as
the examples in [12], the Mathieu group M11 in its 3-transitive action on 12 points is
elusive. See [2] and [14] for more examples.

The 2-closure G(2) of a permutation group G is the largest subgroup of Sym(�)
with the same set of orbits on ordered pairs as G. The 2-closure of a 2-transitive
group is the full symmetric group. On the other hand, we say that G is 2-closed if it
is equal to its 2-closure. The full automorphism group of a digraph is 2-closed since
any permutation of the vertex set which preserves the orbits of Aut(�) on ordered
pairs preserves adjacency. However, not every 2-closed permutation group is the full
automorphism group of some digraph. For example, an elementary abelian group of
order 4 in its regular action on 4 points is 2-closed but is not the full automorphism
group of any digraph. Klin [3] extended the question of Marušič to the more general
setting of 2-closed groups. This leads to what is now known as the polycirculant
conjecture (see [2]), that every finite transitive 2-closed permutation group of degree
at least two contains a nontrivial semiregular permutation. In the original context of
automorphism groups of digraphs, the name suggests that vertex-transitive digraphs
contain a bunch of cycles and so have nice representations like the ones in [1]. It
is a consequence of [13, Theorem 1.2] that if a counterexample G exists then every
minimal normal subgroup of G is intransitive. Moreover, by [6, Theorem 4.1], the
degree of any counterexample is divisible by a square.

In this paper we prove the truth of the polycirculant conjecture for the automor-
phism groups of a large class of graphs. A transitive permutation group G on a set �

is primitive if G preserves no nontrivial partition of �. If G is primitive then every
nontrivial normal subgroup of G is transitive. This leads to the more general con-
cept of a quasiprimitive permutation group which is one for which every nontrivial
normal subgroup is transitive. All primitive groups are quasiprimitive, while not all
quasiprimitive groups are primitive, for example, the action of any nonabelian simple
group on the set of cosets of a nonmaximal subgroup. We say that a graph � with a
group G of automorphisms is G-locally-quasiprimitive if for each vertex α, the vertex
stabiliser Gα acts quasiprimitively on the set �(α) of vertices adjacent to α. Locally
quasiprimitive graphs were studied in many papers, such as [20, 25].
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The class of all vertex-transitive locally-quasiprimitive graphs includes all vertex-
transitive 2-arc-transitive graphs. A graph is s-arc-transitive if the automorphism group
acts transitively on the set of all (s + 1)-tuples (α0, α1, α2, . . . , αs) such that αi is adja-
cent to αi+1 and αi �= αi+2. If a graph is vertex-transitive and s-arc-transitive with s ≥ 2
then it is also 2-arc-transitive. Moreover, the stabiliser of a vertex acts 2-transitively
on the set of neighbours of that vertex. The study of s-arc-transitive graphs goes back
to Tutte [32, 33] who showed that graphs of valency 3 are at most 5-arc-transitive.
Using the Classification of Finite Simple Groups, Weiss [34] showed that graphs of
valency at least three are at most 7-arc-transitive. Praeger initiated a systematic study
of 2-arc-transitive graphs [27] by showing that all nonbipartite examples are covers of
2-arc-transitive graphs where the automorphism group is quasiprimitive on vertices.
This motivated the O’Nan-Scott Theorem for quasiprimitive permutation groups and
has led to much work on both quasiprimitive 2-arc-transitive graphs [10, 11, 15, 17, 21]
and their covers [8, 9]. We also refer the reader to the surveys [28, 29]. Further work
on 2-arc-transitive graphs has been done, for example, in [19, 24].

We prove the following theorem.

Theorem 1.1. Let � be a finite graph with a group G of automorphisms such that G
is vertex-transitive and locally-quasiprimitive. Then � has a nonidentity semiregular
automorphism.

Since all transitive groups of prime degree are primitive, we have the following
corollary.

Corollary 1.2. Every finite arc-transitive graph of prime valency has a nonidentity
semiregular automorphism. Also every finite 2-arc transitive, vertex-transitive graph
has a nonidentity semiregular automorphism.

Theorem 1.1 also has the following analogue in the 2-closed setting.

Theorem 1.3. Let G be a finite transitive permutation group on � and suppose that
for ω ∈ � there is a self paired orbit � of Gω on �\{ω} such that G�

ω is quasiprimitive.
Then G(2) contains a nontrivial semiregular permutation.

It was shown in [25], that if � is a G-locally quasiprimitive graph with G-vertex-
transitive and N a normal subgroup of G, then either N has at most 2 orbits on vertices
or N is semiregular. Thus if G does not contain a nontrivial semiregular element then
G is either quasiprimitive or biquasiprimitive. A biquasiprimitive permutation group
is a transitive permutation group for which every nontrivial normal subgroup has at
most two orbits and there is some normal subgroup with precisely two orbits. This is an
important class of permutation groups when studying bipartite graphs (see for example
[16, 17, 26]) and were studied in their own right in [30]. All quasiprimitive elusive
groups were determined in [13] and shown to be of the form M11 � K acting on 12k

points, for some transitive subgroup K of Sk . Moreover, such groups are not 2-closed.
In this paper we determine all biquasiprimitive elusive groups and this enables us to
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prove Theorem 1.1. Note that we use [A : B] to denote the set of right cosets of a
subgroup B in a group A and use |A : B| for the index of B in A.

Theorem 1.4. Let G be a finite biquasiprimitive elusive permutation group on � and
let α ∈ �. Then one of the following holds:
1. G = M10 and |�| = 12;
2. G = Mk

11 � K � M11 � Sk and Gα
∼= PSL(2, 11)k � K ′, where k is a positive in-

teger, K ′ � K � Sk such that K is transitive, |K : K ′| = 2, and K\K ′ contains
no elements of order 2;

3. G = Mk
11 � K � M11 � Sk and Gα

∼= (PSL(2, 11)k/2 × Mk/2
11 ) � K ′, where k is an

even positive integer, K ′ � K � Sk such that K is transitive and K ′ is intransitive,
|K : K ′| = 2 and K\K ′ contains no elements of order 2.

Moreover, each group G in (1)–(3) is biquasiprimitive and elusive, G is not 2-closed,
and G(2) contains a fixed point free element of order 3.

We note that for the examples in Theorem 1.4 (2), the unique minimal normal
subgroup N = Mk

11 of G acts faithfully on both its orbits, while in Theorem 1.4 (3)
the unique minimal normal subgroup N = Mk

11 of G is unfaithful on each of its orbits.
This paper is set out as follows. We first present some preliminary results we need

in Section 2. In Section 3 we give several constructions of biquasiprimitive elusive
groups and then in Section 4 show that these are the only examples, thus completing
the proof of Theorem 1.4. Finally, in Section 5 we prove Theorems 1.1 and 1.3.

2. Preliminary results

In this section we collect some results which will be needed throughout the paper.

Lemma 2.1 ([23, Lemma 2.1]). Let G be an elusive permutation group with point
stabiliser Gα . Then every conjugacy class of elements of prime order in G intersects
Gα non-trivially.

We have the following important example.

Example 2.2 (see [2]). The Mathieu group M11 in its 3-transitive action on 12 points
with point stabiliser PSL(2, 11) is elusive since it has only one conjugacy class of
elements of order 2 or 3. Moreover, since M11 is 2-transitive we have that M (2)

11 = S12.
Since M10 = A6 · 2 (with point stabiliser A5) is a transitive subgroup of the above

permutation group M11, it is also elusive. The socle T = A6 has two orbits of length
6 and so M10 is biquasiprimitive. Moreover, given α in one T -orbit, Tα is transitive
on the other T -orbit. Hence Wielandt’s Dissection Theorem ([35, Theorem 6.5], see
also [2, Theorem 5.5]) implies that T (2) contains A6 × A6, and so T (2) contains many
fixed point free elements of order 3. Therefore, M (2)

10 is not elusive.

We can use these examples to build many more examples of elusive groups.
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Proposition 2.3 ([2, Theorem 4.1]). Let G1 � Sym(�1) be an elusive permutation
group on �1 and let G2 � Sym(�2) be an elusive permutation group on �2. Then
1. G1 × G2 acts elusively on �1 × �2; and
2. G1 � Sk is elusive on �k

1 in the natural product action.

Corollary 2.4. Let � = �k for some k ≥ 1 and |�| = 12. Then both Mk
11 and M11 �

K , where K � Sk, are elusive permutation groups on �.

In fact, we have just constructed all elusive permutation groups with a transitive
minimal normal subgroup, and hence all quasiprimitive elusive groups.

Theorem 2.5 ([13, Theorem 1.1]). Let G be an elusive permutation group on a finite
set � which has at least one transitive minimal normal subgroup. Then G = M11 � K
acting with its product action on � = �k for some k ≥ 1, where K is a transitive
subgroup of Sk and |�| = 12.

We will also need the following two results.

Proposition 2.6 ([13, Proposition 2.1]). Let N = T k, where T is a finite nonabelian
simple group, and suppose that N acts elusively on �. Then T = M11 and the action
of N on � is the product action on �k where |�| = 12.

Theorem 2.7 ([13, Theorem 1.3]). Let T be a simple group with a proper subgroup
H which meets every Aut(T )-conjugacy class of elements of T of prime order. Then
T is one of A6, M11, P�+(8, 2) or P�+(8, 3), and H = A5, PSL(2, 11), P�(7, 2) or
P�(7, 3), respectively. Furthermore, if H meets every conjugacy class of elements of
T of prime order, then T = M11 and H = PSL(2, 11).

We also need a couple of results about 2-closures.

Lemma 2.8 ([35, Theorem 5.7]). Let G and L be permutation groups on a set �. If
G � L, then G(2) � L (2).

Proposition 2.9.

1. [2, Theorem 5.1] Let G1 � Sym(�1) and G2 � Sym(�2) be transitive permuta-
tion groups. Then in the action of G1 × G2 on �1 × �2, given by (α, β)(g1,g2) =
(αg1 , βg2 ), we have (G1 × G2)(2) = G(2)

1 × G(2)
2 .

2. [31, Proposition 3.1] Let G � Sym(�) and K � Sk. Then in the product action on
�k we have that G(2) � K � (G � K )(2).

The next theorem is very important for our proof of Theorem 1.1, see also [20,
Theorem 1.3].

Theorem 2.10 ([25, Section 1]). Let � be a finite connected G-vertex-transitive,
G-locally quasiprimitive graph, and let N be a normal subgroup of G. Then one
of the following holds.
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1. N is transitive on the vertex set V �; or
2. � is bipartite and the N-orbits in V � are the two parts of the bipartition of �; or
3. N has more than two orbits in V �, and N is semiregular on V �.

We also need the following well known lemma from permutation group theory. See
for example [5, Theorem 4.2A].

Lemma 2.11 ([5, Theorem 4.2A]). Let G be a transitive subgroup of Sym(�), and α

a point in �. Let C be the centraliser of G in Sym(�). Then C is semiregular, and
C ∼= NG(Gα)/Gα .

3. Some biquasiprimitive elusive groups

3.1. The notation for biquasiprimitive elusive groups

Throughout this paper, all groups and graphs are finite. We adopt the notation used
in [30] for biquasiprimitive permutation groups. Suppose that G is a biquasiprimitive
elusive permutation group on a finite set �. Then there exists a non-trivial intransitive
normal subgroup of G which has two orbits, say �1, �2. Thus there is a set � such
that we can identify � with � × {1, 2} such that �1 = � × {1} and �2 = � × {2}.
Each element of G either fixes the two orbits setwise or interchanges them. The
elements of G which fix �1 and �2 setwise form a subgroup G+ of index 2 in G, and
G+ induces a transitive permutation group H on �. By the embedding theorem for
permutation groups, G is conjugate in Sym(�) to a subgroup of the wreath product
H � S2 = (H × H ) � S2, where for (y1, y2) in the base group H × H , and (12) ∈ S2,

(δ, i)(y1,y2) = (δyi , i) and (δ, i)(12) = (δ, i (12)) for all (δ, i) ∈ �. (3.1)

We write the base group B = H × H as B = H1 × H2 when we wish to distinguish
the two direct factors. Note that G+ = G ∩ B and by the definition of H , the group G+

projects onto H1 and H2. Let g ∈ G \ G+. Then g = (x, y)(12) for some x, y ∈ H ,
and since G+ projects onto H2, multiplying g by an element of G+ if necessary, we
may assume that y = 1 and g = (x, 1)(12). Hence we may assume that G = 〈G+, g〉
where g = (x, 1)(12) for some x ∈ H . Since G is elusive, there is no element of
order 2 interchanging �1 and �2 (such an element would be fixed point free), and so
o(g) �= 2, in particular, x �= 1.

We also need the following notation. Given a group M and ϕ ∈ Aut(M), we denote
the full diagonal subgroup {(a, aϕ) | a ∈ M} of M × M by Diagϕ(M × M). Also,
given G = 〈G+, g〉 as defined above, for M � H1 we define Diagg(M × M) as the

full diagonal subgroup {(a, ag) | a ∈ M}. Moreover, we need the fact that Aut(T k) =
Aut(T ) � Sk when T is a nonabelian simple group.

3.2. The examples

We saw in Example 2.2 that the biquasiprimitive group M10 = A6 · 2 acting on
12 points is elusive. We now give two further constructions of elusive biquasiprimitive
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groups which we will see in Theorem 1.4 provide all the remaining biquasiprimitive
elusive groups.

The following lemma concerns the second family of examples in Theorem 1.4.

Lemma 3.1. Let G = Mk
11 � K � M11 � Sk, where k is a positive integer and K is a

transitive subgroup of Sk acting naturally on the k simple direct factors of Mk
11. Suppose

that K contains an index 2 subgroup K ′ such that K \ K ′ contains no elements of
order 2 and let L = PSL(2, 11)k � K ′. Then the action of G on the set of right cosets
of L in G is faithful, biquasiprimitive and elusive of degree 2 · (12)k .

Proof: Let � be the set of right cosets of L in G and let N be the unique minimal
normal subgroup of G. Then N = Mk

11 and L N = Mk
11 � K ′. Let G+ = L N . Then

|G : G+| = 2 and so N has two orbits �1 and �2 on �, each of size 12k . Hence
every nontrivial normal subgroup of G has at most two orbits on � and so G is a
biquasiprimitive permutation group of degree 2 · (12)k .

By Corollary 2.4, each element of prime order in G+ fixes some point of �1. Since
K \ K ′ contains no elements of order 2, G \ G+ contains no elements of order 2 and
hence contains no elements of prime order. Thus G is elusive on �. �

An example of (k, K , K ′) which satisfies the conditions of Lemma 3.1 is k = 4, K =
〈(1234)〉 and K ′ = 〈(13)(24)〉. Another example is k = 5, K = Z5 � Z4 = AGL(1, 5)
and K ′ = Z5 � Z2

∼= D10. Note that there is no requirement of transitivity for K ′.
Next we look at the 2-closure of G when G is of the above type.

Lemma 3.2. Suppose G = Mk
11 � K � M11 � Sk is a biquasiprimitive elusive group

given by Lemma 3.1. Then the 2-closure of G contains a fixed point free element of
order 3.

Proof: With the notation of Section 3.1, we may identify � = [G : L] with � × {1, 2}
where � × {i} = �i . Let N = Mk

11. We observe that N acts faithfully on each �i in-
ducing a product action on � with � = �k , where � = [M11 : PSL(2, 11)] and |�| =
12. Let M = N�1 ∼= N . Then N = Diagϕ(M × M) where ϕ = (τ1, . . . , τk).σ ∈
Aut(M) for some τi ∈ M11 and σ ∈ Sk , and N acts on � = � × {1, 2} via (δ, 1)(g,gϕ ) =
(δg, 1) and (δ, 2)(g,gϕ ) = (δgϕ

, 2). (For g ∈ M = Mk
11, we can write g = (x1, . . . , xk)

where xi ∈ M11 for each i . Then gϕ = (xτ1

1 , . . . , xτk
k )σ = (xτ1′

1′ , . . . , xτk′
k ′ ) where i ′ =

iσ−1

.)
The orbits of N = Diagϕ(M × M) on the set � × � are of the following form.

1. {((α, 1), (β, 1)) : (α, β) ∈ O}, for each orbit O of M on � × �.
2. {((α, 2), (β, 2)) : (α, β) ∈ O}, for each orbit O of M on � × �.
3. {((α, 1), (β, 2)) : (α, β) ∈ O′

γ,δ}, where O′
γ,δ = {(γ g, δgϕ

) : g ∈ M} for some
γ, δ ∈ �

4. {((β, 2), (α, 1)) : (α, β) ∈ O′
γ,δ}, where O′

γ,δ = {(γ g, δgϕ

) : g ∈ M} for some
γ, δ ∈ �,

Since � = �k , we write the points α = (α1, . . . , αk) and β = (β1, . . . , βk)
where αi , βi ∈ �. Let y ∈ S12 be a fixed point free element of order 3 on
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�. Recall that ϕ = (τ1, . . . , τk).σ . Consider h = ((y, 1, . . . , 1), (yτ1 , 1, . . . , 1)σ ) ∈
Diagϕ(Sk

12 × Sk
12) acting on � × {1, 2}. We will show that h preserves N -orbits on

ordered pairs, and hence h is a fixed point free element of order 3 in N (2) on �. By
Lemma 2.8, G(2) ≥ N (2), and hence G(2) also contains a fixed point free element of
order 3 on �.

By Proposition 2.9, the 2-closure of the product action M = Mk
11 on � = �k is

Sk
12. Thus h preserves N -orbits of types 1 and 2. So we only need to check that h

preserves N -orbits of type 3. (Note that the same argument will apply to the N -orbits
of type 4.) Recall that ϕ = (τ1, . . . , τk).σ for σ ∈ Sk , and for convenience, write τ1

as τ . Suppose 1σ = i , then

h = ((y, 1, . . . , 1), (1, . . . , 1, yτ , 1, . . . , 1)) where yτ is at the i th component.

Thus we only need to consider the action induced by the product action on the first
component of �1 and the i th component of �2. Then since we are only considering
elements which act componentwise on �k we may assume that k = 1, that is, � = �.
Let γ, δ ∈ � and

� = (γ, δ){(g,gτ )|g∈M11} = (γ, δ)Diagτ (M11×M11).

Then � gives rise to an orbit of type 3. Let (α, β) ∈ �, that is,

(α, β) = (γ, δ)(g1,gτ
1 ) for some g1 ∈ M11.

Applying h = (y, yτ ) to (α, β), we have

(α, β)(y,yτ ) = (
γ g1 y, δτ−1g1 yτ

)
.

Then since S12 = M (2)
11 , (y, y) preserves the set

(
γ, δτ−1){(g,g)|g∈M11}

,

and so there exists some g2 ∈ M11, such that

(α, β)(y,yτ ) = (
γ g2 , δτ−1g2τ

) ∈ �.

Thus orbits of type 3 are fixed setwise by h, and hence h is a fixed point free element
of order 3 in G(2). �

Next we look at the last family of examples described in Theorem 1.4.

Lemma 3.3. Let G = Mk
11 � K � M11 � Sk, where k is an even positive integer and

K is a transitive subgroup of Sk acting naturally on the k simple direct factors of Mk
11.

Suppose that K has an intransitive index 2 subgroup K ′ such that K \ K ′ contains
no elements of order 2 and let L = (PSL(2, 11)k/2 × Mk/2

11 ) � K ′. Then the action
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of G on the set of right cosets of L in G is faithful, biquasiprimitive and elusive of
degree 2 · (12)k/2.

Proof: The results follow from the same argument as in the proof of Lemma 3.1.
�

An example of (k, K , K ′) which satisfies the conditions of Lemma 3.3 is k = 4,
K = 〈(1234)〉 and K ′ = 〈(13)(24)〉. The following lemma concerns the 2-closure of
G when G is as in Lemma 3.3.

Lemma 3.4. Suppose G = Mk
11 � K � M11 � Sk is a biquasiprimitive elusive group

given by Lemma 3.3. Then G(2) contains a fixed point free element of order 3.

Proof: With the notation of Section 3.1, we may identify � = [G : L] with � × {1, 2}
where � × {i} = �i . Let N = Mk

11 and write N = M1 × M2, where Mi
∼= Mk/2

11 for
i = 1, 2, such that

L = (
PSL(2, 11)k/2 × Mk/2

11

)
� K ′ = (PSL(2, 11)k/2 × M2) � K ′

where PSL(2, 11)k/2 � M1. Note that M2 � L and acts trivially on �1 := [L N : L].
Moreover, since elements of G interchanging �1 and �2 also interchange M1 and M2,
we have that M1 acts trivially on �2. Thus N = M1 × M2 acts on � = � × {1, 2} via
the action (δ, i)(g1,g2) = (δgi , i) for i = 1, 2, δ ∈ � and (g1, g2) ∈ M1 × M2. Moreover
each Mi induces a faithful product action on �i = � × {i}, that is, � = �k/2 where
� = [M11 : PSL(2, 11)] and |�i | = 12k/2. Then for each i , Mi

∼= N�i and so M :=
N�1 ∼= Mk/2

11 .
The orbits of N on the set � × � are of the following form.

1. {((α, 1), (β, 1)) : (α, β) ∈ O} for each orbit O of M on � × �.
2. {((α, 2), (β, 2)) : (α, β) ∈ O} for each orbit O of M on � × �.
3. {((α, 1), (β, 2)) : (α, β) ∈ � × �}.
4. {((β, 2), (α, 1)) : (β, α) ∈ � × �}.

By Proposition 2.9, the 2-closure of the product action of M = Mk/2
11 on � = �k/2 is

Sk/2
12 . Let h = (g1, g2) ∈ Sk/2

12 × Sk/2
12 . Then h acts on � by (δ, i)h = (δgi , i). Moreover,

h fixes each orbit of N on � × � and so Sk
12 � N (2). By Lemma 2.9, N (2) � G(2).

Thus G(2) contains many fixed point free elements of prime order, in particular, a fixed
point free element of order 3. �

4. Determining all biquasiprimitive elusive groups

Throughout this section, we use the notation of Section 3.1. Let G be a biquasiprimitive
elusive group, and let �1, �2 be the two orbits of G+.

Lemma 4.1. Let G be an elusive biquasiprimitive permutation group and let N be a
minimal normal subgroup of G. Then N � G+.
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Proof: Since N is a minimal normal subgroup of G, either N � G+ or N ∩ G+ = 1.
If N ∩ G+ = 1, then G = G+ × N where N = 〈g〉 and g is an element of order 2
interchanging �1 and �2, which is not the case as G is elusive. Thus N � G+. �

4.1. The case where G+ acts faithfully on both orbits

In this subsection, we consider the case where G+ acts faithfully on each orbit �i for
i = 1, 2.

Lemma 4.2. Let G be an elusive biquasiprimitive group and suppose G+ acts faith-
fully on both orbits �i . Then G has a unique minimal normal subgroup N isomorphic
to T k for some nonabelian simple group T and a positive integer k.

Proof: Let N and M be distinct minimal normal subgroups of G. By Lemma 4.1, we
have N , M � G+ and so N�1 , M�1 � (G+)�1 . Since N ∩ M = 1 and G+ is faithful
on �1, it follows that N�1 ∼= N and M�1 ∼= M , and we have N�1 ∩ M�1 = 1. Also
biquasiprimitivity of G implies that N�1 and M�1 are transitive. Thus by Lemma 2.11,
N�1 and M�1 are regular. The same argument shows that N�2 and M�2 are regular.
Then as both N and M are faithful on �1 and �2 it follows that both N and M are
semiregular, contradicting G being elusive. Thus G has a unique minimal normal
subgroup N . Suppose now that N is abelian. Then N�1 and N�2 are regular and since
G+ is faithful on both orbits, N is semiregular on �. This contradicts G being elusive
and so N ∼= T k for some nonabelian simple group T . �

Let N ∼= T k be the minimal normal subgroup of G. We denote the j th simple
direct factor of N by Tj and write N = T1 × · · · × Tk where each Tj

∼= T . Let α ∈ �1

and let Nα be the stabiliser in N of α. We will first determine N and Nα . For each
j ∈ {1, . . . , k}, let � j : N → Tj denote the projection onto the j th simple direct
factor of N , and let

N j := Nα ∩ Tj .

Then N j � Nα , and hence

N j
∼= � j (N j ) � � j (Nα), for each j. (∗)

The next lemma is true for all elusive groups.

Lemma 4.3. Let G be an elusive group on a set � and let N be a normal subgroup of
G such that N ∼= T k for some non-abelian simple group T . Let α ∈ �. Then for each
j ∈ {1, . . . , k}, the projection � j (Nα) either equals Tj or is a proper subgroup of Tj

which meets every Aut(Tj )-conjugacy class of elements of Tj of prime order.
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Proof: Suppose that there exists j ∈ {1, . . . , k} such that � j (Nα) �= Tj . For each
Aut(T )-conjugacy class C of elements of prime order in T , the set

C = {(t1, . . . , tk) : ti ∈ C}

is an Aut(N )-conjugacy class of elements of prime order in N . Then as G is elusive,
C ∩ Nα �= ∅. Hence the projection � j (Nα) is a proper subgroup of Tj which meets
every Aut(Tj )-conjugacy class of elements of Tj of prime order. �

Lemma 4.4. Let G be a biquasiprimitive elusive group such that G+ is faithful on
both orbits, and let N be the unique minimal normal subgroup of G. With the notation
in the paragraph preceding Lemma 4.3, there exists at least one i ∈ {1, . . . , k} such
that �i (Nα) is a proper subgroup of Ti which meets every Aut(Ti )-conjugacy class of
Ti . In addition,
1. T = A6, M11, P�+(8, 2) or P�+(8, 3), and �i (Nα) ∼= A5, PSL(2, 11), P�(7, 2)

or P�(7, 3), respectively. In particular, �i (Nα) is a nonabelian simple group.
2. Ni

∼= �i (Nα).

Proof:

(1) Since G+ is faithful on �1, N � G+ (by Lemma 4.1) is faithful on �1, and hence
Nα does not contain any of the simple direct factors of N . Now let t ∈ T have
prime order, then (t, 1, . . . , 1) ∈ N has prime order. Let C be the G-conjugacy
class containing the element (t, 1, . . . , 1). Since G is elusive and C ⊂ N , we
have C ∩ Nα �= ∅. Thus, there exists i ∈ {1, . . . , k} such that Ni �= 1, and hence
�i (Ni ) �= 1. Since T is simple and Nα does not contain any of the simple direct
factors of N , together with (∗), we have �i (Nα) is a proper subgroup of T . By
Lemma 4.3, �i (Nα) meets every Aut(Ti )-conjugacy class of elements of prime
order in Ti . By Theorem 2.7, we have T = A6, M11, P�+(8, 2) or P�+(8, 3), and
�i (Nα) ∼= A5, PSL(2, 11), P�(7, 2) or P�(7, 3), respectively.

(2) Note that �i (Nα) is simple. Hence (∗) and the fact that �i (Ni ) �= 1 combined
together imply that Ni

∼= �i (Nα). �

Lemma 4.5. Suppose G is an elusive biquasiprimitive group on a set � and G+ acts
faithfully on its two orbits. Let N be the unique minimal normal subgroup of G and sup-
pose that N ∼= T k for some nonabelian simple group T . Then for each α ∈ �, we have
Nα

∼= Rk, where (T, R) is one of (A6, A5), (M11, PSL(2, 11)), (P�+(8, 2), P�(7, 2))
or (P�+(8, 3), P�(7, 3)).

Proof: By Lemma 4.4, we have that N = T1 × · · · × Tk where each Ti
∼= T ∈

{A6, M11, P�+(8, 2), P�+(8, 3)}. Without loss of generality, we may suppose α ∈ �1.
Since N is transitive on �1, we have G+ = N Gα . Also since N is a minimal normal
subgroup of G, G acts transitively by conjugation on the set of k simple direct factors
of N . Note that G+ is an index 2 subgroup of G, hence G+ either acts transitively or
has two equal length orbits on the set of k simple direct factors of N .

First we suppose that G+ is transitive on the set of k simple direct factors of N .
Since G+ = N Gα , Gα is also transitive on the set of k simple direct factors of N . So for
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each i, j ∈ {1, . . . , k}, we have �i (Nα) ∼= � j (Nα). By Lemma 4.4, � j (Nα) �= Tj for
each j . Moreover, by Lemma 4.4 (2), we have N j = Nα ∩ Tj

∼= � j (Nα) for each j .
Hence Nα = N1 × · · · × Nk

∼= Rk where (T, R) is one of (A6, A5), (M11, PSL(2, 11)),
(P�+(8, 2), P�(7, 2)) or (P�+(8, 3), P�(7, 3)). The result holds in this case.

Secondly we suppose that G+, and hence Gα , have two orbits, say, O1 =
{T1, . . . , Tk/2} and O2 = {T(k/2)+1, . . . , Tk} on the set of k simple direct factors
of N . Thus, �i (Nα) ∼= � j (Nα) if i, j ∈ {1, . . . , k/2} or i, j ∈ {(k/2) + 1, . . . , k}.
By Lemma 4.4, there exists i such that �i (Nα) �= Ti and Ni = Nα ∩ Ti

∼= �i (Nα).
Moreover �i (Nα) is determined by T . Without loss of generality, we may assume
Ti ∈ O1. Then as Gα is transitive on O1, it follows that N1 × · · · × Nk/2 � Nα

and N1 × · · · × Nk/2
∼= Rk/2 where (T, R) is one of (A6, A5), (M11, PSL(2, 11)),

(P�+(8, 2), P�(7, 2)) or (P�+(8, 3), P�(7, 3)). Moreover, by Lemma 4.3, for each
j ∈ {(k/2) + 1, . . . , k}, either � j (Nα) ∼= R or � j (Nα) = Tj . Let t ∈ T have prime
order, and let C be the G-conjugacy class of the prime order element (t, 1, . . . , 1, t).
Note that C ∩ Nα �= ∅. Since G preserves the partition {O1,O2}of {T1, . . . , Tk}, every
element of C has precisely one nontrivial coordinate in O1 and precisely one nontriv-
ial coordinate in O2. Thus, as N1 × · · · × Nk/2 � Nα and for each i ∈ {1, . . . , k/2}
we have �i (Nα) ∼= Ni , it follows that there exists j ∈ {(k/2) + 1, . . . , k} such that
N j �= 1. By (∗), 1 �= � j (N j ) � � j (Nα). However, T and R are simple. Hence N j

∼= T
or R. But Nα does not contain any of the simple direct factors of N (as N is faithful
on �1), so � j (Nα) ∼= R and N j

∼= R. Since Gα is transitive on O2, it follows that
Nα

∼= Rk . Thus the assertion holds in this case too. �

Finally, we determine all biquasiprimitive elusive groups G where G+ acts faithfully
on both orbits.

Proposition 4.6. Suppose that G is an elusive biquasiprimitive group on a set �, and
G+ acts faithfully on both orbits. Let N be a minimal normal subgroup of G. Then
N ∼= T k where T = M11 or A6. Moreover, the following results hold.

(a) If T = A6, then G = M10 acting on 12 points.
(b) If T = M11, then G is given by Lemma 3.1, that is, G satisfies:

(1) G = Mk
11 � K � M11 � Sk where K � Sk acts transitively by permuting the k

simple direct factors of Mk
11.

(2) G+ = Mk
11 � K ′ where |K : K ′| = 2 and K \ K ′ contains no elements of or-

der 2.
(3) For α ∈ �, Gα

∼= PSL(2, 11)k � K ′, and |�| = 2 · 12k .

Proof: By Lemma 4.4, N ∼= T k where T = A6, M11, P�+(8, 2) or P�+(8, 3). More-
over, by Lemma 4.2, N is the unique minimal normal subgroup of G and so CG(N ) = 1.
Thus G � Aut(N ) = Aut(T ) � Sk . Let α ∈ �. Then by Lemma 4.5, Nα

∼= Rk where
R = A5, PSL(2, 11), P�(7, 2) or P�(7, 3), respectively.

With the notation of Section 3.1, since G+ acts faithfully on both orbits �1 and �2,
G+ = Diagϕ(H × H ) where H = (G+)�1 and ϕ ∈ Aut(H ). Identifying � = � ×
{1, 2}, the action of G is given by (3.1) (see Section 3.1). Let M = N�1 � H . Then
M ∼= T k . Since CG(N ) = 1, ϕ induces a nontrivial automorphism of M , and so we
also write N = Diagϕ(M × M) where ϕ ∈ Aut(M). Note that, when T = A6, there
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are two conjugacy classes of subgroups isomorphic to A5; when T = M11, there is
one conjugacy class of subgroups isomorphic to PSL(2, 11); when T = P�+(8, 2),
there are three conjugacy classes of subgroups isomorphic to P�(7, 2); while when
T = P�+(8, 3), there are six conjugacy classes of subgroups isomorphic to P�(7, 3).
However, in all four cases there is a unique class of subgroups isomorphic to R under
Aut(T ). Hence the stabiliser of a point in N�1 is conjugate under Aut(N ) to Rk . Thus
we may assume N�1 = M = T k , with point stabiliser Mα = Rk , acting on �1 = �k

with |�| = |T : R| as a natural product action.
Suppose first that T = P�+(8, 2) or P�+(8, 3), then by Lemma 4.4, R = P�(7, 2)

or P�(7, 3). There are three conjugacy classes of elements of order 5 in T . Using the
permutation characters and character tables in [4, pp. 85–87, pp. 136–140], we see
that precisely two of the conjugacy classes do not meet R. Thus, given ϕ ∈ Aut(T k),
say, ϕ = (τ1, . . . , τk).σ , for τi ∈ Aut(T ) and σ ∈ Sk , we can find two elements y1, y2

of order 5, such that yτ1

1 = y2, and the conjugacy classes of y1 and y2 do not meet R.
Thus

h = ((y1, 1, . . . , 1), (y1, 1, . . . , 1)ϕ)

is a fixed point free element of order 5 in N , which is a contradiction. Thus T cannot
be P�+(8, 2) or P�+(8, 3). Therefore, T = A6 or T = M11 as asserted.

(a) We first consider the case that T = A6. Recall that N�1 = M = T k acts on
�1 = �k with |�| = |T : R| as a natural product action with point stabiliser Mα = Rk .
Then in this case we have |�| = 6. There are two conjugacy classes of elements of
order 3 in A6, one with cycle structure 32, another with cycle structure 3.13. They are
interchanged by an outer automorphism of S6. For each j ∈ {1, . . . , k}, consider an
element h j ∈ N of order 3 where h�1

j = (1, . . . , 1, y j , 1, . . . , 1) such that y j ∈ Tj

has cycle structure 32 and Tj is the j th direct factor of M . Then

h j = ((1, . . . , 1, y j , 1, . . . , 1), (1, . . . , 1, y j , 1, . . . , 1)ϕ).

Since h�1

j is fixed point free and G is elusive, we have (1, . . . , 1, y j , 1, . . . , 1)ϕ must
have a fixed point on �2. This means ϕ = (τ1, . . . , τk).σ where each τi ∈ Aut(A6)
interchanges the two conjugacy classes of elements of order 3 in T , and σ ∈ Sk . Now
if k ≥ 2, consider the following element of order 3,

h = ((y, z, 1, . . . , 1), (y, z, 1, . . . , 1)ϕ),

where y ∈ A6 with cycle structure 32 and z ∈ A6 with cycle structure 3.13. It is easy
to see that h is fixed point free on �. Hence k = 1, and G is almost simple. By [13,
Page 83], G = M10 acting on 12 points. The proof of (a) is complete.

(b) This leaves us with the final case where T = M11 and the unique minimal
normal subgroup N ∼= T k for k ≥ 1.

Since N is the unique minimal normal subgroup of G, G � Aut(N ) = Mk
11 � Sk

where the top group Sk acts by permuting the k simple direct factors of N . That is,
there exists a subgroup K � Sk such that G = Mk

11 � K . Since N is a minimal normal
subgroup, K is transitive on the set of k simple direct factors. Thus condition (1) holds.

By Lemma 4.1, N � G+, and so G+ = Mk
11 � K ′ where |K : K ′| = 2. Since G is

elusive, G \ G+ contains no elements of order 2. Hence K \ K ′ contains no elements
of order 2. Thus condition (2) holds.
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The biquasiprimitivity implies that N and G+ have the same two orbits. By
Lemma 4.5, we have Nα

∼= PSL(2, 11)k . Thus N induces a product action on each orbit
and |�| = 2 · 12k . Now conditions (1) and (2) imply that Gα = PSL(2, 11)k � K ′ �
G+, so condition (3) holds and the proof of (b) is complete too. �

4.2. The case where G+ is not faithful on its orbits

Lemma 4.7. Let G be a biquasiprimitive elusive group acting on a set � such that
G+ does not act faithfully on at least one of its orbits. Then G has a unique minimal
normal subgroup N. Moreover N ∼= Mk

11 with k even and for α ∈ �, we have Nα
∼=

PSL(2, 11)k/2 × Mk/2
11 and |�| = 2 · 12k/2.

Proof: Denote the two orbits of G+ on � by �1 and �2. For i = 1, 2, let Ki be
the kernel of the action of G+ on �i . Then K1 acts faithfully on �2 and K2 acts
faithfully on �1, and at least one of K1, K2 is nontrivial. Moreover, each g ∈ G \ G+

interchanges K1 and K2, and so K1 × K2 � G. In particular, K1
∼= K2 �= 1. By the

biquasiprimitivity of G it follows that K1 is transitive on �2 and K2 is transitive on �1.
Now K1 � G+ and so contains a minimal normal subgroup M1 of G+. Then for any
g ∈ G \ G+, Mg

1 � K2 and Mg
1 � G+. Moreover g2 ∈ G+ and hence normalises M1,

so (Mg
1 )g = M1. Hence N := M1 × Mg

1 is a minimal normal subgroup of G and by the
biquasiprimitivity of G it follows that M1 is transitive on �2 and Mg

1 is transitive on
�1. Suppose M1 contains an element h of prime order which is fixed point free on �2.
Then hg is fixed point free on �1, and hence (h, hg) ∈ N is fixed point free on �. As G
is elusive, it follows that M1 is elusive on �2. Hence by Proposition 2.6, M1

∼= Mk/2
11 for

some even integer k, and for α ∈ �2, (M1)α ∼= PSL(2, 11)k/2. Hence |�2| = 12k/2. It
follows that N ∼= Mk

11, |�| = 2 · 12k/2 and for all α ∈ �, Nα
∼= PSL(2, 11)k/2 × Mk/2

11 .
Moreover, for α ∈ �2, we have that (M1)α is self-normalising in M1. Thus by

Lemma 2.11, CSym(�2)(M1) = 1 and so Soc((G+)�2 ) = M1. Let H = (G+)�2 . Then
by [30, Lemma 3.2], Soc(G) � Soc(H ) × Soc(H ). Hence G has a unique minimal
normal subgroup N = M1 × Mg

1 as asserted. �

Finally we determine all biquasiprimitive elusive groups G where G+ does not act
faithfully on at least one of its orbits.

Lemma 4.8. Suppose G is a biquasiprimitive elusive group on � and G+ does not
act faithfully on at least one of its orbits. Then G is as given by Lemma 3.3, that is, G
satisfies the following conditions.

(1) G = Mk
11 � K � M11 � Sk where K � Sk is transitive.

(2) G+ = Mk
11 � K ′ where |K : K ′| = 2, and K ′ is intransitive. Moreover there are

no elements of order 2 in K \ K ′.
(3) For any α ∈ �, we have Gα

∼= (PSL(2, 11)k/2 × Mk/2
11 ) � K ′ and |�| = 2 · 12k/2.

Proof: By Lemma 4.7, Soc(G) = Mk
11 is the unique minimal normal subgroup of G,

and hence we have condition (1) satisfied. Now G+ is an index 2 subgroup of G, so we
have G+ = Mk

11 � K ′ and |K : K ′| = 2. Moreover, by the structure of Gα , the group
K ′ is intransitive. Also, since G is elusive, G \ G+ contains no elements of order 2,
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and so K \ K ′ contains no elements of order 2. Finally, by Lemma 4.7, |�| = 2 · 12k/2

and hence Gα
∼= (PSL(2, 11)k/2 × Mk/2

11 ) � K ′. �
Now we are ready to prove Theorem 1.4.

Proof of Theorem 1.4: First note that by Example 2.2, Lemmas 3.1 and 3.3, each
group G in (1)–(3) is biquasiprimitive and elusive. Now let G be a biquasiprimitive
elusive permutation group on �. Suppose first that G+ is faithful on its orbits. Then
by Proposition 4.6, either G = M10 acting on 12 points or G is of the type given in
Lemma 3.1. In the first case, Example 2.2 shows that M (2)

10 contains A6 × A6, and
hence contains a fixed point free element of order 3. In the latter case, by Lemma 3.2,
G(2) contains a fixed point free element of order 3. Next we suppose that G+ is not
faithful on at least one of its orbits. By Lemma 4.8, G is as in Lemma 3.3. Then
by Lemma 3.4, G(2) contains a fixed point free element of order 3. The proof is
complete. �

5. Proofs of Theorems 1.1 and 1.3

Proof of Theorem 1.1: We may assume that � is connected. First suppose that there
exists a non-trivial normal subgroup N of G such that N has at least 3 orbits on the
vertex set V � of the graph�. By Theorem 2.10, N is semiregular on V � and so contains
fixed point free elements of prime order. Next suppose that every non-trivial normal
subgroup is transitive on V �. Then G is quasiprimitive on V �. So by Theorem 2.5,
either G contains a fixed point free element of prime order or |V �| = 12k and G =
M11 � K for some transitive subgroup K � Sk . In the latter case, by Proposition 2.9, the
2-closure of Mk

11 on � is Sk
12. By Lemma 2.8, S12 � K � G(2) � Aut(�)(2) = Aut(�).

Thus � has a fixed point free automorphism of order 3.
We are left to deal with the case where every nontrivial normal subgroup of G has

at most 2 orbits on V � and there exists one nontrivial normal subgroup with precisely
2 orbits, that is, G is biquasiprimitive on V �. Either G contains a fixed point free
element of prime order, or G is an elusive biquasiprimitive group. In the latter case, by
Theorem 1.4, G(2) is not elusive. Hence by Lemma 2.8, G(2) � Aut(�)(2) = Aut(�),
and � has a fixed point free automorphism of prime order. �

Proof of Theorem 1.3: Consider the orbital (undirected) graph � of G relative to
� (note that � is self paired) with vertex set � and edge set (ω, α)G for α ∈ �. By
assumption, G � Aut(�) is vertex-transitive and locally-quasiprimitive. Now by the
proof of Theorem 1.1, we have G(2) � Aut(�) contains a fixed point free element of
prime order. The proof is complete. �
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